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Syzygy Theoretic Approach to Horrocks-type Criteria
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Abstract

This paper studies a variant of Horrocks criteria for vector bundles mainly
through a syzygy theoretic approach. In this spirit we begin with describing var-
ious proofs of the splitting criteria for ACM and Buchsbaum bundles, giving new
sights of the structure theorem. Our main result gives a structure theorem of quasi-
Buchsbaum bundles on P

n, which characterizes the null-correlation bundle. Also,
the quasi-Buchsbaum bundles on P

3 with simple cohomologies are classified in terms
of standard system of parameters.

1 Introduction

The purpose of this paper is to study Horrocks-type criteria for vector bundles on the
projective space. Horrocks’ celebrated theorem [10] says that a vector bundle on the
projective space without intermediate cohomologies is isomorphic to a direct sum of line
bundles. There are several proofs, say, Okonek-Schneider-Spindler[21] or Matsumura [15],
due to inductive arguement. The original proof by Horrocks is modernly described as
a categorical equivalence, e.g., Walter[25] and Malaspina-Rao[14]. In this paper, we are
pursuing research into this topic through the Castelnuovo-Mumford regularity. This is
our starting point, highlighted in Section 2 and 3. In these sections we will give not only
somewhat extended introductions but also prepare methods in order to apply to the main
results of Section 4 and 5.

Let E be a vector bundle on Pn = ProjS, where S = k[x0, · · · , xn] and m =
(x0, · · · , xn). Let us wirte M = Γ∗(E) = ⊕ℓ∈ZΓ(E(ℓ)) as a graded S-module. Note

that dimM = n + 1, H0
m(M) = H1

m(M) = 0, E = M̃ and Hi
∗(E) = Hi+1

m (M) for i ≥ 1.
A vector bundle E has an ACM property if M is a Cohen-Macaulay graded S-module.
In commutative algebra, the Horrocks theorem asserts that a Cohen-Macaulay graded
S-modlule is graded free. In this direction we will study the Buchsbaum property and
the quasi-Buchsbaum property for graded S-modules. In particular, we give a structure
theorem of a graded S-module M with H2

m(M) ∼= Hn
m(M) ∼= k and Hi

m(M) = 0 for
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i 6= 2, n, n + 1. In Section 3, we explain the structure theorem of Buchsbaum vector
bundles on the projective space, which was given by Goto and Chang independently. A
Buchsbaum vector bundle on the projective space is obtained to be isomorphic to a direct
sum of sheaves of differential p-form with balanced twist. The methods play an important
role in investigating quasi-Buchsbaum bundles.. After a survey of three standard proofs,
we will give a new syzygy theoretic proof of the Chang-Goto theorem.

In Section 4, we study a quasi-Buchsbaum vector bundle on projective space. A vector
bundle E on Pn = ProjS is quasi-Buchsbaum if mHi

∗(E) = 0 for 1 ≤ i ≤ n− 1 as graded
S-modules. There are some structure theorems for quasi-Buchsbaum bundles of rank
2, say Ellia-Sarti [8], Chang [5] and Kumar-Rao [12]. Our main result, Theorem 4.9,
describes intensively a vector bundle on Pn with H1

∗(E)
∼= Hn−1

∗ (E) ∼= k and Hi
∗(E) = 0 for

2 ≤ i ≤ n − 2, which characterizes the null-correlation bundle and provides interesting
classification.

In Section 5, we will go on a syzygy theoretic approach for quasi-Buchsbaum bun-
dles on P

3, which I believe gives a striking method to study a free resolution of null-
correlation bundles, providing a different flavor from Section 4. Focusing on P3, that is,
S = k[x0, x1, x2, x3], we will name ‘pseudo-Buchsbaum’ and ‘nonstandard-Buchsbaum’ for
quasi-Buchsbaum bundles in terms of standard system of parameters, mostly studied in
the theory of generalized Cohen-Macaulay modules. We will show that a nonstandard-
Buchsbaum bundle E on P

3 with dimk H
1
∗(E) = dimk H

2
∗(E) = 1 is isomorphic to a null-

correlation bundle.
In Section 6, we remark an application of a syzygy theoretic method to vector bundles

on multiprojective space.
The author would like to thank Hajime Kaji, Atsushi Noma and Ei-ichi Sato for their

valuable comments.

2 Horrocks criterion for ACM bundles on projective

space

This section describes a survey of four proofs. Among them, the method of the third
proof using the Castelnuovo-Mumford regularity penetrates the philosophy of the whole
paper.

Definition 2.1. A vector bundle E on Pn is called an ACM bundle if Hi
∗(E) = 0 for

1 ≤ i ≤ n− 1,

Theorem 2.2 (Horrocks [10]). An ACM bundle E of rank r on Pn is isomorphic to a

direct sum of line bundles, that is, E ∼= ⊕r
i=1OPn(ℓi) for some ℓ1, · · · , ℓr ∈ Z.

The first proof, probably best-known, is due to an induction on n, see, e.g., [21, (I,
2.3.1)]. For n = 1 it is a consequence of Grothendieck theorem. In case n ≥ 2, since E|H is
ACM on H ∼= Pn−1 for a hyperplane H of Pn, we have E|H ∼= ⊕OH(ℓi) by the hypothesis
of induction. Let us put F = ⊕OPn(ℓi). Then we extend ψ : F|H ∼= E|H to a morphism ϕ :
F → E by the exact sequence HomPn(F , E) → HomH(F|H , E|H) → Ext1

Pn(F , E(−1)) = 0
from the ACM assumption. Since detϕ ∈ Γ(Pn, (∧rF)∨ ⊗ (∧rE)) ∼= k does not vanish on
H , we see ϕ is an isomorphism. �
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The second proof is a consequence of the Auslander-Buchsbaum theorem [1], which
says that a finitely generated moduleM over a Noetherian local ring R with proj dimM <
∞ satisfies depthM+proj dimM = depthR, see, e.g., [15, (19.1)]. We will sketch a graded
analog. Let us put S = k[x0, · · · , xn] and M = Γ∗(E). For a graded S-module M , we will
show depthSM + proj dimSM = n+ 1. Let us take a minimal free resolution of a graded

S-module M : 0 → Fr
ϕr−1

−→ Fr−1 → · · · → F1
ϕ0

−→ F0 → M → 0, where r = proj dimSM
and Ft = ⊕jS(−ℓtj) are graded free S-modules. In case r = 0, that is, M is graded free,
it is clear. Note that depthSM = inf{i|ExtiS(k,M) 6= 0}. For r = 1, ϕ′

0 is zero in an exact

sequence: 0 → ExtnS(k,M) → Extn+1
S (k, F1)

ϕ′

0−→ Extn+1
S (k, F0) from the minimality of the

free resolution, and we see depthSM = n. For r ≥ 2, we easily have the assertion from
an exact sequence 0 → Kerϕ0 → F0 → M → 0 by inductive arguement. In particular, if
E is ACM, that is, depthSM = n+ 1, then M is a graded free S-module. �

The third proof illustrates an interesting application of basic properties of the
Castelnuovo-Mumford regularity, see, e.g., [2, 13]. In fact, the Horrocks theorem im-
mediately follows from Lemma 2.4.

