TOWARDS A CLASSIFICATION OF BUCHSBAUM VARIETIES WITH A REGULARITY BOUND OF CASTELNUOVO TYPE

CHIKASHI MIYAZAKI

1. Introduction

This paper describes results and problems on a classification of Buchsbaum varieties from the viewpoint of a Castelnuovo-type bound of the Castelnuovo-Mumford regularity reg $V \leq \lceil (\deg V - 1)/\operatorname{codim} V \rceil + 1$.

The Castelnuovo-Mumford regularity is one of the most important invariants measuring a complexity of the defining equations of a projective variety. There have been various studies on bounding the regularity of a variety.

Let k be an algebraically closed field. Let $S=k[X_0,\cdots,X_N]$ be the polynomial ring over k. A variety $V\subset\mathbb{P}^N_k=\operatorname{Proj} S$ means a nondegenerate irreducible reduced projective scheme over k. For a coherent sheaf \mathcal{F} on \mathbb{P}^N_k and an integer $m\in\mathbb{Z}$, \mathcal{F} is said to be m-regular if $\operatorname{H}^i(\mathbb{P}^N_k,\mathcal{F}(m-i))=0$ for all $i\geq 1$. For a projective scheme $X\subseteq\mathbb{P}^N_k$, X is said to be m-regular if the ideal sheaf \mathcal{I}_X is m-regular. The Castelnuovo-Mumford regularity of $X\subseteq\mathbb{P}^N_k$ is the least such integer m and is denoted by $\operatorname{reg} X$. A projective scheme X is m-regular if and only if for every $p\geq 0$ the minimal generators of the pth syzygy module of the defining ideal $I(=\Gamma_*\mathcal{I}_X\subset S)$ of X occur in degree $\leq m+p$, see [1].

For a rational number $m \in \mathbb{Q}$, we write $\lceil m \rceil$ for the minimal integer which is greater than or equal to m and $\lfloor m \rfloor$ for the maximal integer which is less than or equal to m.

The Eisenbud-Goto conjecture $\operatorname{reg} V \leq \operatorname{deg} V - \operatorname{codim} V + 1$ for a nondegenerate projective variety V is one of the most important problems, and it is still open to get the bound for higher dimensional projective varieties. If V is an ACM variety, that is, the coordinate ring of V is Cohen-Macaulay, then a regularity bound $\operatorname{reg} V \leq \lceil (\operatorname{deg} V - 1)/\operatorname{codim} V \rceil + 1$ easily follows from the uniform position principle for a generic hyperplane section of a projective curve.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13H10, 14M05, Secondary 14N25. Key words and phrases. Castelnuovo-Mumford regularity, Buchsbaum ring, Rational normal scroll, del Pezzo variety.

Partially supported by Grant-in-Aid for Scientific Research (C) (21540044) Japan Society for the Promotion of Science.

In classifying a projective curve in terms of the regularity bound, we make use of an invariant k(C) defined as the minimal nonnegative integer v such that $\mathsf{m}^v\mathsf{M}(C)=0$, where a graded S-module $\mathsf{M}(C)=\oplus_{\ell\in\mathbb{Z}}\mathsf{H}^1(\mathbb{P}^N_K,\mathcal{I}_C(\ell))$. For a nondegenerate projective curve there is an inequality $\operatorname{reg} C \leq \lceil (\deg C - 1)/\operatorname{codim} C \rceil + \max\{k(C), 1\}$. Furthermore, the following result (1.1) describes the extremal and the next extremal curves with the Castelnuovo-type regularity bound from [4, (1.2)] and [5, (1.2)].

Proposition 1.1. Let $C \subseteq \mathbb{P}_k^N$ be a nondegenerate projective curve over an algebraically closed field k with char k = 0. Assume that C is not ACM.

- (1) If $\deg C \geq (\operatorname{codim} C)^2 + 2 \operatorname{codim} C + 2$ and $\operatorname{reg} C = \lceil (\deg C 1)/\operatorname{codim} C \rceil + k(C)$, then C lies on a rational normal surface scroll.
- (2) If $\deg C \geq (\operatorname{codim} C)^2 + 4\operatorname{codim} C + 2$ and $\operatorname{reg} C = \lceil (\deg C 1)/\operatorname{codim} C \rceil + k(C) 1$, then C lies either on a rational normal surface scroll or a del Pezzo surface.

