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1 Introduction

There are some basic measures such as dimension, degree and Castelnuovo-
Mumford regularity to investigate the minimal free resolution of the graded
modules and the defining ideals of projective schemes. The arithmetic and
geometric degrees, which were introduced in Bayer-Mumford [1], and the
idea of which can be also found in Hartshorne [8], involves the concept of
length multiplicity which concerns lower-dimensional primary components,
and enlarges the classical degree theory. In particular, the arithmetic degree
is a basic measure gauging all primary components including the embedded
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components.

The purpose of this paper is to provide a down-to-earth introduction to
some degree theory of graded modules and projective schemes. Recently we
have already got a nice lecture note by Vasconcelos [14] on the recent de-
velopement of this topic, including a survey of his and his colleagues’ series
of papers [4, 15, 16]. We try to present this survey paper from rather dif-
ferent viewpoint, focusing on the behaviour of the arithmetic and geometric
degrees under flat deformation and hyperplane section, describing a Bertini-
type theorem related to this topic, and studying upper bounds of the degrees.
We think highly of explaining clearly and simply, sometimes by avoiding a
general statement, particularly to help a novice reader to have a good un-
derstanding.

The authors would like to thank the organizers of the Hanoi Conference
and the people helping this conference for giving us a chance to present this
paper, which is an enlarged lecture note based on the first author’s talk there.

Let S be the polynomial ring k[x0, · · · , xn] over a field k. Let m be
the irrelevant ideal of S. Let M be a finitely generated graded S-module.
We define the length multiplicity multP (M) of M at a prime ideal P for
the length of SP -module ΓP (MP ). The r-th arithmetic (resp. geometric)
degree arith-degr(M) (resp. geom-degr(M)) of M is defined as the sum
of multM(P ) · deg(M) running through all the associated (resp. minimal)
primes P of M with dim(S/P ) = r + 1 for an integer r with r ≥ −1 as in
[1]. We remark here that arith-degu(M) = geom-degu(M) = deg(M), where
u = dim(M)− 1.

In Section 2, we give the definition of the degrees for graded modules and
study the basic property. The facts (2.3) and (2.5) play an important role in
this paper. To analylize the embedded primary ideals of the graded S-module
M , it is useful to correpond the primary ideals of M with the minimal ideals
of Ext•S(M,S), which is stated in (2.3). Also the formula in (2.5) for the
caluculation of the arithmetic degree gives not only a cohomological method
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but also computational one doing without computing the associated primes,
while primary decomposition itself is relatively difficult for computer systems.
In fact, by virtue of the first equality in (2.5), we can compute the arithmetic
degrees of various examples, say, by using a script ext(-,R) of Macaulay [2].

In Section 3, we study the behaviour of the degrees under flat deformation.
The upper and lower semi-continuous property is one of the basic theme for
the study of an invariant of a flat family of graded modules or coherent
sheaves. Firstly we give a proof of the upper semi-continuous property of
the arithmetic degree under flat deformation. This property was essentially
shown in Hartshorne [8], and later Sturmfels-Trung-Vogel give an elementary
proof of arith-degr(S/in(I)) ≥ arith-degr(S/I) in [13], where in(I) is the
initial ideal for any term order. In (3.1), we prove, in an elementary way,
this property in the general case. Next we give a proof of the lower semi-
continuous property of the geometric degree under flat deformation. The
result is maybe a folk-theorem for the specialist. Also, Sturmfels et al. again
give an elementary proof of geom-degr(S/in(I)) ≤ geom-degr(S/I) in [13].
However, as far as the authors know, there are no references about this
property in the general case. We give a proof of this property in (3.2).

