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Abstract. This paper investigates the Castelnuovo-Mumford regularity of
generic hyperplane section of projective curve. The classical Castelnuovo
method plays an important role in order to study the extremal examples for
the bounds for the Castelnuovo-Mumford regularity.

1. Introduction

This paper investigates the Castelnuovo-Mumford regularity of a generic hyper-
plane section of projective curve. Let T = k[y0, · · · , yN+1] be the polynomial ring

over an algebraically closed field k. Then we put PN+1
k = Proj(T ). Let C be an

irreducible reduced nondegenerate projective curve in PN+1
k , that is, the defining

ideal IC is generated by elements of degree ≥ 2 in T and T/IC is an integral domain
of dimension 2. Let X be a generic hyperplane section of C, that is, X = C ∩H,
where H is a generic hyperplane of PN+1

k . So X is a zero-dimensional subscheme
of PN

k = Proj(S), where S is the polynomial ring k[x0, · · · , xN ]. Let I be the
defining ideal of X and R be the coordinate ring of X, that is, R = S/I. For
a coherent sheaf F on PN

k and an integer m ∈ Z, F is said to be m-regular if
Hi(PN

k ,F(m − i)) = 0 for all i ≥ 1. For a projective scheme Y ⊆ PN
k , Y is said

to be m-regular if the ideal sheaf IY is m-regular. So, in this case, X is m-regular
if and only if H1(PN

k , IX(m − 1)) = 0, where IX is the ideal sheaf of X. The
Castelnuovo-Mumford regularity of X ⊆ PN

k is the least such integer m and is
denoted by reg(X). Note that reg(X) = a(R) + 2, where a(R) is the a-invariant
of the coordinate ring R. Here, for a graded ring R over a field k with the ir-
relevant ideal m, the a-invariant a(R) is defined as the maximal integer ℓ with

[H
dim(R)
m (R)]ℓ ̸= 0. The interest in this concept stems partly from the well-known

fact that X is m-regular if and only if for every p ≥ 0 the minimal generators of
the pth syzygy module of the defining ideal I of X ⊆ PN

k occur in degree ≤ m+ p.
In this sense, it is important to study upper bounds on the Castelnuovo-Mumford
regularity for projective schemes in order to describe the minimal free resolutions
of the defining ideals. The following result is a starting point of our research on
the Castelnuovo-Mumford regularity for generic hyperplane sections of projective
curves. Throughout this paper, for a rational number n ∈ Q, ⌈n⌉ denotes the
smallest integer which is not less than n.
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Proposition 1.1. (See [1, 2]). Let X ⊆ PN
k be a generic hyperplane section of non-

degenerate projective curve. Then we have reg(X) ≤ ⌈(deg(X)−1)/codim(X)⌉+1.

Before describing a sketch of the proof of (1.1), we define “uniform position”,
“linear general position” and “linear semi-uniform position” for zero-dimensional
schemes. Let X ⊂ PN

k a reduced zero-dimensional scheme such that X spans
PN
k as k-vector space. Then X is said to be in uniform position if HZ(t) =

max{deg(Z),HX(t)} for all t, for any subscheme Z of X, where HZ and HX de-
note the Hilbert function of Z and X respectively. This condition is equivalent
to saying that, for any subschemes Z1 and Z2 of X with deg(Z1) = deg(Z2),
h0(PN

k , IZ1(ℓ)) = h0(PN
k , IZ2(ℓ)) for all integers ℓ ∈ Z. A reduced zero-dimensional

scheme X is said to be in linear semi-uniform position if there are integers v(i,X),
simply written as v(i), 0 ≤ i ≤ N such that every i-plane L in PN

k spanned by
linearly independent i+1 points of X contains exactly v(i) points of X. A generic
hyperplane section of a nondegenerate projective curve is in linear semi-uniform
position, see [2]. We say X is in linear general position if v(i) = i+ 1 for all i ≥ 1.
Further, we note that “uniform position” implies “linear semi-uniform position”.
The property of h-vectors for 0-dimensional scheme in linear semi-unniform posi-
tion yields the proof of Proposition 1.1. Now we describe a sketch of the proof for
the readers’ convenience.

