TOWARDS A CLASSIFICATION OF BUCHSBAUM VARIETIES WITH A REGULARITY BOUND OF CASTELNUOVO TYPE

CHIKASHI MIYAZAKI

1. Introduction

This paper describes results and problems on a classification of Buchsbaum varieties from the viewpoint of a Castelnuovo-type bound of the Castelnuovo-Mumford regularity reg $V \leq\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil+1$.

The Castelnuovo-Mumford regularity is one of the most important invariants measuring a complexity of the defining equations of a projective variety. There have been various studies on bounding the regularity of a variety.

Let k be an algebraically closed field. Let $S=k\left[X_{0}, \cdots, X_{N}\right]$ be the polynomial ring over k. A variety $V \subset \mathbb{P}_{k}^{N}=\operatorname{Proj} S$ means a nondegenerate irreducible reduced projective scheme over k. For a coherent sheaf \mathcal{F} on \mathbb{P}_{k}^{N} and an integer $m \in \mathbb{Z}, \mathcal{F}$ is said to be m-regular if $\mathrm{H}^{i}\left(\mathbb{P}_{k}^{N}, \mathcal{F}(m-i)\right)=0$ for all $i \geq 1$. For a projective scheme $X \subseteq \mathbb{P}_{k}^{N}, X$ is said to be m-regular if the ideal sheaf \mathcal{I}_{X} is m-regular. The Castelnuovo-Mumford regularity of $X \subseteq \mathbb{P}_{k}^{N}$ is the least such integer m and is denoted by reg X. A projective scheme X is m-regular if and only if for every $p \geq 0$ the minimal generators of the p th syzygy module of the defining ideal $I\left(=\Gamma_{*} \mathcal{I}_{X} \subset S\right)$ of X occur in degree $\leq m+p$, see [1].

For a rational number $m \in \mathbb{Q}$, we write $\lceil m\rceil$ for the minimal integer which is greater than or equal to m and $\lfloor m\rfloor$ for the maximal integer which is less than or equal to m.

The Eisenbud-Goto conjecture reg $V \leq \operatorname{deg} V-\operatorname{codim} V+1$ for a nondegenerate projective variety V is one of the most important problems, and it is still open to get the bound for higher dimensional projective varieties. If V is an ACM variety, that is, the coordinate ring of V is Cohen-Macaulay, then a regularity bound $\operatorname{reg} V \leq\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil+1$ easily follows from the uniform position principle for a generic hyperplane section of a projective curve.

[^0]In classifying a projective curve in terms of the regularity bound, we make use of an invariant $k(C)$ defined as the minimal nonnegative integer v such that $\mathrm{m}^{v} \mathrm{M}(C)=0$, where a graded S-module $\mathrm{M}(C)=$ $\oplus_{\ell \in \mathbb{Z}} \mathrm{H}^{1}\left(\mathbb{P}_{K}^{N}, \mathcal{I}_{C}(\ell)\right)$. For a nondegenerate projective curve there is an inequality reg $C \leq\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+\max \{k(C), 1\}$. Furthermore, the following result (1.1) describes the extremal and the next extremal curves with the Castelnuovo-type regularity bound from $[4,(1.2)]$ and $[5,(1.2)]$.
Proposition 1.1. Let $C \subseteq \mathbb{P}_{k}^{N}$ be a nondegenerate projective curve over an algebraically closed field k with char $k=0$. Assume that C is not $A C M$.
(1) If $\operatorname{deg} C \geq(\operatorname{codim} C)^{2}+2 \operatorname{codim} C+2$ and $\operatorname{reg} C=\lceil(\operatorname{deg} C-$
1)/codim $C\rceil+k(C)$, then C lies on a rational normal surface scroll.
(2) If $\operatorname{deg} C \geq(\operatorname{codim} C)^{2}+4 \operatorname{codim} C+2$ and $\operatorname{reg} C=\lceil(\operatorname{deg} C-1) / \operatorname{codim} C\rceil+k(C)-1$, then C lies either on a rational normal surface scroll or a del Pezzo surface.
In this paper we consider a Buchsbaum variety. A projective variety $V \subset \mathbb{P}_{k}^{N}$ is called a Buchsbaum variety if the coordinate of V is a Buchsbaum ring. A result of Stückrad and Vogel [11] states that $\operatorname{reg} V \leq\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil+1$ for a nondegenerate Buchsbaum variety $V \subset \mathbb{P}_{k}^{N}$. We describes a classification of the Buchsbaum variety in terms of the regularity bound of Castelnuovo-type.