Definition and Proposition 2.3. A coherent sheaf F on P
n is called m-regular if

Hi(Pn,F(m− i) = 0 for i ≥ 1. If F is m-regular, then F is (m+ 1)-regular and globally
generated, see [20, 7]. The Castelnuovo-Mumford regularity regF is the minimal integer
m such that F is m-regular.

Lemma 2.4. Let E a vector bundle on Pn. Assume that reg E = an(E) + n, in other

words, Hn(E(m− 1− n)) 6= 0 for m = reg E . Then OPn(−m) is a direct summand of E .

Proof. Let us take m = reg E for a vector bundle E , which gives a surjective map ψ :
O⊕

Pn(−m) → E for a globally generated vector bundle E(m). From the ACM property,
we see that Hn(Pn, E(m− n− 1)) 6= 0. By Serre duality we have H0(E∨(−m)) 6= 0, which
gives a nonzero map ϕ : E → OPn(−m). Since ϕ ◦ ψ is a nonzero map, OPn(−m) is a
direct summand of E . �

The fourth proof is based on an idea of Horrocks’ origical proof [10]. For reader’s
convenience we briefly explain the Horrocks correspondence following Walter[25] and
Malaspina-Rao[14].

Let E be a vector bundle on P
n = ProjS, S = k[x0, · · · , xn]. Then

M = Γ∗E is a graded S-module. The graded S∨-module M∨, negatively graded,
is finitely generated and finite projective dimension. Since depthM∨ ≥ 2, we
have an exact sequence 0 → P n−1∨ → · · · → P 0∨ →M∨ → 0, where P i∨ is a dual
of a graded S-free module for i = 1, · · · , n − 1. Then we have a com-
plex of graded S-modules 0 → M → P 0 → · · · → P n−1 → 0, and an exact sequence
0 → E → P0 → · · · → Pn−1 → 0 on Pn. Then we see that Hi

∗(E)
∼= Hi(Q•), 1 ≤ i ≤ n−1,

precisely τ<nRΓ∗E ∼= Q•, where Q• is a complex 0 → P 0 → · · · → P n−1 → 0. By con-
necting a complex 0 → M → P 0 → · · · → P n−1 → 0 and the minimal free resolution
0 → P−n → · · · → P−1 → M → 0 of a graded S-moduleM , we have an enlarged complex
P • : 0 → P−n → · · · → P 0 → · · · → P n−1 → 0, where Hi(P •) an S-module of finite
length, and especially Hi(P •) = 0, i 6∈ {1, · · · , n−1}. In other words, any vector bundle E
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on Pn yields an object τ>0τ<nRΓ∗(E) ∼= P • of the derived category of bounded complexes
of graded free S-modules.

Let VB be the category of vector bundles on Pn modulo stable equivalence. Here vector
bundles E and F on Pn are stable equivalent if there are direct sums of line bundles L
and M such that E ⊕ L ∼= F ⊕ M. Let us write FinL for the full subcategory of
C• ∈ Ob(D♭(S−Mod)) such that Hi(C•) is a finite over S and Hi(C•) = 0, 0 < i < n.
Thus we obtain Theorem 2.5, see ([25, (0.4)], [10]).

Theorem 2.5 (Horrocks, Walter, Malaspina-Rao). A functor τ>0τ<nRΓ∗ : VB → FinL
gives an equivalence of the categories. Inverse functor is Syz : FinL → VB.

From the Horrocks correspondence (2.5), the vanishing of the intermediate cohomolo-
gies of a vector bundle E on Pn, that is, τ>0τ<nRΓ∗(E) = 0 implies that E is isomorphic
to a direct sum of line bundles. �

3 Buchsbaum Bundles on Projective Space

This section investigates a survey on the Chang-Goto structure theorem (3.4) of Buchs-
baum bundles on projective space, preparing basic facts and technique for our main results
in the following sections. We will do the groundwork to extend their results towards the
structure theorem of quasi-Buchsbaum bundles. The first proof [9] somehow easy-to-
follow is based on ‘surjectivity criterion’ for Buchsbaum modules and technical lemma
(3.8). The second proof [4] studies a map from Ωp

Pn(p) to OPn in Case B, which has driven
us to consider our research on the null-correlation bundle. The method will be applied in
Section 4. After briefing Yoshino’s proof [26] by the Horrocks correspondence, we explain
a syzygy theoretic method as the fourth proof of (3.4), which will be made progress in
the theory developed in Section 5.

Definition and Proposition 3.1 ([22, 23]). A graded S-module M with dimM = d is
called as a Buchsbaum module it the following equivalent conditions are satisfied.

(i) ℓ(M/qM)− e(q;M) does not depend on the choice of any homogeneous parameter
ideal q = (y1, · · · , yd).

(ii) For any homogeneous system y1, · · · , yd of parameters

mHj
m(M/(y1, · · · , yi)M) = 0 for 0 ≤ i ≤ d− 1, 0 ≤ j ≤ d− i− 1.

(iii) τ<dRΓm(M) is isomorphic to a complex of k-vector spaces in D♭(S−Mod).

Definition 3.2. Let S = k[x0, · · · , xn] be the polynomial ring over a field k with
m = (x0, · · · , xn). A vector bundle E on Pn = ProjS is called a Buchsbaum bundle
if mHi

∗(E|L) = 0, 1 ≤ i ≤ r − 1 for any r-plane L(⊆ Pn), r = 1, · · · , n.

Remark 3.3. A vector bundle E on Pn = ProjS is Buchsbaum if and only of a graded
S-module M = Γ∗(E) is Buchsbaum.

The Koszul complex K• = K•((x0, · · · , xn);S) gives the minimal free resolution of a

graded S-module k = S/m. Then Ωp−1
Pn = Ẽp, where Ep is the p-th syzygy of a graded

S-module k. Note that E0
∼= k, E1

∼= m and En+1
∼= S(−n− 1).
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Theorem 3.4 (Chang [4], Goto [9]). A Buchsbaum bundle E on Pn is isomorphic to a

direct sum of sheaves of differential form, that is, E ∼= ⊕r
i=1Ω

ki
Pn(ℓi).

In other words, a graded S-module M = Γ∗(E) is isomorphic to ⊕Epi(ℓi).

First proof of (3.4)

We use descending induction on t = depth SM ≥ 2. It is clear for the Cohen-Macaulay

case, that is, t = n + 1. Let us assume that t ≤ n. From a presentation 0 → N
f
→ F

g
→

M → 0, where F is graded free, we see N is Buchsbaum and depth SN = t+ 1. Then we

have N ∼= ⊕Epi(ℓi). By the dual sequence 0 →M∨ → F∨ → N∨ ∂
→ Ext1S(M,S) → 0, we

have short exact sequences

0 →M∨ → F∨ → W → 0 and 0 →W → N∨ ∂
→ Ext1S(M,S) → 0.

Now we will prove that W is isomorphic to a direct sum of some copies of Ep(ℓ)’s. Then

M̃∨ is isomorphic to a direct sum of sheaves of differential p-form with some twist by
Lemma 3.8, and so is E as desired.