Sketch of the proof of Proposition 1.1. Let h = (h0, · · · , hs) be the h-vector of the
zero-dimensional scheme X ⊆ PN

k , where s is the smallest integer such that hs ̸= 0.
Note that s = reg(X)−1 = a(R)+1. Since X is in linear semi-uniform position, we
have h1+· · ·+hi ≥ ihi for all i = 1, · · · , s−1, that is, HX(t) ≥ min{deg(X), tN+1}
by [2]. Since deg(X) = h0+· · ·+hs and codim(X) = h1 = N , we obtain ⌈(deg(X)−
1)/codim(X)⌉ = ⌈(h1 + · · ·+ hs)/h1⌉ ≥ s. Hence the assertion is proved. □

Let us classify extremal cases for regularity bounds in Proposition 1.1. Our main
theorem extends the results of [4, (2.4)].

Theorem 1.2. Let X ⊆ PN
k be a generic hyperplane section of nondegenerate

projective curve C. Assume that deg(X) ≥ N2 + 2N + 2. If the equality reg(X) =
⌈(deg(X)−1)/codim(X)⌉+1 holds, then X is contained in a rational normal curve
in PN

k .

First let us study when the extremal case in (1.1) happens for the case N = 1,
that is, a generic hyperplane section of plane curve. Such curve is defined by one
equation of degree degC = d, and we easily have reg(X) = d. Thus we have
reg(X) = ⌈(deg(X)− 1)/codim(X)⌉+ 1 for the case N = 1.

Before studying the case N ≥ 2, we will describe a relationship between the mon-
odromy group of the projective curve and the configuration of the generic hyper-
plane section of the curve, as following Rathmann [13]. Let C ⊆ PN+1

k and X ⊆ PN
k

be again a nondegenerate projective curve and its generic hyperplane section re-
spectively. Let M ⊆ C × (PN+1

k )∗ be the incidence correspondence parametrizing

the pairs (x,H) ∈ M , that is, a point x of C and a hyperplane H of PN+1
k such

that x is contained in H. Since M is a PN
k -bundle over C via the first projection,

M is irreducible and reduced. By Bertini’s theorem, M is generically étale finite
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over P = (PN+1
k )∗ via the second projection. Thus the function field K(M) of M

is separable finite over K(P ), in particular, K(M) is a simple extension of K(P ).
So we fix a splitting field Q for this simple extension. Let GC be the Galois group
Gal(Q/K(P )). Then GC is a subgroup of the full symmetric group Sd and is called
the monodromy group of C ⊆ PN

k , where d = deg(C). The following is a basic
result on the monodromy group of projective curve.

Proposition 1.3. Let X ⊆ PN
k be a generic hyperplane section of nondegenerate

projective curve C ⊆ PN+1
k .

(i) (See [1]). If char(k) = 0, then GC = Sd.
(ii) (See [13, (1.8)]). If either GC = Sd or GC = Ad, then X is in uniform position.
(iii) (See [8, (2.5)]). Assume that X is in uniform position and deg(X) ≥ N2 +
2N + 2. If the equality reg(X) = ⌈(deg(X) − 1)/codim(X)⌉ + 1 holds, then X is
contained in a rational normal curve in PN

k .

We remark here the hypothesis deg(X) ≥ N2 +2N +2 is indispensable because
of an example of a (2, 2, 4) complete intersection in P3

k. (See [8, (2.6)].)

In this paper, we focus on the case that X is not in uniform position. So k is
assumed to be a field of positive characteristic.

Theorem 1.4. Let X ⊆ PN
k be a generic hyperplane section of nondegenerate

projective curve. Assume that X is not in uniform position. If deg(X) ≥ N2 +
2N + 2, then we have reg(X) ≤ ⌈(deg(X)− 1)/codim(X)⌉.