Theorem $1.2([8,13,6])$. Let $V \subseteq \mathbb{P}_{k}^{N}$ be a nondegenerate Buchsbaum variety over an algebraically closed field k with char $k=0$.
(1) If $\operatorname{deg} V \geq(\operatorname{codim} V)^{2}+2 \operatorname{codim} V+2$ and $\operatorname{reg} V=\lceil(\operatorname{deg} V-$ $1) / \operatorname{codim} V\rceil+1$, then V is a divisor on a variety of minimal degree.
(2) If $\operatorname{deg} V \geq(\operatorname{codim} V)^{2}+4 \operatorname{codim} V+2$ and $\operatorname{reg} V=\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil$, then V is a divisor on a del Pezzo variety.

Here we propose the following conjecture. The cases $m=0,1$ are stated in (1.2), which is mentioned in detail including a sketch of the proof later in (3.4) and (3.5).

Conjecture 1.3. Let $V \subset \mathbb{P}_{k}^{N}$ be a nondegenerate Buchsbaum variety over an algebraically closed field k. Let $m=\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil+1-\operatorname{reg} V$. Assume $\operatorname{deg} V \gg(\operatorname{codim} V)^{2}$. Then V is a divisor on a variety Y with $\operatorname{deg} Y \leq \operatorname{codim} Y+1+m$.

I would like to thank the organizers to give me an opportunity to have a talk and submit a paper at the Japan-Vietnam Joint Seminar on Commutaive Algebra, 2010.

2. Buchsbaum variety

Let $V \subset \mathbb{P}_{k}^{N}$ be a projective variety. We call V a Buchsbaum variety if the coordinate ring of V has the Buchsbaum property. Before defining a

Buchsbaum variety, we will recall the definition of a Buchsbaum ring with describing basic property according to [10, 12].
Definition 2.1. Let R be a Noetherian local ring with the maximal ideal m . Let M be a finitely generated R-module of $\operatorname{dim} M=d$. The R-module M is a Buchsbaum module if the difference $\operatorname{length}_{R}(M / \mathfrak{q} M)-e(\mathfrak{q} ; M)$ is independent of the choice of a parameter ideal \mathfrak{q} for M, where $e(\mathfrak{q} ; M)$ is the multiplicity of \mathfrak{q} on M. In case $M=R, R$ is called a Buchsbaum ring.

Proposition 2.2. ([10, (1.10)], [12, (2.5)]). Let R be a Noetherian local ring with the maximal ideal m . Let M be a finitely generated R-module of $\operatorname{dim} M=d$. The following conditions are equivalent:
(a) The R-module M is Buchsbaum.
(b) For any system of parameters a_{1}, \cdots, a_{d} for R-module M, the equality $\left[\left(a_{1}, \cdots, a_{i-1}\right) M: a_{i}\right]=\left[\left(a_{1}, \cdots, a_{i-1}\right) M: \mathrm{m}\right]$ holds for $i=1, \cdots, d$.
(c) For any system of parameters a_{1}, \cdots, a_{d} for R-module M, $\mathfrak{q} H_{\mathrm{m}}^{i}\left(M / \mathfrak{q}_{j} M\right)=0$ for all non-negative integers i, j with $i+j<d$, where $\mathfrak{q}_{j}=\left(a_{1}, \cdots, a_{j}\right)$ and $\mathfrak{q}=\mathfrak{q}_{d}$.
Remark 2.3. Let R be a Noetherian local ring with the maximal ideal m. Let M be a finitely generated R-module of $\operatorname{dim} M=d$. The R-module M is called quasi-Buchsbaum if $\mathrm{mH}_{\mathrm{m}}^{i}(M)=0$ for $i=0, \cdots, d-1$. From (2.2), the Buchsbaum property implies the quasi-Buchsbaum property.