In order to describe the structure of W , let us put N = N ′ ⊕ N ′′, where N ′ ∼=
⊕t+1≤ki≤nEpi(ℓi) and N

′′ ∼= ⊕En+1(ℓ
′
j). Note that Ext

1
S(M,S) is a k-vector space, that is,

mExt1S(M,S) = 0 from the Buchsbaum property. So, we have only to show ∂(N ′∨) = 0,
that is, suffice to prove ∂(Ej) = 0 for j = 1, · · · , n, and by local duality, equivalently,
Hn

m(M) → Hn+1
m (N) → Hn+1

m (N ′) is zero. From the commutative diagram with exact rows

Hn(x0, · · · , xn;M) → Hn+1(x0, · · · , xn;N) → Hn+1(x0, · · · , xn;N ′)
↓ ↓ ↓

Hn
m(M) → Hn+1

m (N) → Hn+1
m (N ′)

and the surjectivity of the left downarrow from the Buchsbaum property, what we need
to show is Hn+1(x0, · · · , xn;N ′) → Hn+1

m (N ′) is zero, which follows from Remark 3.5. �

Remark 3.5. Let S = k[x0, · · · , xn] be the polynomial ring. Let Ej be the j-th syzygy
module. Then the natural map Hn+1(x0, · · · , xn;Ej) → Hn+1

m (Ej) is zero for 1 ≤ j ≤ n.
Indeed, we give another proof of [9, (2.11)]. A graded S-module Hn+1(x0, · · · , xn;Ej)(∼=
Extn+1

S (k, Ep)) ∼= (Ep/mEp)(n + 1) has nonzero elements only in degree −n + p. On the
other hand, Hn+1

m (Ep) ∼= Homk(En−p, k) has nonzero elements only in degree ≤ −n+p−1.
Thus the assertion is proved. �

Remark 3.6. The structure theorem also works for t = depthSM ≤ 1, see [9]. Indeed, in
case t = 0, it can be reduced to the case t ≥ 1 because H0

m(M) ∩mM = (0) implies that
H0

m(M) is a direct summand of M . In case t = 1, an exact sequence 0 → M → M∨∨ →
Ext1S(W,S) → 0 gives the assertion as in the first proof of (3.4).

Second proof of (3.4)

Let us denote i(E)(= n+1−depthM∨) as the maximal integer i such that Hp
∗(E) = 0,

i+1 ≤ p ≤ n−1. We use induction on i = i(E). It is clear for i = 0. Let us assume i ≥ 1.
If H1

∗(E) 6= 0, we have a short exact sequence of vector bundles 0 → E → F → M → 0,
where F is a vector bundle with H1

∗(F) = 0 and M is a direct sum of line bundles on Pn

by Lemma 3.7.
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The minimal generator of Γ∗(F∨) give a short exact sequence 0 → F → L → K → 0,
where L is a sum of line bundles. Then K is Buchsbaum with i(K) = i(E)− 1. Thus we
have K is isomorphic to a direct sum of Ω

pj
Pn(kj)’s, and so is F by Lemma 3.8.

Note that Hom(Ωp
Pn(ℓ),OPn) 6= 0 if and only if ℓ ≤ p. We may assume kj ≤ pj if pj ≥ 2.

and kj < 0 if pj = 0, where F = ⊕Ω
pj
Pn(kj) and L = ⊕OPn(−ci)⊕γi , 0 = c1 < · · · < cs.

Case A. Let us consider the case kj < pj for all pj ≥ 0. Then we will show that the
exact sequence 0 → E → F → L → 0 has a sequence 0 → Ω1

Pn → On+1
Pn → OPn → 0 as a

direct summand. As in [4, page 330 Case 1], we use only the quasi-Buchsbaum property,
mHi

∗(E) = 0 for 1 ≤ i ≤ n− 1, to prove the assertion.

Case B. Let us consider the case kj = pj for some j, that is, F has a direct summand of
the form Ωq

Pn(q) for some q > 1. We want to show that Ωq
Pn(q) → OPn is zero in the map

F → L, which gives the assertion. As in [4, page 331 Case 2], we use the Buchsbaum
property of E . �

Lemma 3.7. Let E be a vector bundle on Pn with H1
∗(E) 6= 0. Then there exists a short

exact sequence of vector bundles 0 → E → F → L → 0, where F is a vector bundle with

H1
∗(F) = 0 and L is a direct sum of line bundles on P

n.

Proof. Let s = dimH1
∗(E) > 0. A nonzero element of H1(E(−ℓ1)) gives a short exact

sequences 0 → E1 → E → OPn(ℓ1) → 0. Then dimH1
∗(E1) = dimH1

∗(E)− 1. By repeating
this process, we have vector bundles Ei satisfying short exact sequences 0 → Ei → Ei+1 →
OPn(ℓi+1) → 0, where E0 = E and dimH1

∗(Ei+1) = dimH1
∗(Ei) − 1 for i = 0, · · · , s − 1.

Since the exact sequence 0 → Ei/E → Ei+1/E → OPn(ℓi+1) → 0 is inductively shown to
split, we see F/E ∼= ⊕s

i=1OPn(ℓi) by taking F = Ei, as desired. �

Lemma 3.8. (cf. [4, (1.3)], [9, (3.5.2)]) Let E be a vector bundle on Pn with H1
∗(E) = 0.

Assume that there is an exact sequence 0 → E → L → F → 0, where L is a direct

sum of line bundles not being any summand of E , and F = ⊕pj≥1Ω
pj
Pn(kj). Then we have

E ∼= ⊕pj≥1Ω
pj+1
Pn (kj).

Proof. We may assume F = F ′ ⊕ (⊕q≥1Ω
q
Pn(q + 1)⊕), where F ′ = ⊕pj≤kjΩ

pj (kj), and L
has no direct summand of positive degree. Since H1

∗(E) = 0 and a global section Ωq
Pn(q+1)

is lifted up to a section of L, there is a direct summand ON
Pn of L. Then an exact sequence

0 → ⊕q≥1Ω
q+1
Pn (q + 1)⊕ → ON

Pn → ⊕q≥1Ω
q
Pn(q + 1)⊕ → 0 gives a direct summand of the

sequence 0 → E → L → F → 0, which gives the assertion by repeating this process. �

Third proof of (3.4)

By (3.1) (iii), τ>0τ<nRΓ∗(E)(∼= τ<n+1RΓm(M)) is isomorphic to a compex of k-vector
spaces, where M = Γ∗(E) is a graded S-module. Since τ>0τ<nRΓ∗(Ω

p
Pn) is isomorphic to

a complex of one k-vector space, we see that a Buchsbaum bundle E is isomorphic to a
direct sum of the sheaves of differential form Ωp

Pn(ℓ) under stable equivalence from the
categorical equivalence (2.5). �

Fourth proof of (3.4)

First we will give a summary of the Buchsbaum criterion in terms of spectral sequence
[16, 17, 19] in order to apply to the syzgy theoretic proof of the structure theorem. For
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a graded S-module M = Γ∗(E), we consider a Koszul complex K• = K•((x0, · · · , xn);S)
and a C̆ech complex L• = (0 →M → C•(U ; E)[−1]), where U is an affine covering of Pn.
Then we take a double complex HomS(K•, L

•), which yields a spectral sequence {Ei,jr }
such that

Ei,j1 = Hi((x0, · · · , xn); H
j
m(M)) ⇒ Hi+j = Hi+j((x0, · · · , xn);M).

The natural map Hj = Hj((x0, · · · , xn);M) → E0,j
1 = Hj

m(M) is surjective for 0 ≤ j ≤ n
from the theory of Buchsbaum ring (cf.[17, 23]), and di,jr : Ei,jr → Ei+r,j−r+1

r is zero for
j ≤ n, r ≥ 1 ([16, (1.11)]).

