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1 Introduction

This paper is devoted to the spectral sequence theory of graded modules. The the-
ory has been developed in [5] and [6] to study the Buchsbaum property of Segre
products. In this paper, we generalize our previous results through the r-standard
property. The r-standard property, defined in Section 2, has an important role to
investigate the spectral sequence corresponding to the graded modules. Also, our
paper is written for the self-contained introduction of the spectral sequence theory of
graded modules, including quasi-homogeneous case. Further, we give some applica-
tions for the standard s.o.p. and the Buchsbaum property, renewing the viewpoint of
some important theorems concerning the quasi-Buchsbaum property (cf. (3.7)) and
some cohomological criteria (cf. Section 4).
In Section 2, we review and extend [5], Theorem 1.8 through the r-standard

property. The point is the construction of a map ϕqxr∧...∧x1(M) for an (r−1)-standard
s.s.o.p. x1, . . . , xr for M in (2.3).
In Section 3, we investigate the correspondence between the map ϕ and the spec-

tral sequence associated to M which is introduced in [5] and [6]. This section is
the essence of our spectral sequence theory, not only giving a transparent proof of
[5,(1.9)], but also yielding some corollaries with the thorough study of the property
of the map ϕ. Also, we give another proof of [10,(3.6)].
In Section 4, we give some cohomological criteria for the r-standard property as an

application of the spectral sequence theory. Through the spectral sequence, we study
effectively the behavior of the local cohomology to generalize some cohomological
criteria. For example, Proposition 4.1 is a generalization of [9,(3.1)] and [5,(2.6)]
(See [2,(5.2)]). Proposition 4.2 and 4.3 is a generalization of [11,(3.4)], [5,(1.14)] and
[13,(2.1)].

Throughout this paper, we follow the notation and terminology of [3]. We say that
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R is a graded ring over a field k, if R = ⊕n≥0Rn, R0 = k and R is finitely generated
over k, but we do not assume that R as a k-algebra is generated by R1. We always
write m for the unique homogeneous maximal ideal. We say that a finitely generated
R-module M is a generalized Cohen-Macaulay graded R-module (or FLC graded R-
module) if `R (H

i
m(M)) < ∞ for i 6= dim M . We say that a sequence x1, . . . , xn

of homogeneous elements of R is a s.s.o.p. if the sequence is a part of homogeneous
system of parameters.

2 r-Standard s.s.o.p.

Let R be a graded ring over a field k. Let m be the homogeneous maximal ideal of R.
LetM be a generalized Cohen-Macaulay graded R-module with dimM = m+1(≥ 1).

Definition 2.1 Let x1, . . . , xn be a s.s.o.p. for M . Put q = (x1, . . . , xn). We say
x1, . . . , xn is r-standard, if, for any choice xi1 , . . . , xi`(` ≤ r − 1),

qHj
m(M/(xi1, . . . , xi`)M) = 0

for j + ` ≤ m.
An ideal J ⊆ m is called r-standard if every s.s.o.p. for M contained in J is

r-standard.

Remark 2.2 A s.o.p. x1, . . . , xm+1 for M is (m+1)-standard if and only if the s.o.p.
x1, . . . , xm+1 is standard (cf. [11]). The maximal ideal m is r-standard if and only if
M is (1, r)-Buchsbaum (cf. [2],[4],[6]).

Let y1, . . . , yn be a s.s.o.p. for M , with deg yj = ej ≥ 1(j = 1, . . . , n). Under the
assumption y1, . . . , yn is (r−1)-standard, we want to define graded R-homomorphisms

ϕqyr∧···∧y1(M) : H
q
m(M)[−e1 − · · ·− er]→ Hq−r+1

m (M)

for r − 1 ≤ q ≤ m.
First, we define ϕqy1(M) : H

q
m(M)[−e1] → Hq

m(M) by ϕ
q
y1
(M)(u) = y1u for u ∈

Hq
m(M).
Next, we assume n ≥ 2 and y1, . . . , yn is 1-standard. Let us consider the exact

sequence
0→ [0 : y1]M [−e1]→M [−e1] ·y1→M →M/y1M → 0.