In this paper we consider a Buchsbaum variety. A projective variety $V \subset \mathbb{P}^N_k$ is called a Buchsbaum variety if the coordinate of V is a Buchsbaum ring. A result of Stückrad and Vogel [11] states that $\operatorname{reg} V \leq \lceil (\deg V - 1)/\operatorname{codim} V \rceil + 1$ for a nondegenerate Buchsbaum variety $V \subset \mathbb{P}^N_k$. We describes a classification of the Buchsbaum variety in terms of the regularity bound of Castelnuovo-type.

Theorem 1.2 ([8, 13, 6]). Let $V \subseteq \mathbb{P}_k^N$ be a nondegenerate Buchsbaum variety over an algebraically closed field k with char k = 0.

- (1) If $\deg V \geq (\operatorname{codim} V)^2 + 2 \operatorname{codim} V + 2$ and $\operatorname{reg} V = \lceil (\deg V 1)/\operatorname{codim} V \rceil + 1$, then V is a divisor on a variety of minimal degree.
- (2) If $\deg V \geq (\operatorname{codim} V)^2 + 4 \operatorname{codim} V + 2$ and $\operatorname{reg} V = \lceil (\deg V 1) / \operatorname{codim} V \rceil$, then V is a divisor on a del Pezzo variety.

Here we propose the following conjecture. The cases m=0,1 are stated in (1.2), which is mentioned in detail including a sketch of the proof later in (3.4) and (3.5).

Conjecture 1.3. Let $V \subset \mathbb{P}_k^N$ be a nondegenerate Buchsbaum variety over an algebraically closed field k. Let $m = \lceil (\deg V - 1)/\operatorname{codim} V \rceil + 1 - \operatorname{reg} V$. Assume $\deg V \gg (\operatorname{codim} V)^2$. Then V is a divisor on a variety Y with $\deg Y \leq \operatorname{codim} Y + 1 + m$.

I would like to thank the organizers to give me an opportunity to have a talk and submit a paper at the Japan-Vietnam Joint Seminar on Commutaive Algebra, 2010.

2. Buchsbaum variety

Let $V \subset \mathbb{P}^N_k$ be a projective variety. We call V a Buchsbaum variety if the coordinate ring of V has the Buchsbaum property. Before defining a

Buchsbaum variety, we will recall the definition of a Buchsbaum ring with describing basic property according to [10, 12].

Definition 2.1. Let R be a Noetherian local ring with the maximal ideal \mathfrak{m} . Let M be a finitely generated R-module of $\dim M = d$. The R-module M is a Buchsbaum module if the difference $\operatorname{length}_R(M/\mathfrak{q}M) - e(\mathfrak{q};M)$ is independent of the choice of a parameter ideal \mathfrak{q} for M, where $e(\mathfrak{q};M)$ is the multiplicity of \mathfrak{q} on M. In case M=R, R is called a Buchsbaum ring.

Proposition 2.2. ([10, (1.10)], [12, (2.5)]). Let R be a Noetherian local ring with the maximal ideal m. Let M be a finitely generated R-module of $\dim M = d$. The following conditions are equivalent:

- (a) The R-module M is Buchsbaum.
- (b) For any system of parameters a_1, \dots, a_d for R-module M, the equality $[(a_1, \dots, a_{i-1})M : a_i] = [(a_1, \dots, a_{i-1})M : m]$ holds for $i = 1, \dots, d$.
- (c) For any system of parameters a_1, \dots, a_d for R-module M, $\mathfrak{q}H^i_{\mathsf{m}}(M/\mathfrak{q}_j M) = 0$ for all non-negative integers i, j with i + j < d, where $\mathfrak{q}_j = (a_1, \dots, a_j)$ and $\mathfrak{q} = \mathfrak{q}_d$.

Remark 2.3. Let R be a Noetherian local ring with the maximal ideal m. Let M be a finitely generated R-module of dim M=d. The R-module M is called quasi-Buchsbaum if $\mathsf{mH}^i_{\mathsf{m}}(M)=0$ for $i=0,\cdots,d-1$. From (2.2), the Buchsbaum property implies the quasi-Buchsbaum property.