Keeping the construction above in mind, we will give an analog of the spectral se-
quence. From the Koszul complex K• = K•((x0, · · · , xn);S), we have exact sequences:

(i) N̄• : 0 → Ωp
Pn → O

⊕ap
Pn (−p) → · · · → O⊕a1

Pn (−1) → OPn → 0

(ii) ¯̄N• : 0 → OPn(−n− 1) → O⊕an
Pn (−n) → · · · → O

⊕ap+1

Pn (−p− 1) → Ωp
Pn → 0,

where N̄−i = O⊕ai
Pn (−i) for 0 ≤ i ≤ p, N̄−p−1 = Ωp

Pn and ¯̄N−i = O⊕ai
Pn (−i) for p+ 1 ≤ i ≤

n+ 1, ¯̄N−p = Ωp
Pn, ar =

(
n + 1
r

)
. Then the exact sequences

(iii) 0 → E → E⊕a1(1) → · · · → E⊕ap(p) → E ⊗ Ωp∨
Pn → 0

(iv) 0 → E∨(−n− 1) → E∨⊕an(−n) → · · · → E∨⊕ap+1(−p− 1) → E∨ ⊗ Ωp
Pn → 0

give maps ϕ : H0(E ⊗ Ωp∨
Pn) → Hp(E) and ψ : H0(E∨ ⊗ Ωp

Pn) → Hn−p(E∨(−n− 1)).

Lemma 3.9 (cf. [13]). Under the condition above, assume that there is a nonzero element

s ∈ Hp(E) and a corresponding element t ∈ Hn−p(E∨(−n− 1)) by Serre duality satisfying

that s and t can be lifted up to H0(E ⊗ Ωp∨
Pn) and H0(E∨ ⊗ Ωp

Pn) by ϕ ans ψ respectively.

Then Ωp
Pn is a direct summand of E .

Proof. For s( 6= 0) ∈ Hp(E) there exists f ∈ H0(E ⊗Ωp∨
Pn) such that ϕ(f) = s( 6= 0) ∈ Hp(E)

Let us take s ∈ Hm(E) and g ∈ H0(E∨⊗Ωp
Pn) corresponding to t ∈ Hn−p(E∨(−n−1)) and

ψ(g) = t( 6= 0) ∈ Hn−p(E∨(−n − 1)) respectively. Then we regard f and g as elements of
Hom(Ωp

Pn, E) and Hom(E ,Ωp
Pn) respectively. From a commutative diagram

H0(E ⊗ Ωp∨
Pn)⊗H0(E∨ ⊗ Ωp

Pn) → H0(Ωp∨
Pn ⊗ Ωp

Pn) ∼= H0(OPn)
↓ ↓

Hp(E)⊗ Hn−p(E∨(−n− 1)) → Hn(OPn(−n− 1)),

the natural map H0(E ⊗ Ωp∨
Pn)⊗H0(E∨ ⊗ Ωp

Pn) → H0(OPn) gives an isomorphism g ◦ f .
Thus we obtain that Ωp

Pn is a direct summand of E . �

Let us come back to the proof of (3.4). Let us consider a double complex
HomS(N̄

•, L•). From the spectral sequence theory of Buchsbaum modules, we have a
spectral sequence {Fi,jr } which satisfies that Fi,j1 = Hj−1

∗ (E(i))⊕ai for 0 ≤ i ≤ p and j ≥ 2
and Fp+1,j

1 = Hj−1
∗ (E ⊗ Ωp∨

Pn). Note that the maps di,jr : Fi,jr → Fi+r.j−r+1
r is zero for i, j, r

with 1 ≤ r ≤ j ≤ n − 1 and 0 ≤ i ≤ p − r from the comparison between {Ei,jr } and
{Fi,jr }. Thus we have a surjective map ϕ : H0(E ⊗ Ωp∨

Pn) → Hp(E). Similarly, a dou-

ble complex constructed from the C̆ech resolution of E∨ ⊗ ¯̄N• also gives a surjective map
ψ : H0(E∨⊗Ωp

Pn) → Hn−p(E∨(−n−1)) from the spectral sequence criterion of Buchsbaum
modules. Hence we have the assertion by (3.9). �
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4 Towards Structure Theorem of quasi-Buchsbaum

bundles on projective space — Null-Correlation

Bundles

In the previous sections we have described cohomological and ring-theoretic criteria for
vector bundles through the Cohen-Macaulay and Buchsbaum property, which character-
izes sheaves of differential p-forms under stable equivalence. In this section we study
quasi-Buchsbaum vector bundles and gives a characterization of null-correlation bundles
on Pn. Our main result (4.9) gives a classification of indecomposable vector bundles E
on Pn with dimk H

1
∗(E) = dimk H

n−1
∗ (E) = 1. In particular, if rank E ≤ n − 1, then E

is isomorphic to a null-correlation bundle on an odd-dimensional projective space. The
proof is based on (3.7) in the second proof and the regularity technique (4.7).

On the other hand, later in Section 5, we will take a syzygy theoretic way to this topic.
We wish to extend this criterion to characterize some interesting examples of algebraic
vector bundles such as the Horrocks-Mumford bundle.

Throughout this section we assume char k 6= 2 to simplify a standardization of skew-
symmetric matirices.

Let us define null-correlation bundles, see, e.g., [21], and also see [6] for generalized
null-correlation bundles. Let Pn = ProjS, S = k[x0, · · · , xn], m = (x0, · · · , xn) with n
odd. Let us write an element of Γ(ΩPn(2)) explicitly. Since Γ(ΩPn(2)) is the kernel of
Γ(OPn(1))⊕n+1 → Γ(OPn(2)) in the Euler sequence, we have an element (a00x0 + · · · +
a0nxn, · · · , an0x0 + · · · + annxn) of Γ(OPn(1))⊕n+1 satisfying that

∑
ij aijxixj = 0, where

aij ∈ k, i, j = 0, · · · , n. Then we have a skew-symmetric (n + 1) × (n + 1)-matrix
A = (aij), which gives a map OPn → ΩPn(2). Now assume that rankA = n + 1. Then
the cokernel of this map defines a vector bundle of rank n − 1. By standardizing the

skew-symmetric matrix, we may take A =

(
O B
−B O

)
, where B is a diagonal matrix

diag (λ1, · · · , λ(n+1)/2) with λi 6= 0. By taking the dual and twisting of OPn → ΩPn(2), we
have a surjective morphism ϕ : TPn(−1) → OPn(1). Then a null-correlation bundle N is
defined as Kerϕ, which gives a short exact sequence

0 → N → TPn(−1)(∼= Ωn−1
Pn (n)) → OPn(1) → 0.

Thus we see that a skew-symmetric (n+1)× (n+1)-matrix A of rank n+1 defines a null-
correlation bundle N , which does not depend on a choice of A via a coordinate change.
For example, (x1,−x0, x3,−x2, · · · , xn,−xn−1) ∈ Γ(ΩPn(2)) gives an injective morphism
OPn → ΩPn(2), which defines a null-correlation bundle, see, e.g., [21].