What we have to prove is that H0(OPN
k
(t)) → H0(OX(t)) is surjective, that is,

H1(IX(t)) = 0, where t = ⌈(deg(X)−1)/N⌉−1. The classical Castelnuovo method
plays an important role for the proof of the following lemma, which easily yields
the theorem.

Lemma 1.5. Let X ⊆ PN
k be a generic hyperplane section of nondegenerate projec-

tive curve. Put t = ⌈(deg(X)− 1)/N⌉ − 1. For any fixed point P ∈ X, there exists
a (possibly reducible) hypersurface F of degree t in PN

k such that X ∩ F = X\{P}.

The rest of this paper is devoted to the proof of this lemma. In Section 2, we
consider the case of space curves, that is N = 2, and in Section 3, the case of curves
in Pn (n ≥ 4), that is, N ≥ 3.

I would like to thank Professor Seunghun Lee for his great contribution for the
Commutative Algebra Workshop at Konkuk University. This article is based on
my talk for the workshop.

2. Curve in P3

In this section, we investigate the extremal examples for the bounds on the
Castelnuovo-Mumford regularity described in the introduction for the case N = 2,
that is, a generic hyperplane section X of space curve C in P3

k. If char(k) = 0, X is
in uniform position, and so we have done. Moreover, in this case, there is an ACM
smooth curve C ′ ⊆ P3

k such that X = C ′∩H. Thus we describe a free resolution of
the defining ideal IX over k[x0, x1, x2] by the Hilbert-Burch matrix, see [5, 6], and
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get a detailed information for the regularity of X. This observation comes from the
fact that X is “of decreasing type”, see [5], in terms of the h-vectors. From now
on we assume that a generic hyperplane section X of a nondegenerate space curve
C is not in uniform position and k is a field of positive characteristic. The proof
of the main result of this section is obtained by the classical Castelnuovo method
without using the Hilbert-Burch matrix.

Theorem 2.1. Let X ⊆ P2
k be a generic hyperplane section of nondegenerate pro-

jective curve C of degree d in P3
k. Assume that X is not in general linear position

and that d ≥ 10. For any fixed point P ∈ X, there exists a union F of t lines
L1, · · · , Lt in P2

k such that X ∩ F = X\{P}, where t = ⌈d−1
2 ⌉ − 1. In particular,

reg(X) ≤ ⌈d−1
2 ⌉.

Proof. Since X is in linear semi-uniform position by [2], the line spanned by any
two points of X is contains exactly v(1) points. Since X is not in general linear
position by assumption, we have v = v(1) ≥ 3.

First we consider the case v ≥ 4. Now let us take any point P of X. We fix a
point Q in X\{P}. Then we take different lines ℓ1, · · · , ℓa through the point Q such
that the union ∪a

j=1ℓj covers X. Note that a ≥ 3. Each line contains the point Q
and the other v−1 points of X. Thus we see d = av−a+1. We may assume that P
is contained in ℓa. Then we take L1 = ℓ1, · · · , La−1 = ℓa−1. Since (X ∩ ℓa)\{P,Q}
consists of exactly v − 2 points, we need v − 2 lines, La, La+1, · · · , La+v−3, not
containing P such that the union ∪a+v−3

j=a contains (X ∩ ℓa)\{P,Q}. Thus the

assertion is reduced to showing that a+v−3 ≤ ⌈av−(a−1)−1
2 ⌉−1 for d = av−(a−1) ≥

10. The inequality a+v−3 ≤ a(v−1)
2 −1 is equivalent to saying that (a−2)(v−3) ≥ 2,

which is easily shown for v ≥ 4 and a ≥ 3 with av − a + 1 ≥ 10 except for

(v, a) = (4, 3). For (v, a) = (4, 3), we have a + v − 3 ≤ ⌈a(v−1)
2 ⌉ − 1. Hence the

assertion is proved.