In Section 4, we study the behaviour of the arithmetic degree after hy-
persurface sections. As for the classical degree theory, it is well-known that
deg(M/fM) = deg(f) · deg(M) for a homogeneous polynomial f which is
a non-zero-divisor for the S-module M . Of course, it is also clear to have
an equality, for all r, geom-degr−1(M/fM) = deg(f) · geom-degr(M) if f
does not belong to any associated prime of the S-module M . However, it is
harder to control the behaviour of arithmetic degree under hypersurface sec-
tions. Although the equality arith-degr−1(M/fM) = deg(f) · arith-degr(M)
holds for a general element f when k an infinite field and r > 0, there
are examples such that arith-degr−1(M/fM) > deg(f) · arith-degr(M) for
some r > 0, even in the case I is a prime ideal, M = S/I and f 6∈ I,
see, e.g., (4.4), (4.5) and (4.6). In this section, we study the difference
arith-degr−1(M/fM) − deg(f) · arith-degr(M) under the assumption that
f is a non-zero-divisor for the S-module M . This assumption is rather
stronger than that of Miyazaki-Vogel [10] or Miyazaki-Vogel-Yanagawa [11],
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but is taken for the clearness and the simplicity of the proof. Also, the
proof of a Bezout-type theorem in (4.1) given here is somewhat different
from those of the above papers. Roughly speaking, we describe the arith-
metic degree arith-degr(M) of the S-module M in terms of Hilbert poly-
nomial of Extn−rS (M,S) based on an idea of [6] and reduce the classical
degree case by using the notion of S-module M≥r defined in Section 2.
We note that this result yields an effective criterion whether the equality
arith-degr−1(M/fM) = deg(f) · arith-degr(M) holds.

In Section 5, we study the behaviour of the associated primes under hyper-
surface sections in order to obtain a Bertini-type theorem for the associated
primes including the embedded primary components. In fact, we are moti-
vated by the result in Section 4 to study the relationship between AssS(M)
and AssS(M/fM) in terms of Ext

n−r
S (M,S). The theorem of this section,

see (5.1), gives a description of an obstruction for the equality

AssS(M/fM) \ {m} =
[

P∈AssS(M)

Min(S/P + (f)),

This type of theorem was firstly obtained by Flenner, see, e.g., [3] through
the viewpoint of his local Bertini’s theorem. Recently a precise description
of the obstruction was given in [11]. The statement in (5.1) is a special case
of [11, (3.1)], but the proof illustrates an essential point of the original one.

In Section 6, we study upper bounds on the arithmetic and geometric
degrees of a homogeneous ideal I of S. First we describe an upper bound
on the arithmetic degree in terms of the Castelnuovo-Mumford regularity
in (6.3). This result was obtained in [1] and also obtained in an improved
version in [10], see (6.2). Next we describe an upper bound on the geometric
degree in terms of the maximal degree of the minimal generator of I, firstly
obtained by Masser-Wüstholz [9] in a slightly general statement. However
the proof in their paper takes more than 4 pages and later a vivid sketch of
the proof was illustrated in [1]. We give a self-contained and short proof of
this result following an idea of [9].

Acknowledgement. The first author regrets to report that Professor Wolf-
gang Vogel passed away on 2 October 1996 during writing this paper. My
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interest in this topic have begun through a co-operative research with him
while I had been staying at Massey University in New Zealand from April
1994 to March 1995. He will be in my memory.

2 Preliminalies

Let S be the polynomial ring k[x0, · · · , xn] over a field k. Let m is the
irrelevant ideal of S. Let M be a finitely generated graded S-module. For a
homogeneous prime ideal P of S we define the length-multiplicity of M at P
as the length of SP -module ΓP (MP ) and denote it by multM(P ). It is easy
to see that multM(P ) 6= 0 if and only if P is an associated prime of M .

Definition 2.1 ([1, 14]). Let r be an integer with r ≥ −1. We define the
r-th arithmetic degree of M as

arith-degr(M) =
X

P∈AssS(M) with dim(S/P )=r+1

multM(P ) · deg(S/P )

and the r-th geometric degree of M as

geom-degr(M) =
X

P∈MinS(M) with dim(S/P )=r+1

multM(P ) · deg(S/P )

Here AssS(M) and MinS(M) denote the set of the associated primes of S-
module M and that of the minimal primes of S-module M respectively.

Let 0 =
T
λ(Nλ) be a minimal primary decomposition in the S-module

M . Note that AssS(M/Nλ) consists of one prime ideal Pλ of S for each λ.
We define

Mr =
\

dim(S/Pλ)≥r+1
Nλ

and
M≥r =M/Mr
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for each integer r ≥ −1 (cf. [8, 13]), which do not depend on the choice of
the primary decomposition.