Definition 2.4. Let $S=k\left[x_{0}, \cdots, x_{N}\right]$ be a polynomial ring over a field k. Let $\mathrm{m}=S_{+}$be the homogeneous maximal ideal of S. Let us consider S as a graded ring with $\operatorname{deg} x_{i}=1$ for $i=0, \cdots, N$. Let I be a homogeneous ideal of S. Then $R=S / I$ is a graded ring. Let us put $\mathrm{n}=\mathrm{m} / I$ and $\operatorname{dim} R=n+1$. The graded ring R is a graded Buchsbaum ring if it satisfies one of the following conditions:
(a) R_{n} is a Buchsbaum ring.
(b) For any homogeneous system of parameters z_{0}, \cdots, z_{n} of R, $\left[\left(z_{0}, \cdots, z_{i-1}\right): z_{i}\right]=\left[\left(z_{0}, \cdots, z_{i-1}\right): \mathrm{n}\right]$ holds for $i=0, \cdots, n$.
(c) For any linear system of parameters z_{0}, \cdots, z_{n} of $R,\left[\left(z_{0}, \cdots, z_{i-1}\right)\right.$: $\left.z_{i}\right]=\left[\left(z_{0}, \cdots, z_{i-1}\right): \mathrm{n}\right]$ holds for $i=0, \cdots, n$.
Definition 2.5. Let $S=k\left[x_{0}, \cdots, x_{N}\right]$ be the polynomial ring over k with the homogeneous maximal ideal m . Let $V\left(\subset \mathbb{P}_{k}^{N}=\operatorname{Proj} S\right)$ be a projective scheme. Let $I=\Gamma_{*} \mathcal{I}_{V / \mathbb{P}^{N}}$ be the defining ideal of V. Let $R=S / I$ be the coordinate ring of V. The deficiency module of V is defined as $\mathrm{M}^{i}(V)=$ $\mathrm{H}_{*}^{i} \mathcal{I}_{V / \mathbb{P}^{N}}=\oplus_{\ell \in \mathbb{Z}} \mathrm{H}^{i}\left(\mathcal{I}_{V / \mathbb{P}^{N}}(\ell)\right)$ for $i=1, \cdots, \operatorname{dim} V$, see $[3]$

The projective scheme V is called a quasi-Buchsbaum scheme if $\mathrm{mM}^{i}(V)=0$ holds for $i=1, \cdots, \operatorname{dim} V$.
Definition 2.6. Let $V\left(\subset \mathbb{P}_{k}^{N}=\operatorname{Proj} S\right)$ be a projective scheme with $\operatorname{dim} V=n$. The scheme V is a Buchsbaum scheme if it satisfies one of the following equivalent conditions:
(a) The coordinate ring R of V is a graded Buchsbaum ring.
(b) For any hyperplanes H_{1}, \cdots, H_{n-1} satisfying that $\operatorname{dim} V_{j}=\operatorname{dim} V-$ j, where $V_{n-j}=V \cap H_{1} \cap \cdots \cap H_{j}$ for $j=0, \cdots, n-1$, the scheme V_{j} is quasi-Buchsbaum.
In case V is irreducible and reduced, we call V a Buchsbaum variety.
Remark 2.7. We simply call a Buchsbaum variety in this paper while it is called an arithmetically Buchsbaum variety in $[8,13]$. If V is a Buchsbaum variety, then a generic hyperplane section of V is also a Buchsbaum variety.