Definition 2.4. Let $S = k[x_0, \dots, x_N]$ be a polynomial ring over a field k. Let $\mathsf{m} = S_+$ be the homogeneous maximal ideal of S. Let us consider S as a graded ring with $\deg x_i = 1$ for $i = 0, \dots, N$. Let I be a homogeneous ideal of S. Then R = S/I is a graded ring. Let us put $\mathsf{n} = \mathsf{m}/I$ and $\dim R = n+1$. The graded ring R is a graded Buchsbaum ring if it satisfies one of the following conditions:

- (a) R_n is a Buchsbaum ring.
- (b) For any homogeneous system of parameters z_0, \dots, z_n of R, $[(z_0, \dots, z_{i-1}) : z_i] = [(z_0, \dots, z_{i-1}) : \mathsf{n}]$ holds for $i = 0, \dots, n$.
- (c) For any linear system of parameters z_0, \dots, z_n of R, $[(z_0, \dots, z_{i-1}) : z_i] = [(z_0, \dots, z_{i-1}) : n]$ holds for $i = 0, \dots, n$.

Definition 2.5. Let $S=k[x_0,\cdots,x_N]$ be the polynomial ring over k with the homogeneous maximal ideal m. Let $V(\subset \mathbb{P}^N_k=\operatorname{Proj} S)$ be a projective scheme. Let $I=\Gamma_*\mathcal{I}_{V/\mathbb{P}^N}$ be the defining ideal of V. Let R=S/I be the coordinate ring of V. The deficiency module of V is defined as $\mathrm{M}^i(V)=\mathrm{H}^i_*\mathcal{I}_{V/\mathbb{P}^N}=\oplus_{\ell\in\mathbb{Z}}\mathrm{H}^i(\mathcal{I}_{V/\mathbb{P}^N}(\ell))$ for $i=1,\cdots,\dim V,$ see [3]

The projective scheme V is called a quasi-Buchsbaum scheme if $\mathsf{mM}^i(V) = 0$ holds for $i = 1, \dots, \dim V$.

Definition 2.6. Let $V(\subset \mathbb{P}^N_k = \operatorname{Proj} S)$ be a projective scheme with $\dim V = n$. The scheme V is a Buchsbaum scheme if it satisfies one of the following equivalent conditions:

- (a) The coordinate ring R of V is a graded Buchsbaum ring.
- (b) For any hyperplanes H_1, \dots, H_{n-1} satisfying that $\dim V_j = \dim V j$, where $V_{n-j} = V \cap H_1 \cap \dots \cap H_j$ for $j = 0, \dots, n-1$, the scheme V_j is quasi-Buchsbaum.

In case V is irreducible and reduced, we call V a Buchsbaum variety.

Remark 2.7. We simply call a Buchsbaum variety in this paper while it is called an arithmetically Buchsbaum variety in [8, 13]. If V is a Buchsbaum variety, then a generic hyperplane section of V is also a Buchsbaum variety.

3. Regularity of Buchsbaum variety

Now let us investigate a Castelnuovo-type bound for the Castelnuovo-Mumford regularity for Buchsbaum varieties. Let us start with stating a result of Stückrad-Vogel [11]. We will explain of the process of the proof in order to find the boundary and the next boundary cases.

Lemma 3.1. Let V be a Buchsbaum variety of \mathbb{P}^N_k with $n=\dim V\geq 1$ over an algebraically closed field. Let $W=V\cap H$ be a generic hyperplane section. Then we have $\operatorname{reg} W=\operatorname{reg} V$.

Proof. Let us consider the exact sequence $0 \to \mathcal{I}_{V/\mathbb{P}_k^N}(-1) \xrightarrow{\cdot h} \mathcal{I}_{V/\mathbb{P}_k^N} \to \mathcal{I}_{W/H} \to 0$. Since a graded homomorphism $H^i_*(\mathcal{I}_{V/\mathbb{P}_k^N})(-1) \xrightarrow{\cdot h} H^i_*(\mathcal{I}_{V/\mathbb{P}_k^N})$ is zero for $i = 1, \dots, n$, we have the following exact sequences:

$$0 \to \mathrm{H}^i_*(\mathcal{I}_{V/\mathbb{P}^N_k}) \to \mathrm{H}^i_*(\mathcal{I}_{W/H}) \to \mathrm{H}^{i+1}_*(\mathcal{I}_{V/\mathbb{P}^N_k})(-1) \to 0.$$

$$0 \to \mathrm{H}^n_*(\mathcal{I}_{V/\mathbb{P}^N_k}) \to \mathrm{H}^n_*(\mathcal{I}_{W/H}) \to \mathrm{H}^{n+1}_*(\mathcal{I}_{V/\mathbb{P}^N_k})(-1) \xrightarrow{\cdot h} \mathrm{H}^{n+1}_*(\mathcal{I}_{V/\mathbb{P}^N_k}) \to 0$$
Hence we obtain reg $V = \operatorname{reg} W$.