Remark 2.2.
Ass(Mr) = {P ∈ AssM | dimS/P ≤ r}

Ass(M≥r) = {P ∈ Ass(M)| dim(S/P ) ≥ r + 1} = Ass(M) \ Ass(Mr).

Proposition 2.3 (See, e.g., [6, (1.1)]). Let r be an integer with r ≥ −1. Then
we have dim(Extn−rS (M,S)) ≤ r + 1. Furthermore, let P be a homogeneous
prime ideal of S with dim(S/P ) = r + 1. Then P ∈ AssS(M) if and only if
P is a minimal prime of Extn−rS (M,S).

Proof. It follows from the local duality of SP -module. The details are left
to the readers.

Definition 2.4. Let M be an S-module with dimM ≤ r + 1. We define

er(M) =
½
deg(M) if dimM = r + 1
0 otherwise.

The arithmetic degree of M is described by the Hilbert polynomials of
Mr+1 or Ext

n−r
S (M,S) as follows. Note that both Mr+1 and Ext

n−r
S (M,S)

have Krull-dimension at most r + 1.

Proposition 2.5 (See, e.g., [11, 13, 14, 15]) Under the above condition, we
have

arith-degr(M) = er(Ext
n−r
S (M,S)) = er(Mr+1).

Proof. The first equality follows from the local duality and (2.3). Also,
arith-degr(M) = er(Mr+1) follows from (2.2).
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Example 2.6 (See [1, pp.23-24]). Let S be the polynomial ring k[x, y, z]
over a field k. Let I be a homogeneous ideal of S generated by x2 and xy.
Then we have a minimal primary decomposition I = (x) ∩ (x2, y). Since
dim(S/I) = 2, we see that arith-deg1(S/I) = deg(S/I) = 1. On the other
hand, we see that (S/I)≥1 = S/xS. Thus we have

arith-deg0(S/I) = e0((x)/(x
2, y)) = 1.

3 Degrees in flat families

In this section we investigate the behaviour of the arithmetic and geometric
degrees with respect to flat families. We study the upper semi-continuous
property of the arithmetic degree and the lower semi-continuous property of
the geometric degree under flat deformation.

Theorem 3.1. Let R be a discrete valuation ring and t be a uniformizing
parameter of R. Let K be the quotient field of R and k = R/tR. Let S be the
polynomial ring R[x0, · · · , xn] over R. Let M be a finitely generated graded
S-module which is flat over R. Then we have

arith-degr(M ⊗R k) ≥ arith-degr(M ⊗R K).

Proof. Let F• be a free resolution of the graded S-module M . Since M is
flat over R, F•⊗R k is a free resolution of the graded S⊗R k-moduleM⊗R k.
Thus we see that

ExtiS(M,S) = H
i(HomS(F•, S))

and

ExtiS⊗Rk(M ⊗R k, S ⊗R k) = Hi(HomS⊗Rk(F• ⊗R k, S ⊗R k))

for all i. By the short exact sequence of the complexes of graded S-modules

0→ HomS(F•, S)
·t→ HomS(F•, S)→ HomS⊗Rk(F• ⊗R k, S ⊗R k)→ 0,
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we have an exact sequence

Extn−rS (M,S)
·t→ Extn−rS (M,S)→ Extn−rS⊗Rk(M ⊗R k, S ⊗R k).

Therefore we have

er(Ext
n−r
S⊗RK(M ⊗R K,S ⊗R K)) = er(Extn−rS (M,S)⊗R K)

≤ er(Ext
n−r
S (M,S)⊗R k) ≤ er(Extn−rS⊗Rk(M ⊗R k, S ⊗R k).

Hence the assertion is proved by (2.5).

Theorem 3.2. Let R be a discrete valuation ring and t be a uniformizing
parameter of R. Let K be the quotient field of R and k = R/tR. Let S be the
polynomial ring R[x0, · · · , xn] over R. Let M be a finitely generated graded
S-module which is flat over R. Then we have

geom-degr(M ⊗R k) ≤ geom-degr(M ⊗R K).