3. Regularity of Buchsbaum variety

Now let us investigate a Castelnuovo-type bound for the CastelnuovoMumford regularity for Buchsbaum varieties. Let us start with stating a result of Stückrad-Vogel [11]. We will explain of the process of the proof in order to find the boundary and the next boundary cases.
Lemma 3.1. Let V be a Buchsbaum variety of \mathbb{P}_{k}^{N} with $n=\operatorname{dim} V \geq 1$ over an algebraically closed field. Let $W=V \cap H$ be a generic hyperplane section. Then we have $\operatorname{reg} W=\operatorname{reg} V$.

Proof. Let us consider the exact sequence $0 \rightarrow \mathcal{I}_{V / \mathbb{P}_{k}^{N}}(-1) \xrightarrow{\cdot h} \mathcal{I}_{V / \mathbb{P}_{k}^{N}} \rightarrow$ $\mathcal{I}_{W / H} \rightarrow 0$. Since a graded homomorphism $\mathrm{H}_{*}^{i}\left(\mathcal{I}_{V / \mathbb{P}_{k}^{N}}\right)(-1) \xrightarrow{h} \mathrm{H}_{*}^{i}\left(\mathcal{I}_{V / \mathbb{P}_{k}^{N}}\right)$ is zero for $i=1, \cdots, n$, we have the following exact sequences:

$$
\begin{gathered}
0 \rightarrow \mathrm{H}_{*}^{i}\left(\mathcal{I}_{V / \mathbb{P}_{k}^{N}}\right) \rightarrow \mathrm{H}_{*}^{i}\left(\mathcal{I}_{W / H}\right) \rightarrow \mathrm{H}_{*}^{i+1}\left(\mathcal{I}_{V / \mathbb{P}_{k}^{N}}\right)(-1) \rightarrow 0 \\
0 \rightarrow \mathrm{H}_{*}^{n}\left(\mathcal{I}_{V / \mathbb{P}_{k}^{N}}\right) \rightarrow \mathrm{H}_{*}^{n}\left(\mathcal{I}_{W / H}\right) \rightarrow \mathrm{H}_{*}^{n+1}\left(\mathcal{I}_{V / \mathbb{P}_{k}^{N}}\right)(-1) \xrightarrow{\cdot h} \mathrm{H}_{*}^{n+1}\left(\mathcal{I}_{V / \mathbb{P}_{k}^{N}}\right) \rightarrow 0
\end{gathered}
$$

Hence we obtain $\operatorname{reg} V=\operatorname{reg} W$.
Proposition 3.2 ([11]). Let V be a nondegenerate Buchsbaum variety of \mathbb{P}_{k}^{N} over an algebraically closed field. Then $\operatorname{reg} V \leq\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil+1$.

Proof. From (3.1), the inequality follows from the fact that $\operatorname{reg} X \leq$ $\lceil(\operatorname{deg} X-1) / \operatorname{codim} X\rceil+1$ for a generic hyperplane section X of a nondegenerate projective curve, which is an easy consequence of the Uniform Position Principle for characteristic zero and also works for positive characteristic case. Let R be the coordinate ring of a zero-dimensional scheme $X \subseteq \mathbb{P}_{k}^{N}$. Let $\underline{h}=\underline{h}(X)=\left(h_{0}, \cdots, h_{s}\right)$ be the h-vector of $X \subseteq \mathbb{P}_{k}^{N}$, where $h_{i}=\operatorname{dim}_{k}[R]_{i}-\operatorname{dim}_{k}[R]_{i-1}$ and s is the largest integer such that $h_{s} \neq 0$. Note that $s=\operatorname{reg}(X)-1$. Since X is a generic hyperplane section of a projective curve, we have $h_{1}+\cdots+h_{i} \geq i h_{i}$ for all $i=1, \cdots, s-1$, that is, $\mathrm{H}_{X}(t) \geq \min \{\operatorname{deg}(X), t N+1\}$. Since $\operatorname{deg}(X)=h_{0}+\cdots+h_{s}$ and $\operatorname{codim}(X)=$ $h_{1}=N$, we obtain $\lceil(\operatorname{deg}(X)-1) / \operatorname{codim}(X)\rceil=\left\lceil\left(h_{1}+\cdots+h_{s}\right) / h_{1}\right\rceil \geq s$.