Proposition 3.2 ([11]). Let V be a nondegenerate Buchsbaum variety of \mathbb{P}_k^N over an algebraically closed field. Then $\operatorname{reg} V \leq \lceil (\deg V - 1) / \operatorname{codim} V \rceil + 1$.

Proof. From (3.1), the inequality follows from the fact that $\operatorname{reg} X \leq \lceil (\operatorname{deg} X - 1)/\operatorname{codim} X \rceil + 1$ for a generic hyperplane section X of a non-degenerate projective curve, which is an easy consequence of the Uniform Position Principle for characteristic zero and also works for positive characteristic case. Let R be the coordinate ring of a zero-dimensional scheme $X \subseteq \mathbb{P}^N_k$. Let $\underline{h} = \underline{h}(X) = (h_0, \cdots, h_s)$ be the h-vector of $X \subseteq \mathbb{P}^N_k$, where $h_i = \dim_k[R]_i - \dim_k[R]_{i-1}$ and s is the largest integer such that $h_s \neq 0$. Note that $s = \operatorname{reg}(X) - 1$. Since X is a generic hyperplane section of a projective curve, we have $h_1 + \cdots + h_i \geq ih_i$ for all $i = 1, \cdots, s-1$, that is, $H_X(t) \geq \min\{\deg(X), tN+1\}$. Since $\deg(X) = h_0 + \cdots + h_s$ and $\operatorname{codim}(X) = h_1 = N$, we obtain $\lceil (\deg(X) - 1)/\operatorname{codim}(X) \rceil = \lceil (h_1 + \cdots + h_s)/h_1 \rceil \geq s$. \square

In general, a nondegenerate projective variety $V \subset \mathbb{P}^N_k$ satisfies $\deg V \geq \operatorname{codim} V + 1$. The projective variety V is called a variety of minimal degree if $\deg V = \operatorname{codim} V + 1$. In this case, the variety V is classified to be a

hyperquadric, (a cone over the) Veronese surface, a rational normal scroll, see [2, (3.10)]. A nondegenerate projective variety V is a variety of almost minimal degree if deg $V = \operatorname{codim} V + 2$, which is classified to be either a normal del Pezzo variety or the image of a variety of minimal degree via a projection.

The regularity of Buchsbaum divisor on a variety of minimal degree can be calculated, and it gives an extremal case as follows.

Lemma 3.3 ([8]). If a nondegenerate Buchsbaum variety $V \subseteq \mathbb{P}_k^N$ is a divisor on a variety of minimal degree, then $\operatorname{reg} V = \lceil (\operatorname{deg} V - 1)/\operatorname{codim} V \rceil + 1$.

Now we will describe Buchsbaum varieties with the maximal and the next maximal regularity of Castelnuovo-type.

Theorem 3.4 ([8, 13]). Let $V \subseteq \mathbb{P}_k^N$ be a nondegenerate Buchsbaum variety over an algebraically closed field k with char k = 0 or codim $V \ge 5$. If $\deg V \ge (\operatorname{codim} V)^2 + 2\operatorname{codim} V + 2$ and $\operatorname{reg} V = \lceil (\deg V - 1)/\operatorname{codim} V \rceil + 1$, then V is a divisor on a variety of minimal degree.

Theorem 3.5 ([6]). Let $V \subset \mathbb{P}_k^N$ be a nondegenerate Buchsbaum variety over an algebraically closed field k with char k=0. Assume $\deg V \geq (\operatorname{codim} V)^2 + 4\operatorname{codim} V + 2$. If $\operatorname{reg} V = \lceil (\deg V - 1)/\operatorname{codim} V \rceil$, then V is a divisor on a del Pezzo variety.

One of the key points of the proofs of (3.4) and (3.5) is to control the regularity of the zero-dimentsional scheme under the successive generic hyperplane sections.

Lemma 3.6 ([4, 5]). Let $X \subseteq \mathbb{P}_k^N$ be a generic hyperplane section of a nondegenerate projective curve over an algebraically closed field k with char k = 0.