Proof. By the flatness of M over R there is one-to-one correspondence
between AssS(M) and AssS⊗RK(M ⊗R K). In particular, any irreducible
component of V(Ann(M)) in PnR has a non-empty intersection with generic
fibre PnK . Let 0 =

T
λ(Nλ) be a minimal primary decomposition in M with

Ass(M/Nλ) = {Pλ}. Let N be the intersection of Nλ such that the corre-
sponding associated prime Pλ is a minimal prime of M with dim(S/Pλ) =
r+1. Let M̄ =M/N . Note that M̄ is flat over R and dim M̄ = r+1. Then
we have

geom-degr(M ⊗R K) = deg(M̄ ⊗R K).
On the other hand, any r-dimensional irreducible component Z of a closed
subset V(Ann(M⊗R k)) in Pnk is an irreducible component of the closed fibre
W ⊗R k of some r-dimensional irreducible component W of V(Ann(M)) in
PnR. Thus we have

deg(M̄ ⊗R K) = deg(M̄ ⊗R k) ≤ geom-degr(M ⊗R k).

Hence the assertion is proved.
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Let Y be a connected scheme of finite type over an algebraically closed
field k. Let F be a coherent sheaf on PnY which is flat over Y . For y ∈ Y we
define functions arith-degr(y,F) and geom-degr(y,F) as the r-th arithmetic
degree arith-degr(F⊗Y k(y)) and the r-th geometric degree geom-degr(F⊗Y
k(y)) of the pull-back F ⊗Y k(y) on Pnk(y), where k(y) is the corresponding
residue field. Then we have the following.

Corollary 3.3. Under the above condition, the function arith-degr(y,F)
is upper semi-continuous and the function geom-degr(y,F) is lower semi-
continuous.

Proof. It immediately follows from (3.1) and (3.2).

Example 3.4 ([13, (2.4)]). The arithmetic degree is not necessarily constant
under flat deformation. In fact, let I be a prime ideal of the monomial curve
given parametrically by (s7 : s5t2 : s2t5 : t7) in P3k = Proj(S), where S is
the polynomial ring k[x0, x1, x2, x3]. In particular, arith-deg0(S/I) = 0. It is
known that the ideal I has the universal Gröbner basis:

{x50x23 − x71, x40x2x3 − x61, x30x22 − x51, x20x53 − x72, x0x1x43 − x62,
x0x3 − x1x2, x20x32 − x41x3, x0x42 − x31x23, x21x33 − x52},

having 14 distinct initial ideals in(I) and all the ideals in(I) fail to be square-
free. For example, if we consider the reverse lexicographic order, then

in(I) = (x50x
2
3, x

4
0x2x3, x

3
0x
2
2, x

2
0x
5
3, x0x1x

4
3, x0x3, x

4
1x3, x

3
1x
2
3, x

2
1x
3
3)

= (x0, x
2
1) ∩ (x30, x3) ∩ (x22, x3) ∩ (x0, x31, x33) ∩ (x0, x41, x23).

Thus we see that arith-deg0(S/in(I)) > 0.

Example 3.5. The geometric degree is not necessarily constant under flat
deformation. In fact, let I be an ideal (z(z − ty), xz) of the polynomial ring
S = k[t, x, y, z]. Then we see that S/I is flat over k[t]. Also we easily have
that geom-deg0(S/I)t = 1 for t 6= 0 and geom-deg0(S/I)0 = 0.
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4 Arithmetic degree and hypersurface sec-

tion

In this section we consider the arithmetic degree under hypersurface section
and describe a Bezout-type theorem for the arithmetic degree.

Theorem 4.1 ([10, 11]). Let S be the polynomial ring k[x0, · · · , xn] over
a field k. Let M be a finitely generated graded S-module. Let r be a non-
negative integer. Let f be a homogeneous element of S with deg(f) = τ ≥ 1.
Assume that f is a non-zero-divisor for the S-module M . Then

arith-degr−1(M/fM)− τ · arith-degr(M)
= arith-degr−1(M≥r+1/fM≥r+1).