In general, a nondegenerate projective variety $V \subset \mathbb{P}_{k}^{N}$ satisfies $\operatorname{deg} V \geq$ $\operatorname{codim} V+1$. The projective variety V is called a variety of minimal degree if $\operatorname{deg} V=\operatorname{codim} V+1$. In this case, the variety V is classified to be a
hyperquadric, (a cone over the) Veronese surface, a rational normal scroll, see $[2,(3.10)]$. A nondegenerate projective variety V is a variety of almost minimal degree if $\operatorname{deg} V=\operatorname{codim} V+2$, which is classified to be either a normal del Pezzo variety or the image of a variety of minimal degree via a projection.

The regularity of Buchsbaum divisor on a variety of minimal degree can be calculated, and it gives an extremal case as follows.

Lemma 3.3 ([8]). If a nondegenerate Buchsbaum variety $V \subseteq \mathbb{P}_{k}^{N}$ is a divisor on a variety of minimal degree, then reg $V=\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil+$ 1.

Now we will describe Buchsbaum varieties with the maximal and the next maximal regularity of Castelnuovo-type.
Theorem $3.4([8,13])$. Let $V \subseteq \mathbb{P}_{k}^{N}$ be a nondegenerate Buchsbaum variety over an algebraically closed field k with char $k=0$ or $\operatorname{codim} V \geq 5$. If $\operatorname{deg} V \geq(\operatorname{codim} V)^{2}+2 \operatorname{codim} V+2$ and $\operatorname{reg} V=\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil+1$, then V is a divisor on a variety of minimal degree.
Theorem 3.5 ([6]). Let $V \subset \mathbb{P}_{k}^{N}$ be a nondegenerate Buchsbaum variety over an algebraically closed field k with char $k=0$. Assume $\operatorname{deg} V \geq$ $(\operatorname{codim} V)^{2}+4 \operatorname{codim} V+2$. If reg $V=\lceil(\operatorname{deg} V-1) / \operatorname{codim} V\rceil$, then V is a divisor on a del Pezzo variety.

One of the key points of the proofs of (3.4) and (3.5) is to control the regularity of the zero-dimentsional scheme under the successive generic hyperplane sections.
Lemma 3.6 ($[4,5])$. Let $X \subseteq \mathbb{P}_{k}^{N}$ be a generic hyperplane section of a nondegenerate projective curve over an algebraically closed field k with char $k=0$.
(1) If $\operatorname{deg} X \geq N^{2}+2 N+2$ and $\operatorname{reg} X=\lceil(\operatorname{deg} X-1) / N\rceil+1$, then X lies on a rational normal curve in \mathbb{P}_{k}^{N}.
(2) If $\operatorname{deg} X \geq N^{2}+4 N+2$ and $\operatorname{reg} X=\lceil(\operatorname{deg} X-1) / N\rceil$, then X lies on either a rational normal curve or an elliptic normal curve in \mathbb{P}_{k}^{N}.
The proof of (3.6) make use of the case $m=0,1$ in (3.7). The EisenbudHarris conjecture (3.7) are solved for $m=0$ by Castelnuovo and for $m=1$ by Eisenbud-Harris, and for $m=2$ under slightly stronger condition by Petrakiev, see [9].
Conjecture 3.7. Let X be a set of $d(\geq 2 n+2 m-1)$ points in uniform position in \mathbb{P}_{k}^{n-1}, where $1 \leq m \leq n-3$. Suppose that $h_{X}(2)=2 n+m-2$. Then X lies on a curve C of degree at most $n+m-2$.
Sketch of the proof of (3.5). Let $n=\operatorname{dim} V$. Let us take generic hyperplanes H_{1}, \cdots, H_{n}. Let us define $V_{n-j}=V \cap H_{1} \cap \cdots \cap H_{j}$ and
$L_{n-j}=H_{1} \cap \cdots \cap H_{j}$ for $j=0, \cdots, n$. Then $\operatorname{dim} V_{i}=i$ and $L_{i} \cong \mathbb{P}_{k}^{N-n+i}$ for $i=0, \cdots, n$. From (3.1), we have reg $V_{0}=\operatorname{reg} V_{1}=\cdots=\operatorname{reg} V_{n}$. So, reg $V_{0}=\left\lceil\left(\operatorname{deg} V_{0}-1\right) / \operatorname{codim} V_{0}\right\rceil$. By (3.6) and (3.3), V_{0} lies on an elliptic normal curve Y_{0}. The defining equations of an elliptic normal curve consist of quadric equations except for the case Y_{0} a plane cubic curve.