- (1) If $\deg X \ge N^2 + 2N + 2$ and $\operatorname{reg} X = \lceil (\deg X 1)/N \rceil + 1$, then X lies on a rational normal curve in \mathbb{P}^N_k .
- (2) If deg $X \ge N^2 + 4N + 2$ and reg $X = \lceil (\deg X 1)/N \rceil$, then X lies on either a rational normal curve or an elliptic normal curve in \mathbb{P}^N_k .

The proof of (3.6) make use of the case m = 0, 1 in (3.7). The Eisenbud-Harris conjecture (3.7) are solved for m = 0 by Castelnuovo and for m = 1 by Eisenbud-Harris, and for m = 2 under slightly stronger condition by Petrakiev, see [9].

Conjecture 3.7. Let X be a set of $d(\geq 2n+2m-1)$ points in uniform position in \mathbb{P}_k^{n-1} , where $1 \leq m \leq n-3$. Suppose that $h_X(2) = 2n+m-2$. Then X lies on a curve C of degree at most n+m-2.

Sketch of the proof of (3.5). Let $n = \dim V$. Let us take generic hyperplanes H_1, \dots, H_n . Let us define $V_{n-j} = V \cap H_1 \cap \dots \cap H_j$ and

 $L_{n-j} = H_1 \cap \cdots \cap H_j$ for $j = 0, \cdots, n$. Then $\dim V_i = i$ and $L_i \cong \mathbb{P}_k^{N-n+i}$ for $i = 0, \cdots, n$. From (3.1), we have $\operatorname{reg} V_0 = \operatorname{reg} V_1 = \cdots = \operatorname{reg} V_n$. So, $\operatorname{reg} V_0 = \lceil (\deg V_0 - 1) / \operatorname{codim} V_0 \rceil$. By (3.6) and (3.3), V_0 lies on an elliptic normal curve Y_0 . The defining equations of an elliptic normal curve consist of quadric equations except for the case Y_0 a plane cubic curve.

Let $c = \operatorname{codim} V = \operatorname{codim} V_0$ and $d = \operatorname{deg} V = \operatorname{deg} V_0$. Then we see $\operatorname{deg} Y_0 = \operatorname{codim} Y_0 + 2 = c + 1$.

Let us consider only the case $c \geq 3$. We want to have a nondegenerate projective surface Y_1 containing V_1 such that $Y_1 \cap H_0 = Y_0$. In order to construct Y_1 we need to lift up to the defining equation of Y_0 . Thus we have only to show that $\Gamma(\mathcal{I}_{Y_0}(2)) \cong \Gamma(\mathcal{I}_{V_0}(2))$ and that $\Gamma(\mathcal{I}_{V_1}(2)) \to \Gamma(\mathcal{I}_{V_0}(2))$ is surjective.

Indeed, if there exists a hyperquadric Q such that $V_0 \subseteq Q$ and $Y_0 \not\subseteq Q$, then $V_0 \subseteq Y_0 \cap Q$ and $d \leq 2(c+1)$ by Bezout theorem, which contradicts the assumption $d \geq c^2 + 4c + 2$.

In order to prove that $\Gamma(\mathcal{I}_{V_1}(2)) \to \Gamma(\mathcal{I}_{V_0}(2))$ is surjective we have only to show $H^1(\mathcal{I}_{V_1}(1)) = 0$.

The exact sequence $H^1_*(\mathcal{I}_{V_1}(-1)) \xrightarrow{h} H^1_*(\mathcal{I}_{V_1}) \to H^1_*(\mathcal{I}_{V_0})$ leads to an injective map $H^1_*(\mathcal{I}_{V_1}) \to \operatorname{Soc}(H^1_*(\mathcal{I}_{V_0}))$ because V_1 is a Buchsbaum variety and $\operatorname{mH}^1_*(\mathcal{I}_{V_1}) = 0$. So, let us study the structure of $\operatorname{Soc}(H^1_*(\mathcal{I}_{V_0}))$ in the positive graded part as S-graded module. Since Y_0 is ACM, we have the exact sequence $H^1_*(\mathcal{I}_{Y_0}) = 0 \to H^1_*(\mathcal{I}_{V_0}) \to H^1_*(\mathcal{I}_{V_0/Y_0}) \to H^2_*(\mathcal{I}_{Y_0})$. Note that $\operatorname{H}^2(\mathcal{I}_{Y_0}(\ell)) \cong \operatorname{H}^1(\mathcal{O}_{Y_0}(\ell)) \cong (\operatorname{H}^0(\mathcal{O}_{Y_0}(-\ell)))' = 0$ for $\ell > 0$. Thus we have $\operatorname{Soc}(H^1_*(\mathcal{I}_{V_0})) = \operatorname{Soc}(H^1_*(\mathcal{I}_{V_0/Y_0}))$ in the positive graded part.