Since M is generalized Cohen-Macaulay, Hq
m([0 : y1]M) = 0 for q ≥ 1. So we have the

short exact sequence

0→ Hq−1
m (M)→ Hq−1

m (M/y1M)→ Hq
m(M)[−e1]→ 0
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for 1 ≤ q ≤ m. Thus we have the following commutative diagram with exact rows

0 → Hq−1
m (M)[−`] → Hq−1

m (M/y1M)[−`] f→ Hq
m(M)[−`− e1] → 0

↓ ↓ ↓
0 → Hq−1

m (M)
g→ Hq−1

m (M/y1M) → Hq
m(M)[−e1] → 0,

where ` = e2 and the vertical arrows are ϕ
q−1
y2
(M), ϕq−1y2

(M/y1M) and ϕ
q
y2
(M)[−e1]

from left. Since y1, . . . , yn is 1-standard, ϕ
q−1
y2
(M) and ϕqy2(M) are zero maps. Thus

we get a graded R-homomorhism

φ : Hq
m(M)[−e1 − e2]→ Hq−1

m (M)

for 1 ≤ q ≤ m such that g ◦ φ ◦ f = ϕq−1y2
(M/y1M). We define ϕ

q
y2∧y1(M) = φ. Note

that ϕq−1y2
(M/y1M) = 0 is equivalent to saying ϕ

q
y2∧y1(M) = 0. Therefore, y2, . . . , yn

is 1-standard for M/y1M if and only if ϕqyj∧y1(M) is a zero map for j = 2, . . . , n and
q ≤ m− 1. Hence y1, . . . , yn is a 2-standard s.s.o.p. for M if and only if ϕqyj∧yi(M) is
a zero map for i 6= j and 1 ≤ q ≤ m.
Now assume n ≥ r ≥ 3 and y1, . . . , yn is (r − 1)-standard. Similarly we have the

short exact sequence

0→ Hq−1
m (M)→ Hq−1

m (M/y1M)→ Hq
m(M)[−e1]→ 0

for 1 ≤ q ≤ m. Since y2, . . . , yn is also (r − 2)-standard s.s.o.p. for M/y1M ,
ϕq−1yr∧···∧y2(M/y1M) is also defined. Thus we have the following diagram with exact
rows for r − 1 ≤ q ≤ m

0 → Hq−1
m (M)[−`] → Hq−1

m (M/y1M)[−`] f→ Hq
m(M)[−`− e1] → 0

↓ ↓ ↓
0 → Hq−r+1

m (M)
g→ Hq−r+1

m (M/y1M) → Hq−r+2
m (M)[−e1] → 0,

where ` = e2+· · ·+er and the vertical arrows are ϕq−1yr∧···∧y2(M), ϕ
q−1
yr∧···∧y2(M/y1M) and

ϕqyr∧···∧y1(M)[−e1] from left. Our inductive construction of ϕ implies the commutativ-
ity of the above diagram (c.f. [5,(1.7.3)]). Thus we define a graded R-homomorphism

ϕqyr∧···∧y1(M) : H
q
m(M)[−e1 · · ·− er]→ Hq−r+1

m (M)

for r − 1 ≤ q ≤ m such that

g ◦ ϕqyr∧···∧y1(M) ◦ f = ϕq−1yr∧···∧y2(M/y1M).

Similarly, the sequence y1, . . . , yn is r-standard for M if and only if ϕqyr∧···∧y1(M) is a
zero map for any choice yi1, . . . , yir and r − 1 ≤ q ≤ m.
Hence we have the following.
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Theorem 2.3 Let R be a graded ring over a field k. Let m be the homogeneous
maximal ideal of R. Let M be a generalized Cohen-Macaulay graded R-module with
dimM = m + 1(≥ 1). Let y1, . . . , yn be a s.s.o.p. for M . Suppose that n ≥ r and
y1, . . . , yn is (r − 1)-standard, then

ϕqyir∧···∧yi1 (M) : H
q
m(M)[−ei1 · · ·− eir ]→ Hq−r+1

m (M)

is well-defined for any choice yi1, . . . , yir and r − 1 ≤ q ≤ m.
Furthermore, y1, . . . , yn is r-standard if and only if ϕ

q
yir∧···∧yi1 (M) is a zero map

for any choice yi1, . . . , yir and r − 1 ≤ q ≤ m.