Next we consider the case v = 3. Now let us take any point P of X. Then we
take different lines ℓ1, · · · , ℓa through the point P such that the union ∪a

j=1ℓj covers
X. Since each line contains 3 points of X, we see d = 2a + 1. Now we want to
take lines L1, · · · , Lb inductively such that P ̸∈ Li and Li contains exactly 3 points
of X\({P} ∪ (X ∩ (∪i−1

j=1Lj))) for i = 1, · · · , b. Here we can take b = ⌈d−3
6 ⌉. In

fact, suppose there are lines L1, · · · , Li satisfying the condition. Then X∩(∪i
j=1Lj)

consists of 3i points, andX\({P}∪(X∩(∪i
j=1Lj))) consists of the remaining d−3i−

1 points. If 3i+1 < d−3i−2, then there is a line Li+1 satisfying the condition, which
gives b = ⌈d−3

6 ⌉. Moreover we want to take lines L′
1, · · · , L′

c inductively such that

P ̸∈ L′
i and L′

i contains at least 2 points of X\({P}∪ (X ∩ ((∪a
j=1Lj)∪ (∪i−1

j=1L
′
j))))

for i = 1, · · · , c so thatX∩((∪b
j=1Lj)∪(∪c

j=1L
′
j)) = X\{P}. On the other hand, the

number of the points of X\({P}∪ (X ∩ (∪a
j=1Lj))) is d−1−3⌈d−3

6 ⌉ = 2a−3⌈a−1
3 ⌉.

So, we can take c = ⌈ 2a−3⌈ a−1
3 ⌉

2 ⌉. Thus the assertion is reduced to showing that

⌈a−1
3 ⌉+ ⌈ 2a−3⌈ a−1

3 ⌉
2 ⌉ ≤ a− 1, because ⌈d−1

2 ⌉ = a. For a = 5, 6, 7, 8, the inequality

holds. Since 2a− 3⌈a−1
3 ⌉ ≤ a+1, the proof of the inequality is reduced to showing

that ⌈a−1
3 ⌉ + ⌈a+1

2 ⌉ ≤ a − 1, which is easily shown for a ≥ 9. Hence the assertion
is proved. □
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Corollary 2.2. Let X ⊆ P2
k be a generic hyperplane section of nondegenerate

projective curve C of degree d in P3
k. Assume that X is not in uniform position and

that d ≥ 10. For any fixed point P ∈ X, there exists a (possibly reducible) plane
curve F of degree t in P2

k such that X ∩F = X\{P}, where t = ⌈d−1
2 ⌉−1. In other

words, reg(X) ≤ ⌈d−1
2 ⌉.

Proof. By (2.1), we have only to consider the case that X is not in uniform position
but in general linear position. Let us take any point P of X. Then we take a plane
curve F ′ of degree 3 which contains at least 8 points of X\{P} and does not contain
P . Since the remaining points of X\({P} ∪ (X ∩ F ′)) is in general linear position,
we can take lines L1, · · · , Lb inductively such that P ̸∈ Li and Li contains exactly
2 points of X\({P} ∪ (X ∩ (F ′ ∪ (∪i−1

j=1Lj)))) for i = 1, · · · , b, so that we can take

b = ⌈d−9
2 ⌉. Thus F = F ′ ∪ (∪b

j=1Lj) satisfies X ∩ F = X\{P} and the degree of F

is ⌈d−9
2 ⌉+ 3. Since ⌈d−9

2 ⌉+ 3 = t, the assertion is proved. □

3. Curve in Pn (n ≥ 4)

In this section, we consider a generic hyperplane section of nondegenerate pro-
jective curve C in Pn (n ≥ 4). Now we begin with describing a useful result of
Rathmann [13].