Let $c=\operatorname{codim} V=\operatorname{codim} V_{0}$ and $d=\operatorname{deg} V=\operatorname{deg} V_{0}$. Then we see $\operatorname{deg} Y_{0}=\operatorname{codim} Y_{0}+2=c+1$.

Let us consider only the case $c \geq 3$. We want to have a nondegenerate projective surface Y_{1} containing V_{1} such that $Y_{1} \cap H_{0}=Y_{0}$. In order to construct Y_{1} we need to lift up to the defining equation of Y_{0}. Thus we have only to show that $\Gamma\left(\mathcal{I}_{Y_{0}}(2)\right) \cong \Gamma\left(\mathcal{I}_{V_{0}}(2)\right)$ and that $\Gamma\left(\mathcal{I}_{V_{1}}(2)\right) \rightarrow \Gamma\left(\mathcal{I}_{V_{0}}(2)\right)$ is surjective.

Indeed, if there exists a hyperquadric Q such that $V_{0} \subseteq Q$ and $Y_{0} \nsubseteq Q$, then $V_{0} \subseteq Y_{0} \cap Q$ and $d \leq 2(c+1)$ by Bezout theorem, which contradicts the assumption $d \geq c^{2}+4 c+2$.

In order to prove that $\Gamma\left(\mathcal{I}_{V_{1}}(2)\right) \rightarrow \Gamma\left(\mathcal{I}_{V_{0}}(2)\right)$ is surjective we have only to show $\mathrm{H}^{1}\left(\mathcal{I}_{V_{1}}(1)\right)=0$.

The exact sequence $\mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{1}}(-1)\right) \xrightarrow{h} \mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{1}}\right) \rightarrow \mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0}}\right)$ leads to an injective $\operatorname{map} \mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{1}}\right) \rightarrow \operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0}}\right)\right)$ because V_{1} is a Buchsbaum variety and $\mathrm{mH}_{*}^{1}\left(\mathcal{I}_{V_{1}}\right)=0$. So, let us study the structure of $\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0}}\right)\right)$ in the positive graded part as S-graded module. Since Y_{0} is ACM, we have the exact sequence $\mathrm{H}_{*}^{1}\left(\mathcal{I}_{Y_{0}}\right)=0 \rightarrow \mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0}}\right) \rightarrow \mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0} / Y_{0}}\right) \rightarrow \mathrm{H}_{*}^{2}\left(\mathcal{I}_{Y_{0}}\right)$. Note that $\mathrm{H}^{2}\left(\mathcal{I}_{Y_{0}}(\ell)\right) \cong \mathrm{H}^{1}\left(\mathcal{O}_{Y_{0}}(\ell)\right) \cong\left(\mathrm{H}^{0}\left(\mathcal{O}_{Y_{0}}(-\ell)\right)\right)^{\prime}=0$ for $\ell>0$. Thus we have $\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0}}\right)\right)=\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0} / Y_{0}}\right)\right)$ in the positive graded part.