3 Spectral Sequence Theory

Let R be a graded ring over a field k. Then we can write R = P/I, where P =
k[X0, . . . , XN ] is a polynomial ring, graded by deg(Xj) ≥ 1 for 0 ≤ j ≤ N , and I is
a homogeneous ideal of R. Let m be the homogeneous maximal ideal of R. Let M
be a generalized Cohen-Macaulay graded R-module with dimM = m + 1(≥ 1). Let
q be a homogeneous ideal of R. Let y1, . . . , yn be homogeneous generators of q with
deg yj = dj ≥ 1(j = 1, . . . , n).
Let P = Proj P and X = Proj R. Let F = fM and F(`) = gM(`) on P for all

integers ` . Notice that F(`) is not necessarily isomorphic to F ⊗ OP(`) in quasi-
homogeneous cases. We often write F for its pull-back ι∗F on X, where ι : X → P
is a closed immersion. Then we have an isomorphism

H i
∗(X,F) ∼= H i+1

m (M)

for i ≥ 1 and an exact sequence
0→ H0

m(M)→M → Γ∗(X,F)→ H1
m(M)→ 0,

where Γ∗(X,F) =
L
`∈Z Γ(X,F(`)) and H i

∗(X,F) =
L
`∈ZH

i(X,F(`)). (cf. [12].)
We will construct a spectral sequence corresponding the graded R-module M .

Let U = {Uλ} be a finite affine open covering of X (or P). Let C• be the Čech
complex

L
`∈Z C

•(U ;F(`)). Then we put a complex L• = (0 → M
ε→ C•[−1]),

where L0 = M , Li = C i−1 for i 6= 0 and ε is the natural map. Note that H i(L•) is
isomorphic to H i

m(M) as graded R-modules for every i. LetK• be the Koszul complex
K•((y1, . . . , yn);R). Then we consider the double complex B•• = HomR(K•, L•). We
write Bp,q = HomR(Kp, L

q) and we write its differentials as d0p,q : Bp,q → Bp+1,q and
d00p,q : Bp,q → Bp,q+1. When we emphasize M , we sometimes write B••(M), Bp,q(M),
d0p,q(M) and d00p,q(M). Now let us take the first filtration 0Ft(B••) =

P
p≥tB

p,q and
the second filtration 00Ft(B••) =

P
q≥tB

p,q. Then the filtrations 0Ft and 00Ft give
spectral sequences {0F p,qr } and {00F p,qr } respectively:⎧⎪⎨⎪⎩

0F p,q1 = Ker d00p,q/Im d00p,q−1 ⇒
Hp+q(B••).

00F p,q1 = Ker d0p,q/Im d0p−1,q ⇒
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Let {e∗1, . . . , e∗n} be the dual basis of K1((y1, . . . , yn);R). Since

Bp,q ∼=

⎧⎪⎪⎨⎪⎪⎩
³L

`∈Z C
q−1 (U ;F(`))

´
⊗R

Vp (Ln
i=1R[di]e

∗
i ) q 6= 0

M ⊗R
Vp (Ln

i=1R[di]e
∗
i ) q = 0,

we have
0F p,q1 ∼= Hq

m(M)⊗R
p̂ Ã nM

i=1

R[di]e
∗
i

!
.

If we assume the sequence y1, . . . , yn is a s.s.o.p. for M , then we have

00F p,q1 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Hp((y1, . . . , yn);M) q = 0

³L
`∈ZC

q−1
³
U ;F(`)

´´
⊗R (R [

Pn
i=1 di] (e

∗
1 ∧ · · · ∧ e∗n)) p = n, q 6= 0

0 p 6= n, q 6= 0,
where F = F/(y1, . . . , yn)F . Accordingly, we have

00F p,q2 ∼=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Hp((y1, . . . , yn);M) p 6= n, q = 0

Hq
m(M/(y1, . . . , yn)M)[d1 + · · ·+ dn] p = n

0 p 6= n, q 6= 0.
Thus we have

Hp+q(B••) ∼=

⎧⎪⎨⎪⎩
Hp+q((y1, . . . , yn);M) p+ q < n

Hp+q−n
m (M/(y1, . . . , yn)M)[d1 + · · ·+ dn] p+ q ≥ n,

if y1, . . . , yn is a s.s.o.p. for M . On the other hand, if we assume that q is m-primary,

Hp+q(B••) ∼= Hp+q((y1, . . . , yn);M).