Proposition 3.1. (See [13, (2.5)]). Let X be a generic hyperplane section in PN of
a nondegenerate projective curve C of PN+1 for N ≥ 3. Let GC be the monodromy
group of C. If X is not in uniform position, then either of the following holds:
(a) v(1) = 3, and GC is exactly 2-transitive.
(b) v(1) = 2, v(2) ≥ 4, and GC is exactly 3-transitive.
(c) deg(C) = 11, 12, 23 or 24, and GC is the Mathieu group M11, M12, M23, M24

respectively. Moreover M11 and M23 are exactly 4-transitive and M12 and M24 are
exactly 5-transitive.

Now we are in position to state the main theorem of this section.

Theorem 3.2. Let X ⊆ PN
k be a generic hyperplane section of nondegenerate

projective curve C of degree d in PN+1
k for N ≥ 3. Assume that X is not in

uniform position and that d ≥ N2+2N+2. For any fixed point P ∈ X, there exists
a (possibly reducible) hypersurface F of degree t in PN

k such that X ∩ F = X\{P},
where t = ⌈d−1

N ⌉ − 1. In other words, reg(X) ≤ ⌈d−1
N ⌉.

According to the classification of (3.1) we will prove (3.2). As for the case (c)
in (3.1), since N ≥ 4 for deg(C) = 11, 23 and N ≥ 5 for deg(C) = 12, 24, we see
N2 +2N +2 ≥ 26. Hence there is no such curves satisfying the degree condition in
(3.2). So the proof of the theorem is reduced to the lemmas (3.3), (3.4) and (3.5).

First we consider the case (a) in (3.1).

Lemma 3.3. Let X ⊆ PN
k be a generic hyperplane section of nondegenerate pro-

jective curve C of degree d in PN+1
k for N ≥ 3. Assume that X is not in uniform

position and that d ≥ N2 + 2N + 2. Moreover, assume that v(1) = 3, that is, GC

is exactly 2-transitive. For any fixed point P ∈ X, there exists (possibly reducible)
hypersurface F of degree t in PN

k such that X ∩ F = X\{P}, where t = ⌈d−1
N ⌉ − 1.

In other words, reg(X) ≤ ⌈d−1
N ⌉.
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Proof. For the case N ≥ 4, the proof in [4, (2.2)] by the classical Castelnuovo
method have given the claim. So, we have only to prove for the case N = 3.
Since v(1) = 3, we have v(2) ≥ 7 and put v = v(2). Now let us take any point
P of X. We fix 2 points Q1 and Q2 in X\{P}. Then we take different 2-planes
F1, · · · , Fa through the points Q1 and Q2 such that the union ∪a

j=1Fj covers X.
We remark that a ≥ 3. Since each 2-plane contains exactly v points of X, we
see d = av − 2a + 2. We may assume that P is contained in Fa. Now we take
L1 = F1, · · · , La−1 = Fa−1. Since (X ∩ Fa)\{P,Q1, Q2} consists of exactly v − 3
points, there are 2-planes F ′

1, · · · , F ′
b such that P ̸∈ F ′

i for i = 1, · · · , b and the
union ∪b

j=1F
′
j of 2-planes covers (X∩Fa)\{P,Q1, Q2}, where b = ⌈ v−3

2 ⌉. By taking

La = F ′
1, La+1 = F ′

2, · · · , La+b−1 = F ′
b, we have (X ∩ (∪a+b−1

j=1 Lj)) = X\{P}. Thus
we have only to show that (a − 1) + ⌈v−3

2 ⌉ ≤ ⌈ (av−2a+2)−1
3 ⌉ − 1. The inequality

(a− 1)+ v−3
2 ≤ av−2a+1

3 − 1 is equivalent to saying that (2a− 3)(v− 5) ≥ 4, which
is easily shown for v ≥ 7 and a ≥ 3. □

Next we show for the case (b) in (3.1).

Lemma 3.4. Let X ⊆ P3
k be a generic hyperplane section of nondegenerate pro-

jective curve C of degree d in P4
k. Assume that X is not uniform position and that

d ≥ 17. Moreover, assume that v(1) = 2, v(2) ≥ 4, and GC is exactly 3-transitive.
For any fixed point P ∈ X, there exists a union F of t hyperplanes L1, · · · , Lt in
P4
k such that X∩F = X\{P}, where t = ⌈d−1

3 ⌉−1. In particular, reg(X) ≤ ⌈d−1
3 ⌉.