Let us only consider the case Y_{0} smooth. In this case we see that $\mathcal{I}_{V_{0} / Y_{0}} \cong \mathcal{O}_{Y_{0}}\left(-V_{0}\right)$. By Serre duality the graded S-module $\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0} / Y_{0}}\right)\right)$ is isomorphic to the dual of $\Gamma_{*}\left(\mathcal{O}_{Y_{0}}\left(V_{0}\right)\right) / \mathrm{m} \Gamma_{*}\left(\mathcal{O}_{Y_{0}}\left(V_{0}\right)\right)$. Let $\mathcal{F}=\mathcal{O}_{Y_{0}}\left(V_{0}\right)$. Then we have $\mathrm{H}^{1}\left(\mathcal{F} \otimes \mathcal{O}_{Y_{0}}(m-1)\right)=0$ for $d+(c+1)(m-1) \geq 1$. In other words, \mathcal{F} is m-regular for $m \geq(c-d+2) /(c+1)$. Let us put $m=\lceil(c-d+2) /(c+1)\rceil$. Then $\Gamma\left(\mathcal{F} \otimes \mathcal{O}_{Y_{0}}(\ell)\right) \otimes \Gamma\left(\mathcal{O}_{Y_{0}}(1)\right) \rightarrow \Gamma(\mathcal{F}(\ell+1))$ is surjective for $\ell \geq m$. Hence we obtain $a_{-}\left(\operatorname{Soc}\left(\mathrm{H}_{*}^{1} \mathcal{I}_{V_{0} / Y_{0}}\right)\right) \geq-m$. Hence we see that $a_{-}\left(\operatorname{Soc}\left(\mathrm{H}_{*}^{1}\left(\mathcal{I}_{V_{0}}\right)\right)\right) \geq 2$ if $d \geq 3 c+4$. Since $d \geq c^{2}+4 c+2$, we obtain $\mathrm{H}^{1}\left(\mathcal{I}_{V_{1}}(1)\right)=0$.

Then for $1 \leq i \leq n-1$. we will proceed to construct inductively a variety Y_{i+1} of almost minimal degree containing V_{i+1} by showing $\mathrm{H}^{1}\left(\mathcal{I}_{V_{i}}(1)\right)=0$. Hence the assertion is proved.

References

[1] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), $89-133$.
[2] J. Harris (with D. Eisenbud), Curves in projective space, Les Presses de l'Université de Montréal, 1982.
[3] J. C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Math. 165, Birkhäuser, 1998.
[4] C. Miyazaki, Sharp bounds on Castelnuovo-Mumford regularity, Trans. Amer. Math. Soc. 352 (2000), $1675-1686$.
[5] C. Miyazaki, Projective curves with next to sharp bounds on Castelnuovo-Mumford regularity, J. Algebra 315 (2007), 279 - 285.
[6] C. Miyazaki, Buchsbaum varieties with next to sharp bounds on CastelnuovoMumford regularity, preprint 2009.
[7] U. Nagel, On the defining equations and syzygies of arithmetically Cohen-Macaulay varieties in arbitrary characteristic, J. Algebra 175 (1995), 359-372.
[8] U. Nagel, Arithmetically Buchsbaum divisors on varieties of minimal degree, Trans. Amer. Math. Soc. 351 (1999), 4381-4409
[9] I. Petrakiev, Castelnuovo theory via Gröbner bases, J. Reine Angew. Math. 619 (2008), 49-73.
[10] J. Stückrad and W. Vogel, Buchsbaum rings and its applications, Springer, 1986.
[11] J. Stückrad and W. Vogel, Castelnuovo bounds for certain subvarieties of \mathbb{P}_{k}^{N}, Math. Ann. 276 (1987), $341-352$.
[12] N. V. Trung, Towards a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49.
[13] K. Yanagawa, On the regularities of arithmetically Buchsbaum curves, Math. Z. 226 (1997), $155-163$.

Department of Mathematics, Saga University, Honjo-machi 1, Saga 8408502, JAPAN

E-mail address: miyazaki@ms.saga-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 13H10, 14M05, Secondary 14N25.
 Key words and phrases. Castelnuovo-Mumford regularity, Buchsbaum ring, Rational normal scroll, del Pezzo variety.

 Partially supported by Grant-in-Aid for Scientific Research (C) (21540044) Japan Society for the Promotion of Science.