Now we simply write F p,qr or F p,qr (M) for 0F p,qr . We see the spectral sequence {F p,qr }
converges to Hp+q(B••).
By the way, let us consider the double complex C•• = HomR(K•, C•) with the

first filtration and its spectral sequence {Ep,qr }. Then we see

Ep,q1 ∼= Hq
∗(X,F)⊗R

p̂ Ã nM
i=1

R[di]e
∗
i

!

and {Ep,qr } converges to Hp+q(C••). In [6], we studied the spectral sequence {Ep,qr },
but not much different from {F p,qr }.
Now let us characterize the r-standard property through the behavior of the spec-

tral sequence {F p,qr } (or {Ep,qr } ). Note that the spectral sequence does not depend
on the choice of minimal generators y1, . . . , yn of q.
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Theorem 3.1 Let R be a graded ring over a field k. Let m be the homogeneous
maximal ideal of R. Let M be a generalized Cohen-Macaulay graded R-module with
dimM = m + 1(≥ 1). Let r and n be integers with r ≤ n. Let q be a homogeneous
ideal which is generated by y1, . . . , yn with deg yj = dj ≥ 1(j = 1, . . . , n). Assume
that, for any 1 ≤ i1 < · · · < ir ≤ n, the sequence yi1 , . . . , yir is an (r − 1)-standard
s.s.o.p. for M . Then we have

(1) There is an isomorphism

F p,qr
∼= Hq

m(M)⊗R
p̂ Ã nM

i=1

R[di]e
∗
i

!
for q 6= m+ 1.

(2) The spectral sequence map dp,qr : F p,qr → F p+r,p−r+1r can be described through the
isomorphism in (1) as

dp,qr
³
u⊗

³
e∗j1 ∧ · · · ∧ e∗jp

´´
=

X
1≤i1<···<ir≤n

ϕqyir∧···∧yi1 (u)⊗
³³
e∗ir ∧ · · · ∧ e∗i1

´^³
e∗j1 ∧ · · · ∧ e∗jp

´´

for u ∈ Hq
m(M).

Before the proof of (3.1), we state and prove some remarks and corollaries of
Theorem 3.1.

Remark 3.2 By the construction of spectral sequence, we can weaken the hypothesis
of (3.1) as follows:
Let s be an integer with r ≤ s ≤ n. Let q be a homogeneous ideal which is

generated by y1, . . . , ys with deg yj = dj ≥ 1(j = 1, . . . , s). Assume that, for any
1 ≤ i1 < · · · < ir ≤ s, the sequence yi1 , . . . , yir is an (r − 1)-standard s.s.o.p. for M .
Let yj = 0 with deg yj = dj for s+1 ≤ j ≤ n. We define ϕqyir∧···∧yi1 (M) = 0 if yi` = 0
for some i`. Then, in this case, we also have (3.1.1) and (3.1.2).

Corollary 3.3 Under the assumptions of (3.1), the following conditions are equiva-
lent.

(a) Every s.s.o.p. yi1 , . . . , yir(1 ≤ i1 < · · · < ir ≤ n) is r-standard.

(b) q is an r-standard ideal.

(c) dp,qr : F p,qr → F p+r,q−r+1r is a zero map for all p and q( 6= m+ 1).

(d) For some fixed integer p with 0 ≤ p ≤ n − r, dp,qr : F p,qr → F p+r,q−r+1r is a zero
map for all q( 6= m+ 1).
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Proof. The equivalence of (a), (c) and (d) follows immediately from (2.3) and (3.1).
Clearly (b) implies (a). So we have only to prove the statement (b) under the assump-
tions (a), (c) and (d). Let x1, . . . , xr be homogeneous elements of q with deg xj = ej
such that the sequence x1, . . . , xr is a s.s.o.p. for M . We want to show that x1, . . . , xr
is r-standard by the induction on r. The case r=1 is trivial. So we may assume that
x1, . . . , xr is an (r − 1)-standard s.s.o.p. from the hypothesis of induction. We put
xi = 0 for i = r + 1, . . . , n. Since q is generated by y1, . . . , yn, we can write

xj =
nX
i=1

ajiyi for 1 ≤ j ≤ n,

where aji is a homogeneous element for 1 ≤ i ≤ n and 1 ≤ j ≤ n and aji =
0 for 1 ≤ i ≤ n and r + 1 ≤ j ≤ n. Then we construct the spectral sequence
{Gp,qr , d

p,q

r } through the Koszul complex K•((x1, . . . , xn);R). We write the dual basis
of K1((x1, . . . , xn);R) as {f∗1 , . . . , f∗n}. Then we have