Proof. Let us put v = v(2) ≥ 4. For the case v ≥ 5, the proof is proceeded as
in (3.3). Here we remark that d = av − 2a + 2 ≥ 17 and a ≥ 2. The assertion
is reduced to showing that (a − 1) + ⌈v−3

2 ⌉ ≤ ⌈av−2a+1
3 ⌉ − 1. The inequality

(a− 1)+ v−3
2 ≤ av−2a+1

3 − 1 is equivalent to saying that (2a− 3)(v− 5) ≥ 4, which
is easily shown for v ≥ 6 and a ≥ 2 with av − 2a+ 2 ≥ 17. For the case v = 5, we
see that (a− 1) + 1 = ⌈ 3a+1

3 ⌉ − 1 gives the inequality.

Next we consider the case v = 4. From the table [13, (2.4)] of classification
of triple transitive groups, we see that possible degree d (≥ 17) for the projective
curve C is either pe+1 or 2e, where p is a prime number and e is a positive integer,
that is, d = 17, 18, 20, 22, 24, 26, 28, 30, 32, 33, 38 or more than 38.

Now let us take any point P of X. Then we want to take 2-planes L1, · · · , La

inductively such that P ̸∈ Li and Li contains exactly 4 points of X\({P} ∪ (X ∩
(∪i−1

j=1Lj))) for i = 1, · · · , a. Here we can take a = ⌈d−4
8 ⌉. In fact, suppose there

are 2-planes L1, · · · , Li satisfying the condition. Then X ∩ (∪i
j=1Lj) consists of

4i points, and X\({P} ∪ (X ∩ (∪i
j=1Lj))) consists of the remaining d − 4i − 1

points. If 4i+ 1 < d− 4i− 3, then there is a 2-plane Li+1 satisfying the condition,
which gives a = ⌈d−4

8 ⌉. Moreover we want to take 2-planes L′
1, · · · , L′

b for some b
inductively such that P ̸∈ L′

i and L′
i contains at least 3 points of X\({P} ∪ (X ∩

((∪a
j=1Lj)∪(∪i−1

j=1L
′
j)))) for i = 1, · · · , b so thatX∩((∪a

j=1Lj)∪(∪b
j=1L

′
j)) = X\{P}.

On the other hand, the number of the points of X\({P} ∪ (X ∩ (∪i
j=1La))) is

d − 1 − 4⌈d−4
8 ⌉. So, we can take b = ⌈d−1−4⌈ d−4

8 ⌉
3 ⌉. Thus we have only to show

that ⌈d−4
8 ⌉+ ⌈d−4⌈ d−4

8 ⌉−1

3 ⌉ ≤ ⌈d−1
3 ⌉ − 1. Hence we easily obtain this inequality for

d = 26, 28, 32, 33 or d ≥ 38.
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Finally we check for the case d = 17, 18, 20, 22, 24, 30. For the case d = 18, let
us take any point P of X. First take 2-planes L1 and L2 in P4

k such that L1 ∪ L2

contains exactly 8 points from X\{P}. Next take a 3-plane L3 which contains at
least 3 points from X\({P}∪(X∩(L1∪L2))) and do not contain the point P . Since
X\({P}∪ (X∩ (L1∪L2∪L3))) consists of 5 or 6 points, we put X ′ = {Q1, · · · , Q5}
or {Q1, · · · , Q6}. The 2-plane spanned by Q1, Q2 and P may contain one point from
{Q3, · · · , Q6}, say {Q4}, and the 2-plane spanned by Q4, Q5 and P may contain
either Q3 or Q6, say Q3. Now let L4 be the 2-plane spanned by {P1, P2, P3}, and
L5 be the 2-plane spanned by {P4, P5, P6}. Then neither L4 or L5 contains the
point P . Thus the union ∪5

j=1Lj of 2-planes covers X\{P} and does not contain
the point P . The case d = 17 is proved as d = 18.