The intermediate cohomologies appear only in H1(N (−1))(∼= k) and Hn−1(N (−n))(∼=
k). Also, note that H0(N (ℓ)) 6= 0 only in case ℓ > 0 and Hn(N (ℓ)) 6= 0 only in case
ℓ < −n − 1. The dual N ∨ has the same cohomology table as N , and N ∨ ∼= ∧n−2N ,
especially, N is self-dual for n = 3. Thus we see that regN = 1 and regN ∨ = 1.

Definition 4.1. A vector bundle E on Pn is called a quasi-Buchsbaum bundle if
mHi

∗(E) = 0, 1 ≤ i ≤ n− 1.
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Remark 4.2. A Buchsbaum vector bundle is a quasi-Buchsbaum vector bundle. A null-
correlation bundle is quasi-Buchsbaum but not Buchsbaum.

Question 4.3. Is there a structure theorem of quasi-Buchsbaum bundle on the projective
space? Can we classify vector bundles E on Pn satisfying that H1

∗(E)
∼= Hn−1

∗ (E) ∼= k and
Hi

∗(E) = 0, 2 ≤ i ≤ n− 2?

There is an answer to this question for stable vector bundles of rank 2 on P3
C
. Barth’s

Restriction Theorem [3] plays an important role for their proof.

Proposition 4.4 (Ellia-Sarti(1999)). Let E be a stable vector bundle of rank 2 on P3
C
.

Then E is quasi-Buchsbaum if and only if E is a null-correlation bundle.

Remark 4.5. Let us take a map ϕ : OP3 → ΩP3(2) corresponding to a skew-symmetric
4× 4-matrix A = (aij). Then we have

P−1AP =




0 λ 0 0
−λ 0 0 0
0 0 0 µ
0 0 −µ 0


 for an invertible matrix P .

So, there are 3 types as the cokernel of ϕ

(i) A =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 (ii) A =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 (iii) A = 0

A null-correlation bundle N is defined as N ∨(1) ∼= Cokerϕ in case (i).
In general, let us consider a map ϕ : OPn → ΩPn(2). Here n is not necessarily an odd

number. The map corresponds to a skew-symmetric matrix (n + 1) × (n + 1)- matrix
A = (aij), and the rank of A can be only an even number.. In case rankA = 2m, there

is an invertible matrix P such that P−1AP =




0 B 0
−B 0 0
0 0 0


 with a m × m-diagonal

matrix B = diag (λ1, · · · , λm), λi 6= 0. �

Definition 4.6. Let F be a coherent sheaf on Pn. Then we define

ai(F) = min{ℓ ∈ Z|Hi(E(ℓ− i) = 0}

for i ≥ 1. Note that regF = max{ai(F) + i|i ≥ 1}.

Lemma 4.7. Let E be a quasi-Buchsbaum but not Buchsbaum bundle on Pn such that

Hi
∗(E) = 0 for 2 ≤ i ≤ n−2. Then there is a quasi-Buchsbaum bundle F with a1(F) = −1,

an−1(F) = −n + 1 and an(F) ≤ −n such that E(ℓ) ∼= F ⊕ (⊕iOPn(ℓ′i)) ⊕ ⊕j(Ω
1
Pn(ℓ′′j )) ⊕

⊕k(Ω
n−1
Pn (ℓ′′′k )) for some ℓ, ℓ′i, ℓ

′′
j and ℓ′′′k .

Proof. By twisting if necessary, we may assume that reg E = 1. In other words, ai(E) ≤ −i
and ai(E) = −i for some i = 1, n− 1, n.

9



Case I. If an(E) = −n, then OP3(−1) is a direct summand of E by Lemma 2.4, that is,
E ∼= E ′⊕OP3(−1) for some vector bundle E ′ having the quasi-Buchsbaum property. Then
we may reduce to a vector bundle E ′ of lower rank.

Case II. If an−1(E) = −n+1, then a nonzero element s ∈ Hn−1(E(−n+1)) can be lifted
up to H0(E ⊗ Ωn−1∨

Pn (−n + 1)), and the corresponding element t ∈ H1(E∨(−2)) by Serre
duality can be also lifted up to H0(E∨ ⊗ Ωn−1

Pn (n − 1)). Indeed, as in the fourth proof of
(3.4), exact sequences

0 → E(−n+ 1) → E⊕(−n + 2) → · · · → E⊕ → E ⊗ Ωn−1∨
Pn (−n + 1) → 0,

0 → E∨ → E∨⊕
(−1) → E∨ ⊗ Ωn−1

Pn (n− 1) → 0

give surjective maps

Hom(Ωn−1
Pn (n− 1), E) = H0(E ⊗ Ωn−1∨

Pn (−n + 1)) → Hn−1(E(−n+ 1)),

Hom(E ,Ωn−1
Pn (n− 1)) = H0((E)∨ ⊗ Ωn−1

Pn (n− 1)) → H1(E∨(−2)),

which gives f : Ωn−1
Pn (n − 1) → E and g : E → Ωn−1

Pn (n − 1) corresponding to s and t
respectively. Hence we see Ωn−1

Pn (n − 1) is a direct summand of E because g ◦ f is an
isomorphism. By Lemma 3.9, E ∼= E ′ ⊕ Ωn−1

Pn (n − 1) for some vector bundle E ′ having
the quasi-Buchsbaum property. Then we may reduce to a vector bundle E ′ of lower rank
again.

Case III. If a1(E) = −1 and an−1(E) < −n+1, a nonzero element s ∈ H1(E(−1)) can be
lifted up to H0(E ⊗Ω1∨

Pn(−1)), and the corresponding element t ∈ Hn−1(E∨ − n)) by Serre
duality can be also lifted up to H0(E∨ ⊗Ω1

Pn(1)) by the same way as in Case II. Thus we
have a direct summand Ω1

Pn(1) of E as desired. �

Thus we have only to consider an indecomposable quasi-Buchsbaum (not Buchsbaum)
bundle with a1(E) = −1, an−1(E) = −n+1 and a3(E) ≤ −n in order to investigate quasi-
Buchsbaum bundles.

By virtue of the observation (4.7), the following remark is a detailed study of [5] in
order to have an application to (4.9).

Remark 4.8. Let E be an indecomposable quasi-Buchsbaum bundle on Pn satisfying
that Hi

∗(E) = 0, 2 ≤ i ≤ n− 2. From the observation (4.7), there are increasing numbers
e1 < · · · < er such that H1(E(ℓ)) = Hn−1(E(ℓ − n + 1)) = 0 for any ℓ 6= e1, · · · , er. Let
us put si = dimH1(E(ei)) > 0 and ti = dimHn−1(E(ei − n + 1)) > 0. By the proof
of (3.7), we have an exact sequence 0 → E → F → L → 0 with H1

∗(F) = 0, where
L = ⊕r

i=1OP3(−ei)⊕si. Since Hi
∗(F) = 0, 1 ≤ i ≤ n − 2 and Hn−1

∗ (F) ∼= Hn−1
∗ (E), we

see that F is Buchsbaum. From the structure theorem (3.4) we have an isomorphism
F ∼= ⊕r

i=1Ω
n−1
Pn (−ei + n − 1)⊕ti ⊕M, where M is a direct summand of line bundles. As

in the case of the second proof of (3.4), the exact sequence 0 → E → F → L → 0 have 2
types, Case A and B. In Case A, the quasi-Buchsbaum property of E implies that E has a
direct summand Ω1

Pn(ℓ) as a direct summand, which gives E ∼= Ω1
Pn(ℓ). So, we have only

to focus on Case B. Then we have an exact sequence

0 → ⊕r
i=1OPn(ei)

⊕si → ⊕r
i=1ΩPn(ei + n− 1)⊕ti ⊕M∨ → E∨ → 0.