ψ : K•((y1, . . . , yn);R)→ K•((x1, . . . , xn);R) by ψ(e
∗
i ) =

nX
j=1

aijf
∗
j

Thus we have ψp,qr : F p,qr → Gp,qr induced by ψ satisfying that d
p,q

r ◦ψp,qr = ψp+r,q−r+1r ◦
dp,qr . Through the isomorphism (3.1.1), there is a commutative diagram

Hq
m(M)

d0,qr−→ Hq−r+1
m (M)⊗R∧r (

Pn
i=1R[di]e

∗
i )

k ↓ ψr,q−r+1r

Hq
m(M)

d
0,q
r−→ Hq−r+1

m (M)⊗R∧r (
Pn
i=1R[ei]f

∗
i ) .

Thus we have

d
0,q

r (u) = ψr,q−r+1r (d0,qr (u))

= ψr,q−r+1r

⎛⎝ X
1≤i1<···<ir≤n

ϕqyir∧···∧yi1 (M)(u)⊗
³
e∗i1 ∧ · · · ∧ e∗ir

´⎞⎠
=

X
1≤i1<···<ir≤n

ϕqyir∧···∧yi1 (M)(u)⊗
⎛⎝⎛⎝ nX

j=1

ai1jf
∗
j

⎞⎠ ∧ · · · ∧
⎛⎝ nX
j=1

airjf
∗
j

⎞⎠⎞⎠

=
X

1≤j1<···<jr≤n

X
1≤i1<···<ir≤n

¯̄̄̄
¯̄̄̄ ai1j1 · · · ai1jr
...

...
airj1 · · · airjr

¯̄̄̄
¯̄̄̄ϕqyir∧···∧yi1 (M)(u)⊗ ³f∗j1 ∧ · · · ∧ f∗jr´

for u ∈ Hq
m(M). Hence we have

(3.3.1) ϕqxr∧···∧x1(M) =
X

1≤i1<···<ir≤n

¯̄̄̄
¯̄̄̄ ai11 · · · air1
...

...
ai1r · · · airr

¯̄̄̄
¯̄̄̄ϕqyir∧···∧yi1 (M) .
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Therefore, the statements (a), (c) and (d) implies (b) by (2.3) and (3.3.1).

Corollary 3.4 Let R be a graded ring over a field k. Let M be a generalized Cohen-
Macaulay graded R-module with dimM = m + 1(≥ 1). Let y1, . . . , yr be an (r − 1)-
standard s.s.o.p. Then, ϕqyr∧···∧y1(M) is skew-symmetric R-multilinear on y1, . . . , yr
as follows:

(1) For q 6= m+ 1 and 1 ≤ i < j ≤ r,

ϕqyr∧···∧y1(M) = −ϕqyr∧···∧yj−1∧yi∧yj+1∧···∧yi−1∧yj∧yi+1∧···∧y1(M).

(2) If x is a homogeneous element with deg x = deg y1 such that x, y2, . . . , yr is
an (r − 1)-standard s.s.o.p. for M and x + y1, y2, . . . , yr is a s.s.o.p., then x +
y1, y2, . . . , yr is (r − 1)-standard and

ϕqyr∧···∧y2∧(y1+x)(M) = ϕqyr∧···∧y2∧y1(M) + ϕqyr∧···∧y2∧x(M).

(3) If z is a homogeneous element such that zy1, y2, . . . , yr is a s.s.o.p. for M , then
zy1, y2, . . . , yr is (r − 1)-standard and

ϕqyr∧···∧y2∧zy1(M) = z · ϕqyr∧···∧y2∧y1(M)

Proof. It follows immediately from (3.1), (3.3) and (3.3.1).

The following is an easy consequence of Corollary 3.4. We can show by the R-
multilinearlity of the map ϕ. This gives another proof of [10,(3.6)].

Remark 3.5 Let R be a graded ring over a field k. Let M be a generalized Cohen-
Macaulay graded R-module. Let q be a 1-standard ideal for M . Let x ∈ q2 be a
parameter for M . Then q is also a 1-standard ideal for M/xM .