For the case d = 22, let us take any point P of X. First take 2-planes L1, L2, L3

in P4
k such that L1 ∪ L2 ∪ L3 contains exactly 12 points from X\{P}. Next take

a 2-plane L4 which contains at least 3 points of X\({P} ∪ (X ∩ (L1 ∪ L2 ∪ L3)))
and does not contain the point P . Since X ′ = X\({P} ∪ (X ∩ (L1 ∪ · · · ∪ L4)))
consists of 5 or 6 points, we put X ′ = {Q1, · · · , Q5} or {Q1, · · · , Q6}. The 2-plane
spanned by Q1, Q2 and P may contain one point from {Q3, · · · , Q6}, say {Q4}, and
the 2-plane spanned by Q4, Q5 and P may contain either Q3 or Q6, say Q3. Now
let L5 be the 2-plane spanned by {P1, P2, P3}, and L6 be the 2-plane spanned by
{P4, P5, P6}. Then neither L5 or L6 contains the point P . Thus the union ∪6

j=1Lj

of 2-planes covers X\{P} and does not contain the point P . The case d = 20 is
proved as d = 22.

Moreover, the case d = 24, 30 is much easier to prove, which is left to the
readers. □

Lemma 3.5. Let X ⊆ PN
k be a generic hyperplane section of nondegenerate pro-

jective curve C of degree d in PN+1
k for N ≥ 4. Assume that X is not in uniform

position and that d ≥ N2 + 2N + 2. Also, assume that v(1) = 2, v(2) ≥ 4, and GC

is exactly 3-transitive. For any fixed point P ∈ X, there exists a (possibly reducible)
hypersurface F of degree t in PN

k such that X ∩ F = X\{P}, where t = ⌈d−1
N ⌉ − 1.

In other words, reg(X) ≤ ⌈d−1
N ⌉.

Proof. Let us take any point P of X. First we note that v(i + 1) ≥ 2v(i) − 1 for
i ≥ 2. In fact, let us take an i-plane G spanned by linearly independent i + 1
points of X, and take a point A1 ∈ G and a point A2 ̸∈ G. Then we put X ∩G =
{A1}∪{B1, · · · , Bv(i)−1}. For any point Bj ∈ (X∩G)\{A1}, the 2-planeH spanned
by A1, A2, Bj contains at least one point Cj in (X∩H)\{A1, A2, Bj}) for all j. Note
that Cj ̸= Cj′ for j ̸= j′. Thus we have v(i + 1) ≥ 2v(i) − 1 for i ≥ 2. Moreover,
since v(2) ≥ 4, we see that v(i) ≥ 3 · 2i−2 + 1 for i ≥ 2. Now we put v = v(N − 2)
and w = v(N − 1). Remark that v ≥ 3 · 2N−4 + 1 and w ≥ 2v − 1. We fix linearly
independent N − 1 points Q1, · · · , QN−1 of X\{P} such that the (N − 2)-plane L
spanned by Q1, · · · , QN−1 does not contain the point P . Then there are different
hyperplanes L1, · · · , La containing L such that the union ∪a

j=1Lj covers X. So,
we see that d = a(w − v) + v. We may assume that P is contained in La. Since

X ∩ La is also in linear semi-uniform position in La(∼= PN−1
k ), by (1.1) there is a

(possibly reducible) hypersurface F ′ in PN
k of degree ⌈ w−1

N−1⌉ such that P ̸∈ F ′ and

F ′ contains (X ∩ La)\{P}. Thus the union F = (∪a−1
j=1Lj) ∪ F ′ covers X\{P} and

P ̸∈ F . Hence we have only to show that a−1+⌈ w−1
N−1⌉ ≤ ⌈d−1

N ⌉−1. In order to show
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the inequality, it suffices to prove that a+ w−1
N−1 ≤ a(w−v)+v