Let us only consider the case Y_0 smooth. In this case we see that $\mathcal{I}_{V_0/Y_0} \cong \mathcal{O}_{Y_0}(-V_0)$. By Serre duality the graded S-module $\operatorname{Soc}(\operatorname{H}^1_*(\mathcal{I}_{V_0/Y_0}))$ is isomorphic to the dual of $\Gamma_*(\mathcal{O}_{Y_0}(V_0))/\operatorname{m}\Gamma_*(\mathcal{O}_{Y_0}(V_0))$. Let $\mathcal{F} = \mathcal{O}_{Y_0}(V_0)$. Then we have $\operatorname{H}^1(\mathcal{F} \otimes \mathcal{O}_{Y_0}(m-1)) = 0$ for $d + (c+1)(m-1) \geq 1$. In other words, \mathcal{F} is m-regular for $m \geq (c-d+2)/(c+1)$. Let us put $m = \lceil (c-d+2)/(c+1) \rceil$. Then $\Gamma(\mathcal{F} \otimes \mathcal{O}_{Y_0}(\ell)) \otimes \Gamma(\mathcal{O}_{Y_0}(1)) \to \Gamma(\mathcal{F}(\ell+1))$ is surjective for $\ell \geq m$. Hence we obtain $a_-(\operatorname{Soc}(\operatorname{H}^1_*\mathcal{I}_{V_0/Y_0})) \geq -m$. Hence we see that $a_-(\operatorname{Soc}(\operatorname{H}^1_*(\mathcal{I}_{V_0}))) \geq 2$ if $d \geq 3c+4$. Since $d \geq c^2+4c+2$, we obtain $\operatorname{H}^1(\mathcal{I}_{V_1}(1)) = 0$.

Then for $1 \leq i \leq n-1$. we will proceed to construct inductively a variety Y_{i+1} of almost minimal degree containing V_{i+1} by showing $H^1(\mathcal{I}_{V_i}(1)) = 0$. Hence the assertion is proved.

References

- [1] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89-133.
- [2] J. Harris (with D. Eisenbud), Curves in projective space, Les Presses de l'Université de Montréal, 1982.
- [3] J. C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Math. 165, Birkhäuser, 1998.

- [4] C. Miyazaki, Sharp bounds on Castelnuovo-Mumford regularity, Trans. Amer. Math. Soc. 352 (2000), 1675 1686.
- [5] C. Miyazaki, Projective curves with next to sharp bounds on Castelnuovo-Mumford regularity, J. Algebra 315 (2007), 279 285.
- [6] C. Miyazaki, Buchsbaum varieties with next to sharp bounds on Castelnuovo-Mumford regularity, preprint 2009.
- [7] U. Nagel, On the defining equations and syzygies of arithmetically Cohen-Macaulay varieties in arbitrary characteristic, J. Algebra 175 (1995), 359 372.
- [8] U. Nagel, Arithmetically Buchsbaum divisors on varieties of minimal degree, Trans. Amer. Math. Soc. 351 (1999), 4381–4409
- [9] I. Petrakiev, Castelnuovo theory via Gröbner bases, J. Reine Angew. Math. 619 (2008), 49–73.
- [10] J. Stückrad and W. Vogel, Buchsbaum rings and its applications, Springer, 1986.
- [11] J. Stückrad and W. Vogel, Castelnuovo bounds for certain subvarieties of \mathbb{P}_k^N , Math. Ann. 276 (1987), 341 352.
- [12] N. V. Trung, Towards a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49.
- [13] K. Yanagawa, On the regularities of arithmetically Buchsbaum curves, Math. Z. 226 (1997), 155 163.

Department of Mathematics, Saga University, Honjo-machi 1, Saga 840-8502, Japan

 $E ext{-}mail\ address: miyazaki@ms.saga-u.ac.jp}$