Now let us prove Theorem 3.1.

Proof of Theorem 3.1. We will prove by induction on r. Note that the hypothesis
of induction is valid even for the results of (3.2), (3.3) and (3.4). The case r = 1 is
trivial. Assume r > 1. The statement (1) follows immediately from the hypothesis of
induction. So we have only to prove (2).
Put e∗J = e

∗
j1
∧ · · · ∧ e∗jp and M̄ = M/yi1M . Then we set

L• =

⎛⎝0→M →
M
`∈Z

C•(U ; fM(`))
⎞⎠ ,
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L̄• =

⎛⎝0→ M̄ →
M
`∈Z

C•(U ; f̄M(`))
⎞⎠

and
K• = K•((y1, . . . , yn);R).

Let B••(M) and B••(M̄) be the double complexes HomR(K•, L•) and HomR(K•, L̄•)
respectively. Then we have an exact sequence

0→ [0 : yi1]M [−di1 ]→M [−di1]
·yi1→ M →M/yi1M → 0.

Thus we have the following commutative diagram with exact rows

Bp,q−1(M) → Bp,q−1(M)
α→ Bp,q−1(M̄) → 0

↓ ↓ ↓
0 → Bp,q(M)

β→ Bp,q(M) → Bp,q(M̄) → 0

for 1 ≤ q ≤ m, where the vertical arrows are d00p,q−1’s. On the other hand, by the
proof of (2.3), we have the following commutative diagram with exact rows

0 → Hq−1
m (M)[−`] → Hq−1

m (M̄)[−`] f→ Hq
m(M)[−`− di1] → 0

↓ ↓ ↓
0 → Hq−r+1

m (M)
g→ Hq−r+1

m (M̄) → Hq−r+2
m (M)[−di1] → 0

for r−1 ≤ q ≤ m, where ` = di2+ · · ·+dir and the vertical arrows are ϕq−1yir∧···∧yi2 (M),

ϕq−1yir∧···∧yi2 (M̄) and ϕ
q
yir∧···∧yi1 (M)[−di1 ] from left. Also, the graded R-homomorphism

ϕqyir∧···∧yi1 (M) : H
q
m(M)[−di1 · · ·− dir ]→ Hq−r+1

m (M)

satisfies
g ◦ ϕqyir∧···∧yi1 (M) ◦ f = ϕq−1yir∧···∧yi2 (M̄)

for r − 1 ≤ q ≤ m.
Let u be an element of Hq

m(M). Through the isomorphism Hq
m(M)

∼= Hq(L•), we
take eu ∈ Lq such that eu(mod Iq(L•)) = u, where Iq(L•) = Im(Lq−1 → Lq). Theneu⊗ e∗J is an element of Bp,q(M) and u⊗ e∗J is an element of F p,qr (M). What we have
to do is to describe ϕyir∧···∧yi1 (M)(u) and d

p,q
r (M)(u⊗ e∗J).

First, we take v ∈ Hq−1
m (M̄) such that f(v) = u. On the other hand, we can takeew ∈ Lq−1 such that β(eu⊗ e∗J) = d00p,q−1(M)( ew ⊗ e∗J). We put α( ew ⊗ e∗J) = ev ⊗ e∗J in

Bp,q−1(M̄), where ev ∈ L̄q−1. Then we see ev(mod Iq−1(L•)) = v in Hq−1
m (M̄) by the

construction of the map f .
Next, let us investigate dp,qr (M)(u ⊗ e∗J) through the double complex B••. Since

y1, . . . , yn is 1-standard, there are elements ew` ∈ Lq−1(1 ≤ ` ≤ n) satisfying
d0(eu⊗ e∗J) =

X
1≤`≤n

(y`eu)⊗ (e∗` ∧ e∗J)
= d00

⎛⎝ X
1≤`≤n

ew` ⊗ (e∗` ∧ e∗J)
⎞⎠

9



In particular, putting ev` = ew`(mod yi1Lq−1) in L̄q−1 for 1 ≤ ` ≤ s, we see that we
may take ew = ewi1 and ev = evi1 from the beginning. Now we have

d0(M)

⎛⎝ X
1≤`≤n

ew` ⊗ (e∗` ∧ e∗J)
⎞⎠ = X

1≤`<k≤n
(yk ew` − y` ewk)⊗ (e∗k ∧ e∗` ∧ e∗J).