In particular, E has a subbundle G as a direct summand such that 0 → OP3(er)
⊕sr →

ΩP3(er + 2)⊕tr ⊕L′ → F∨ → 0, where L′ is a direct sum of line bundles.
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Now we present a classification theorem for quasi-Buchsbaum bundles by restricting
the assumption.

Theorem 4.9. Let E be an indecomposable quasi-Buchsbaum bundle on Pn with n odd.

Assume that Hi
∗(E) = 0, 2 ≤ i ≤ n − 2 and dimk H

1
∗(E) = dimk H

n−1
∗ (E) = 1. Then E is

isomorphic to one of the follows with some twist:

(i) Null-correlation bundle with n odd

(ii) 0 → OPn(−1)
ψ
→ ΩPn(1)⊕O⊕n−2m

Pn → E∨ → 0,

where ψ is given by ϕ : OPn → ΩPn(2) of rank 2m in (4.5).

Proof. We may assume that E is not Buchsbaum and H1(E(−1)) ∼= Hn−1(E(−n)) ∼= k.
From (4.8), we have an exact sequnce 0 → E → Ωn−1

Pn (n)⊕L′ → OPn(1) → 0, where L′ is
a direct sum of line bundles, because H1

∗(E)
∼= k(1) and Hn−1

∗ (E) ∼= k(n). Then we have a
short exact sequence

0 → OPn → Ω1
Pn(2)⊕L → E∨(1) → 0,

where L = ⊕i=1,··· ,rOPn(ℓi). Clearly ℓi ≥ 1 for any i. A map ϕ : OPn → Ω1
Pn(2) in

the exact sequence is classified as in (4.5) according to the rankϕ = 2m, explicitly ϕ is
written as (x1,−x0, x3,−x2, · · · , x2m−1,−x2m−2, 0, · · · , 0) by coordinate change. A map
OPn → L = ⊕OPn(ℓi) is defined by homogeneous polynomials fi of degree ℓi, and I =
(x0, · · · , x2m−1, f1, · · · , fr) must be minimally generated and have no zero-points in Pn.
By taking the dual and a cohomology sequence, we have an exact sequence

H0
∗((Ω

1
Pn)∨(−2)⊕ (⊕OPn(−ℓi)))

α
→ H0

∗(OPn) = S → H1
∗(E(−1)) → 0.

Since mH1
∗(E(−1)) = 0, we have m ⊆ Imα. Note that Imα is generated by x0, · · · , x2m−1

and f1, · · · , fr. Hence we obtain r = n− 2m and ℓ1 = 1 as desired. �

Corollary 4.10. Let E be an indecomposable vector bundle on Pn with dimk H
1
∗(E) =

dimk H
n−1
∗ (E) = 1 and Hi

∗(E) = 0 for 2 ≤ i ≤ n− 2. If rank E ≤ n− 1, then n is odd and

E is isomorphic to a null-correlation bundle on Pn.

Remark 4.11. Let N be a null-correlation bundle on Pn, with n odd. Then it is clear
N ∨ ∼= N for n = 3 because rankN = 2. However, we also see that N ∨ ∼= ∧n−2N ∼= N
from the structure theorem (4.10).

Example 4.12. Let ϕ1 : OP3 → Ω1
P3(2)(⊂ OP3(1)⊕4) by ϕ1(1) = (x1,−x0, 0, 0) and

ϕ2 : OP3 → Ω1
P3(2)(⊂ OP3(1)⊕4) by ϕ2(1) = (0, 0, , x3,−x2). Then ϕ = ϕ1 + ϕ2 : OP3 →

Ω1
P3(2)⊕Ω1

P3(2) gives F = Cokerϕ as a vector bundle of rank 5. We easily have that F is an
indecomposable quasi-Buchsbaum but not Buchsbaum bundle with H1

∗(F) ∼= k(2)⊕ k(2)
and H2

∗(F) ∼= k.

Question 4.13. Classify vector bundles E on Pn satisfying that there is an integer p with
2 ≤ p ≤ n− 2 such that H1

∗(E)
∼= k(1), Hp

∗(E)
∼= k(p+ 1) and Hi

∗(E) = 0 for 2 ≤ i ≤ p− 1
and p+ 1 ≤ i ≤ n− 1.
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5 Syzygy theoretic approach to quasi-Buchsbaum

bundles on P
3

Let S = k[x0, · · · , xn] be a polynomial ring over a field k with deg xi = 1, i = 0, · · · , n.
Let M be a finitely generated graded S-module of dimM = d+ 1. Assume that M has a
finite local cohomology, that is, ℓ(Hi

m(M)) <∞, equivalently M̃ is locally free on ProjS.

Definition 5.1 ([24]). Let f1, · · · , fe be a part of homogeneous system of parameters for
an S-module M . We call f1, · · · , fe as a standard system if qHi

m(M/qjM) = 0 for all
nonnegative integers i, j with i+ j ≤ d, where qj = (f1, · · · , fj), j = 0, · · · , e and q = qe.

Proposition 5.2 ([24]). Let y0, · · · , yd be a homogeneous system of parameters for an

S-module M . Then y0, · · · , yd is standard if and only if the natural maps from the Koszul

cohomologies Hi((y0, · · · , yd);M) → Hi
m(M) for surjective for 0 ≤ i ≤ d

Remark 5.3 ([23, 24]). In general, a graded S-module M is Buchsbaum if and only if
any homogeneous system of parameters for the S-module M is standard.

Now let us consider a quasi-Buchsbaum bundle E on P3. Let S = k[x0, x1, x2, x3] with
m = (x0, x1, x2, x3) andM = Γ∗(E). Note thatM has the property Hi

m(M) = 0 for i = 0, 1
mHi

m(M) = 0 for i = 2, 3. Then x0, x1, x2, x3 is a homogeneous system of parameters for
a graded S-module M . Let us define a standard ideal, and we need not consider H0

m and
H1

m local cohomologies through saturation and sheafification of a graded S-module. So,
we give slightly different definition of standard ideals from the usual in this paper.

Definition 5.4. A homogeneous ideal I ⊂ S is called standard for M if any part of
homogeneous system of parameters y1, y2(∈ I) is standard, that is, y1H

2
m(M/y2M) =

y2H
2
m(M/y1M) = 0.

Remark 5.5. A graded S-module M is Buchsbaum if and only if m is standard by (5.3).

Definition 5.6. Let M be a graded S-module with Hi
m(M) = 0 for i = 0, 1 as above.

Then we call M as follows:

(i) M is pseudo-Buchsbaum if there is a part of linear standard system of parameters
y1, y2, that is, y1H

2
m(M/y2M) = y2H

2
m(M/y1M) = 0, but m is not standard.

(ii) M is nonstandard-Buchsbaum if M is neither Buchsbaum nor pseudo-Buchsbaum.