N , which is equivalent to

aN2 − aN −N ≤ (aN − a−N)w− (N − 1)(a− 1)v. Since aN − a−N ≥ 0, we see
that (aN − a−N)w− (N − 1)(a− 1)v ≥ (aN − a−N)(2v− 1)− (N − 1)(a− 1)v =
(aN −N −a−1)v− (aN −a−N) ≥ (aN −N −a−1)(3 ·2N−4+1)− (aN −a−N).
Thus the assertion is reduced to showing that 3 · 2N−4 + 1 ≥ aN−N−a−1

aN2−2N−a , which is
easily shown for N ≥ 4 and a ≥ 2. □

4. An Application to a Sharp Bound on the
Castelnuovo-Mumford Regularity

In this section, we describe an application to a sharp bound on the Castelnuovo-
Mumford regularity in order to improve [4, Theorem 3.2].

Let s be a nonnegative integer. Then X is called s-Buchsbaum if the graded
S-module Mi(X) = ⊕ℓ∈ZH

i(PN
k , IX(ℓ)), called the deficiency module of X, is an-

nihilated by ms for 1 ≤ i ≤ dim(X), see, e.g., [8]. On the other hand, X is called
strongly s-Buchsbaum if X ∩ V has the s-Buchsbaum property for any complete
intersection V of PN

k with codim(X∩V ) = codim(X)+codim(V ), possibly V = PN
k .

So “strongly s-Buchsbaum” implies “s-Buchsbaum”. Further we call the minimal
nonnegative integer s, if it exists, such that X is s-Buchsbaum (resp. strongly
s-Buchsbaum), as the Ellia-Migliore-Miró Roig number (resp. the strongly Ellia-
Migliore-Miró Roig number) of X and denote it by k(X) (resp. k̄(X)), see [8]. In
case X is not k-Buchsbaum for all k ≥ 0, then we put k(X) = k̄(X) = ∞. Note
that k(X) < ∞ if and only if k̄(X) < ∞, which is equivalent to saying that X is
locally Cohen-Macaulay and equi-dimensional.

Upper bounds on the Castelnuovo-Mumford regularity of a projective variety X
are given in terms of dim(X), deg(X), codim(X), k(X) and k̄(X).

Proposition 4.1. Let X be a nondegenerate projective variety in PN
k . Assume that

X is not ACM, that is, k(X) ≥ 1. Then

(a) reg(X) ≤ ⌈(deg(X)− 1)/codim(X)⌉+ k(X) dim(X).

(b) reg(X) ≤ ⌈(deg(X)− 1)/codim(X)⌉+ k̄(X) dim(X)− dim(X) + 1.

Furthermore, assume that char(k) = 0 and deg(X) ≥ codim(X)2+2 codim(X)+
2. If the equality, either reg(X) = ⌈(deg(X) − 1)/codim(X)⌉ + k(X) dim(X) or
reg(X) = ⌈(deg(X)− 1)/codim(X)⌉+ k̄(X) dim(X)− dim(X)+ 1 holds, then X is
a curve on a rational ruled surface.

Proof. See [4, 8, 7, 11]. □
Now we will study the extremal case for the inequality in (4.1) in positive char-

acteristic. We assume that the variety in question is not ACM, see [10] for the
ACM case. The following theorem improves a result of [4].

Theorem 4.2. Let k be an algebraically closed field of positive characteristic. Let X
be a nondegenerate projective variety in PN

k with k(X) ≥ 1. Assume that deg(X) ≥
2 codim(X)2 + codim(X) + 2.

(a) If the equality reg(X) = ⌈(deg(X)− 1)/codim(X)⌉+ k(X) dim(X) holds, then
X is a curve on a rational ruled surface.

(b) If the equality reg(X) = ⌈(deg(X)−1)/codim(X)⌉+ k̄(X) dim(X)−dim(X)+1
holds, then X is a curve on a rational ruled surface.
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Proof. The proof is proceeded as that of [4, (3.2)] by □
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