The e∗k ∧ e∗i1 ∧ e∗J -component of d0(M)
³P

1≤`≤n ew` ⊗ (e∗` ∧ e∗J)´ equals to yk ew− yi1 ewk.
Note that

yk ew − yi1 ewk(modyi1Lq−1) = ykev.
On the other hand, the e∗k ∧ e∗i1 ∧ e∗J -component of d0(M̄)(ev ⊗ (e∗i1 ∧ e∗J)) equals to
ykev. Thus we have the (e∗ir ∧ · · ·∧ e∗i1 ∧ e∗J)-component of dp−1,q−1r−1 (M̄)(v⊗ (ei1 ∧ e∗J))
equals to the (e∗ir ∧ · · · ∧ e∗i1 ∧ e∗J)-component of dp,qr (M)(u ⊗ e∗J) modulo yi1L from
the construction of spectral sequence. By the hypothesis of induction, we see

dp−1,q−1r−1 (M̄)(v ⊗ (ei1 ∧ e∗J))
=

X
1≤`1<···<`r−1≤n

ϕq−1y`r−1∧···∧y`1 (M̄)(v)⊗ (e
∗
`r−1 ∧ · · · ∧ e∗`1 ∧ e∗i1 ∧ e∗J)

In particular, ϕq−1yir∧···∧yi2 (M̄)(v) equals to the (e
∗
ir ∧ · · · ∧ e∗i1 ∧ e∗J)-component of

dp−1,q−1r−1 (M̄)(v⊗(ei1∧e∗J)). ¿From the injectivity of g, we have the (e∗ir∧· · ·∧e∗i1∧e∗J)-
component of dp,qr (M)(u ⊗ e∗J) equals to ϕqyir∧···∧yi2 (M̄)(v), and thereby equals to
ϕqyir∧···∧yi1 (M)(u). Hence the assertion is proved.

Remark 3.6 Let r and n be integers with r ≤ n. Let q be an (r − 1)-standard
ideal which is generated by y1, . . . , yn with deg yj = dj ≥ 1(j = 1, . . . , n). Assume
that for any 1 ≤ i1 < · · · < ir ≤ n, the sequence yi1, . . . , yir is a s.s.o.p. for M .
Let x1, . . . , xr be homogeneous elements of q. By (3.1), (3.2), (3.3) and (3.4), we
define ϕqxr∧···∧x1(M) through d

0,q
r : F 0,qr → F r,q−r+1r . ¿From (3.3.1), this definition

does not depend on the choice of generators y1, . . . , yn of q. Further, ϕ
q
xr∧···∧x1(M) is

skew-symmetric R-multilinear on x1, . . . , xr.

Remark 3.7 By virtue of (3.1), we can see the r-standard property through the
canonical dual. Let M∨ be the canonical dual module ExttR(M,KR), where KR is
the canonical module of the graded ring R and t = dimR− dimM . Assume that the
sequence y1, . . . , yn is an r-standard s.s.o.p. for M . Then the sequence y1, . . . , yn also
has the r-standard property for M∨. The proof is the same as in [6].

4 Cohomological Criteria

Let R be a graded ring over a field k. Let m be the homogeneous maximal ideal of R.
Let M be a generalized Cohen-Macaulay graded R-module with dimM = m+1 ≥ 1.
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Let q = (x1, . . . , xn) be a homogeneous ideal with deg xj = ej(j = 1, . . . , n) such that
every sequence xi1, . . . , xir(1 ≤ i1 < · · · < ir ≤ n) is a s.s.o.p. for M . Under the
above conditions, we will investigate some cohomological criteria for the r-standard
property.

Proposition 4.1 Let us define

S(M) = {(i, `)|[H i
m(M)]` 6= 0, 0 ≤ i ≤ m}.

If S(M) satisfies the following conditions:

(a) For any (j, `1) and (k, `2) with j ≥ k in S(M),

`2 − `1 6=
j−k+1X
h=1

eih for every 1 ≤ i1 < · · · < ij−k+1 ≤ n.

Then the ideal q is r-standard.