Let L• be an exact sequence 0 → OPn(−3) → OPn(−2)4 → OPn(−1)6 → Ω1
P3(1) →

0 arising from the Koszul complex K•(x0, · · · , x3;S), where L−4 = OPn(−3), L−3 =
OPn(−2)4, L−2 = OPn(−1)6 and L−1 = Ω1

P3(1). Let C• be the C̆ech resolution C i =
C i(U; E), where {U} = {D+(xi)|0 ≤ i ≤ 3} is an affine open covering of P3. Then we
have a double complex C•• = L• ⊗C•, see the diagram below, giving a spectral sequence
{Ep,q

r } with E−4,q
1 = Hq

∗(E(−3)) and so forth. Since E is quasi-Buchsbaum, we have a map

d−4,2
2 : E−4,2

2 = H2
∗(E(−3)) → E−2,1

2 = H1
∗(E(−1))6.
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Let us explain the above map explicitly. In fact, d−4,2
2 : H2

∗(E(−3)) → H1
∗(E(−1))6 is

written in the following diagram:

0 → H1
∗(E(−2)) → H1

∗(E(−2)|H) → H2
∗(E(−3)) → 0

↓ xj ↓ xj ↓ xj
0 → H1

∗(E(−1)) → H1
∗(E(−1)|H) → H2

∗(E(−2)) → 0

from a short exact sequence 0 → E(−1)
xi→ E → E|H → 0, where H = {xi = 0}. Since

mutliplication maps H1(E(−2))
xj
→ H1(E(−1)) and H2(E(−3))

xj
→ H2(E(−2)) are zero, by

snake lemma we obtain a map ϕxi∧xj : H2(E(−3)) → H1(E(−1)), i 6= j, see [17, 19]. In

this way we see a map d−4,2
2 is written as

⊕

0≤i<j≤3

ϕxi∧xj : H
2(E(−3)) →

⊕

0≤i<j≤3

H1(E(−1)).

Thus we have a map from u ∈ C2(E(−3)) with α(u) = d−3,1(v) to β(v) in the C̆ech
diagram below.

0 → C2(E(−3))
α
→ C2(E(−2))4 → C2(E(−1))6 → C2(E ⊗ Ω1

P3(1)) → 0
↑ ↑ d−3,1 ↑ ↑

0 → C1(E(−3)) → C1(E(−2))4
β
→ C1(E(−1))6 → C1(E ⊗ Ω1

P3(1)) → 0
↑ ↑ ↑ d−2,0 ↑

0 → C0(E(−3)) → C0(E(−2))4 → C0(E(−1))6
γ
→ C0(E ⊗ Ω1

P3(1)) → 0
↑ ↑ ↑ ↑
0 0 0 0

In case β(v) were an element of d−2,0(C0(E(−1))6), ū ∈ H2(E(−3)) could be lifted to
H0(E ⊗ Ω1

P3(1)). Then Ω1
P3(1) is isomorphic to a direct summand of E .

From this viewpoint, we consider the case β(v) 6∈ d−2,0(C0(E(−1))6).

Now we state our main result of this section.

Theorem 5.7. Let E be an indecomposable quasi-Buchsbaum bundle on P3 with

dimk H
i
∗(E) = 1 for i = 1, 2. If E is nonstandard Buchsbaum, then E is isomorphic to

a null-correlation bundle with some twist.

Remark 5.8. By (4.9) and (5.7), the indecomposable quasi-Buchsbaum bundles on P3

dimk H
1
∗(E) = dimk H

2
∗(E) = 1 are classified with some twist as

(a) Null-correlation bundle as Nonstandard-Buchsbaum.

(b) Bundle of (ii) in (4.9) as Psuedo-Buchsbaum.

Proof of (5.7). From the observation (4.7), we may assume that H2(E(−3)) ∼= k and
H1(E(−1)) ∼= k. Then there exists a nonzero element s ∈ H2(E(−3)).

Before going back to the track of the proof, we explain what prevents E from being
isomorphic to the sheaf of differential forms. As in the fourth proof of (3.4), from the
exact sequence:
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0 → E(−3) → E(−2)4 → E(−1)6 → E(−3) ⊗ Ω2∨
P3 (∼= E ⊗ Ω1

P3(1)) → 0
ց ր

E(−3)⊗ Ω1∨
P3

ր ց
0 0

we have a composition of maps H0(E(−3) ⊗ Ω2∨
P3 ) → H1(E(−3) ⊗ Ω1∨

P3 ) → H2(E(−3)).
Since s( 6= 0) ∈ H2(E(−3)) cannot be lifted to an element of H0(E(−3)), we cannot have
a map Ω2

P3 → E(−3) in this way.

Now let us construct a null-correlation bundle N with a skew-symmetric matrix A =
(aij), 0 ≤ i, j ≤ 3 in order to give non-zero maps f : N → E and g : E → N regarded
as elements of H0(E ⊗N ∨) and H0(E∨ ⊗N ) such that g ◦ f is isomorphic, which implies
that N is a direct summand of E .

First let us show there is a nonzero element of Γ(E ⊗ N ∨) by lifting an element of
H2(E(−3)). In the following short exact sequence corresponding to a null-correlation
bundle with a skew-symmetric matrix A, we take the minimal free resolution of Ω1

P3(1)
such as

0 0
↑ ↑

0 → OP3(−1) → Ω1
P3(1) → N ∨(∼= N ) → 0.

↑ ↑
OP3(−1) OP3(−1)6

↑ ↑
0 OP3(−2)4

↑
OP3(−3)

↑
0

Here we use the word ‘free resolution’ if the sequence maintains the exactness after taking
Γ∗( · ). Thus we have a free resolution of N by taking a mapping cone

0 → OP3(−3) → OP3(−2)4 ⊕OP3(−1) → OP3(−1)6 → N ∨ → 0,

which yields the minimal free resolution

0 → OP3(−3) → OP3(−2)4 → OP3(−1)5 → N ∨ → 0,

This resolution connects short exact sequences 0 → OP3(−3) → OP3(−2)4 → Ω2
P3(1) → 0

and 0 → Ω2
P3(1) → OP3(−1)5 → N ∨ → 0.

What we have to do is to construct a null-correlation bundle N having a nonzero
element g ∈ H0(E ⊗ N ∨) such that ϕ(g) = s( 6= 0), where

ϕ : H0(E ⊗ N ∨) → H1(E ⊗ Ω2
P3(1)) → H2(E(−3))

arising from an exact sequence

0 → E(−3) → E(−2)4 ⊕ E(−1) → E(−1)6 → E ⊗N ∨ → 0.
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Let us take u ∈ C2(E(−3)) as an element s( 6= 0) ∈ H2(E(−3)) which gives v ∈
C1(E(−2))4 with d−3,1(v) = α(u) and β(v) 6∈ d−2,0(C0(E(−1))6) in chasing an element
in the C̆ech diagram C•• before. As explained before,

⊕
0≤i<j≤3 ϕxi∧xj : H2(E(−3)) →⊕

0≤i<j≤3H
1(E(−1)) gives a map from u ∈ C2(E(−3)) to β(v) 6∈ d−2,0(C0(E(−1))6) in the

C̆ech diagram. Then we give a map γ : OP3(−1) → OP3(−1)6 by choosing an element
of k6 such that the image contains β(v). Thus we have constructed a null-correlation
bundle N obtained from 0 → OP3(−3) → OP3(−2)4 → OP3(−1)6 → Ω1

P3(1) → 0 and

OP3(−1)
γ
→ OP3(−1)6.

By adding a superfluous component, we have (β − γ)(v) = d−2,0(w) for some w ∈
C0(E(−1))6, Thus we have a cycle δ(w) of C0(E ⊗ N ∨). More explicitly, ϕxi∧xj gives a
skew-symmetric matrix A = (aij), where aij = ϕxi∧xj (1) ∈ k. Since E is nonstandard-
Buchsbaum, rankA = 4. In this way, the following double complex D•• constructed
by adding an extra component enables a nonzero element of H2(E(−3)) to be lifted to
H0(E ⊗N ∨) as desired.

0 → C2(E(−3)) → C2(E(−2))4 ⊕ C2(E(−1)) → C2(E(−1))6 → C2(E ⊗ N ∨) → 0
↑ ↑ ↑ ↑

0 → C1(E(−3)) → C1(E(−2))4 ⊕ C1(E(−1))
β−γ
→ C1(E(−1))6 → C1(E ⊗ N ∨) → 0

↑ ↑ ↑ d−2,0 ↑

0 → C0(E(−3)) → C0(E(−2))4 ⊕ C0(E(−1)) → C0(E(−1))6
δ
→ C0(E ⊗ N ∨) → 0

↑ ↑ ↑ ↑
0 0 0 0

In other words, there is a nonzero element g ∈ H0(E ⊗ N ∨) such that ϕ(g) = s, where
ϕ : H0(E ⊗N ∨) → H1(E ⊗Ω2(1)) → H2(E(−3)). Comparing the double complex C•• and
D•• with the corresponding spectral sequences {Ep,q

r } and {F p,q
r } respectively, we have

shown that d−4,2
2 : E−4,2

2 → E−2,1
2 is not zero but d−4,2

2 : F−4,2
2 → F−2,1

2 is zero.
From an exact sequence 0 → N → Ω2(1) → OP3(1) → 0, we take an element t ∈

H3(E ⊗ N (−4)) from s ∈ H2(E(−3)). For a dual element s′ ∈ H1(E∨(−1)) corresponding
to s ∈ H2(E(−3)) by Serre duality ϕ(g) = s, there exists a nonzero element f ∈ H0(E∨⊗N )
such that ψ(f) = s′, where ψ : H0(E∨ ⊗N ) → H1(E∨(−1)) arising from 0 → E∨(−1) →
E∨ ⊗ Ω2(1) → E∨ ⊗N → 0. From a commutative diagram

H0(E ⊗ N ∨)⊗H0(E∨ ⊗N ) → H0(N ∨ ⊗N ) ∼= H0(OP3)
↓ ↓

H2(E(−3))⊗ H1(E∨(−1)) → H3(OP3(−4)),

the natural map H0(E ⊗ N ∨)⊗H0(E∨ ⊗N ) → H0(OP3) gives an isomorphism g◦f . Hence
we obtain that N is a direct summand of E . �

Remark 5.9. In the proof of (5.7), we have taken a skew-symmetric matrix A of rank
4 because E is nonstandard-Buchsbaum. In general, rankA = 0, 2, 4 corresponds with
Buchsbaum, pseudo-Buchsbaum and nonstandard-Buchsbaum, respectively. Also, there
exists no rankA = 3 cases, because the rank of skew-symmetric matrix is even.
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Example 5.10. If E were pseudo-Buchsbaum in the proof of (5.7), the skew-symmetric
matrix A would has rank 2, see (5.9). In this case, we can similarly take a map

γ′ : OP3(−1) → OP3(−1)6 ⊕O2
P3

by (β − γ′)(v) being liftable such that the corresponding injective map

ϕ : OP3(−1) → Ω1
P3(1)⊕O2

P3

gives a vector bundle F = Cokerϕ. In fact, F has a free resolution (exact even after
taking Γ∗(·))

0 → OP3(−3) → OP3(−2)4 ⊕OP3(−1) → OP3(−1)6 ⊕O2
P3 → F → 0.

Then a syzygy theoretic method shows that an indecomposable pseudo-Buchsbaum vector
bundle on P3 with dimk H

1
∗(E) = dimk H

2
∗(E) = 1 is isomorphic to a vector bundle F(ℓ)

for some ℓ ∈ Z.

Remark 5.11. A vector bundle E on P3 with H1
∗(E)

∼= k(1) and H2
∗(E)

∼= k(3) is iso-
morphic to either a null-correlation bundle, a bundle F in (5.10), or Ω1

P3(1) ⊕ Ω2
P3(3)

‘under stable equivalence’, that is, without a direct sum of line bundles. These bundles
are self-dual, and correspond with ‘nonstandard-Buchsbaum’, ‘pseudo-Buchsbaum’ and
‘Buchsbaum’.

6 Vector bundles on multiprojective spaces

Is there a vector bundle E on X = P
m × P

n satisfying that Hi(X, E ⊗ OX(ℓ1, ℓ2)) = 0,
1 ≤ i ≤ m+n−1 for any (ℓ1, ℓ2) ∈ Z×Z? In fact there are no such vector bundles obtained
from the basic property of the Castelnuovo-Mumford regularity on multiprojective space.

Definition and Proposition 6.1 ([2]). A coherent sheaf F on X = Pm×Pn is 0-regular
if Hi(X,F(j1, j2)) = 0 for i ≥ 1, j1 + j2 = −i, −m ≤ j1 ≤ 0, −n ≤ j2 ≤ 0.

Then F|H×Pn is 0-regular on H × P
n(∼= P

m−1 ×P
n) for a generic hyperplane H of Pm,

and F(m1, m2) is 0-regular for any m1 ≥ 0, m2 ≥ 0, and F is globally generated.

Let us consider a vector bundle E on X = Pm× Pn without intermediate cohomology.
Let t be the minimal integer such that F = E(t, t) is 0-regular. Since the intermediate
cohomologies vanishes, we see that Hm+n(X,F(−m − 1,−n− 1)) 6= 0. By Serre duality
we have H0(F∨) 6= 0, which gives a nonzero map ϕ : F → OX . On the other hand, a
globally generated bundle F gives a surjective map ψ : O⊕

X → F . Since ϕ◦ψ is a nonzero
map, OX is a direct summand of F . However, we see Hm(X,OX(−m− 1, 0)) 6= 0, which
contradicts with the assumption of E .

The following result is an immediate consequence of [18, (2.5)], given by a syzygy
theoretic approach implies that an ACM bundle on a smooth quadric surface Q = P1 ×
P1 ⊂ P3 is isomorphic to a direct summand of OX , OX(−1, 0), OX(0,−1) with some
twist, a special case of [11].
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Proposition 6.2. Let E be a vector bundle on X = Pn×Pn. Then the following conditions

are equivalent:

(a) (i) Hi(X, E(ℓ1, ℓ2)) = 0 for any ℓ1, ℓ2 ∈ Z with |ℓ1 − ℓ2| ≤ n, and i = 1, · · · , n −
1, n+ 1, · · · , 2n− 1.

(ii) Hn(X, E(ℓ, ℓ)) = 0 for any ℓ ∈ Z.

(b) A vector bundle E is isomorphic to a direct sum of line bundles of the form OX(u, v)
for some u, v with |u− v| ≤ n.

Question 6.3. Find a generalization of cohomological criteria of (6.2) for vector bundles
on Pn × · · · × Pn.
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