Proof. By Theorem 2.3, we have only to show that, for any s ≤ r,

ϕqyis∧···∧yi1 (M) : H
q
m(M)[−ei1 · · ·− eis ]→ Hq−s+1

m (M)

is a zero map for every 1 ≤ i1 < · · · < is ≤ n. If u is a non-zero homogeneous
element of [Hq

m(M)[
Ps
h=1(−eih)]]`, then ϕ

q
yis∧···∧yi1 (M)(u) = 0. In fact, u is an element

of Hq
m(M) with deg u = ` − Ps

h=1 eih , and w = ϕqyis∧···∧yi1 (M)(u) is an element of
Hq−s+1
m (M) with degw = `. Put j = q, k = q − s + 1, `1 = ` − Ps

h=1 eih and
`2 = `. Then we have j ≥ k, j − k + 1 = s, `2 − `1 =

Ps
h=1(eih) and (j, `1) ∈ S(M).

Since S(M) satisfies the condition (a), we see (k, `2) is not in S(M). So we have
[Hq−s+1

m (M)]` = 0. Thus we have w = 0. Hence the assertion is proved.

Proposition 4.2 Assume that q is an m-primary ideal. Then the following condi-
tions (a)—(d) are equivalent. If q is r-standard, then the conditions (a)—(d) hold.

(a) The natural map
H i(q;M)→ H i

m(M)

is surjective for 0 ≤ i ≤ r − 1.
(b)

`R
³
H i(q;M)

´
=

iX
j=0

Ã
n
j

!
`R
³
H i−j
m (M)

´
for 0 ≤ i ≤ r − 1.

(c)

`R
³
Hr−1(q;M)

´
=

r−1X
j=0

Ã
n
j

!
`R
³
Hr−1−j
m (M)

´
.
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(d) ϕqyi`∧···∧yi1 (M) is a zero map for all 1 ≤ i1 < · · · < i` ≤ n with ` ≤ q ≤ r.
Further, in case r=m+1, the converse is true.

Proof. If q is r-standard, then we have (d) by (2.3). Now we will show the equivalence
(a)—(d). As we see in Section 3, there are isomorphisms

H i(B••) ∼= H i(q;M) and F 0,i1 (M) ∼= H i
m(M)

Thus H i(q;M) → H i
m(M) is surjective if and only if d

0,i
` : F 0,i` → F `,i−`+1` is a zero

map for i ≤ m and ` ≥ 1. By (2.3), the statements (a) and (d) are equivalent. Next
we assume (d). Then we see that dj,i` : F

j,i
` → F j+`,i−`+1` is a zero map for i ≤ m and

` ≥ 1. So we have

F j,i∞
∼= H i

m(M)⊗R
î
Ã

nM
k=1

R[ek]e
∗
k

!
for i 6= m+ 1.

Thus we have

`R (H
i(q;M)) =

Pi
j=0 `R (F

i−j,j
∞ )

=
Pi
j=0

Ã
n
j

!
`R (H

i−j
m (M)) for 0 ≤ i ≤ r − 1.

Thus we have (d) implies (c). Clearly (b) implies (c). Finally, if we assume (c), then
dj,r−1−j` : F j,r−1−j` → F j+`,i−`` is a zero map for every j and `(≥ 1). By (3.1), we have
the statement (d).
In case r = m+ 1, similarly, the converse follows immediatelly from (3.1).

Proposition 4.3 Assume that y1, . . . , yn is a s.s.o.p. for M . If y1, . . . , yn is r-
standard, then the equivalent conditions (a), (b), (c) and (d) in (4.2) hold.
Further, we assume n=r. If y1, . . . , yr is r-standard, then we have

`R
³
H i
m(M/qM)

´
=

rX
j=0

Ã
r
j

!
`R
³
H i+j
m (M)

´
for 0 ≤ i ≤ m− r.

Conversely, if (a)—(d) in (4.2) and the above equality hold, then y1, . . . , yr is r-
standard.

Proof. As we see in Section 3, there are isomorphisms

Hp+q(B••) ∼=

⎧⎪⎨⎪⎩
Hp+q((y1, . . . , yn);M) p+ q < n

Hp+q−n
m (M/(y1, . . . , yn)M)[d1 + · · ·+ dn] p+ q ≥ n

and
0F p,q1 ∼= Hq

m(M)⊗R
p̂ Ã nM

i=1

R[di]e
∗
i

!
.
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Hence, similarly as (4.2), the assertion follows immediatelly from (3.1).
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