Proof . Let us consider the following commutative diagram:

0 → Mr+1(−τ) → M(−τ) → M≥r+1(−τ) → 0
↓ ·f ↓ ·f ↓ ·f

0 → Mr+1 → M → M≥r+1 → 0

Since each row is exact and the vertical map M≥r+1(−τ) ·f→ M≥r+1 is injec-
tive, we have the following short exact sequence:

0→Mr+1/fMr+1 →M/fM →M≥r+1/fM≥r+1 → 0

from snake lemma. Since dim(Mr+1/fMr+1) ≤ r, we see that

Extn−rS (Mr+1/fMr+1, S) = 0.

Thus we have the exact sequence:

0→ Extn−r+1S (M≥r+1/fM≥r+1, S)→ Extn−r+1S (M/fM, S)→
Extn−r+1S (Mr+1/fMr+1, S)→ Extn−r+2S (M≥r+1/fM≥r+1, S)
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Thus we have

arith-degr−1(M/fM) = er−1(Ext
n−r+1
S (M/fM,S))

= er−1(Ext
n−r+1
S (M≥r+1/fM≥r+1, S)) + er−1(Ext

n−r+1
S (Mr+1/fMr+1, S))

= arith-degr−1(M≥r+1/fM≥r+1) + arith-degr−1(Mr+1/fMr+1).

Since dim(Mr+1/fMr+1) ≤ r, we have

arith-degr−1(Mr+1/fMr+1) = er−1(Mr+1/fMr+1)

= τ · er(Mr+1) = τ · arith-degr(M).

by the classical Bezout’s Theorem and (2.5). Therefore we have

arith-degr−1(M/fM)

= arith-degr−1(M≥r+1/fM≥r+1) + τ · arith-degr(M).

Hence the assertion is proved.

By using a Bertini-type theorem, which is proved in the next section, we
have the following.

Corollary 4.2 (cf. [1, 10, 11]). Let r be τ positive integers. Let S be the
polynomial ring k[x0, · · · , xn] over an infinite field k. Let M be a finitely
generated graded S-module. Let f be a generic homogeneous element of S
with deg(f) = τ . Then

arith-degr−1(M/fM) = τ · arith-degr(M).

Proof. We may assume that depth(M) ≥ 1 , and by using (4.1) we have
only to show that arith-degr−1(M≥r+1/fM≥r+1) = 0. Since k is infinite, we
can take a generic polynomial f such that

f 6∈
[
r≥1
{P ∈ MinS(Extn−rS (M,S)) | dim(S/P ) = r}.
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By (5.1), any associated prime P of AssS(M≥r+1/fM≥r+1) is a minimal
prime of P 0 + (f) for some associated prime P 0 of M≥r+1. Thus we see
that dim(S/P ) ≥ r + 1. Hence the assertion is proved.

Remark 4.3. We can prove (4.2) directly. In fact, we may assume that
depth(M) > 0 and take enough general f such that f does not belong to any
associated prime P of Extn−rS (M,S) with dim(S/P ) = r, r+ 1. By the short
exact sequence:

0→M(−τ) ·f→M →M/fM → 0,

we have an exact sequnece:

Extn−rS (M,S)
ϕ→ Extn−rS (M,S)(τ)

ψ→ Extn−r+1S (M/fM,S),

such that Ker(ϕ) and Coker(ψ) have Krull-dimension ≤ r − 2. Thus the
assertion follows by (2.5).

The equality arith-degr−1(M/fM) = deg(f) · arith-degr(M) is frequently
violated as the following examples.

Example 4.4. Let S be the polynomial ring over a field k. Let us take a
homogeneous prime ideal I of S with dim(S/I) ≥ 2 and depth(S/I) = 1.
Then we see that, for a homogeneous polynomial f , arith-deg0(S/I) = 0 and
arith-deg−1(S/(I + (f))) > 0.

Example 4.5 ([11, (2.9.(i))]). Let S = k[x0, x1, x2, x3, x4] be the polynomial
ring over a field k. Let us take an ideal I = (x1x4 − x2x3, x0x1x2 − x0x22 +
x21x3, x0x2x3−x0x2x4+x1x23, x0x3x4−x0x24+x33) of S. (See, e.g., [12, (V.5.2)].)
The surface X = Proj(S/I) in P4k is called as Hartshorne surface. It is known
that S/I is isomorphic to a subring

k[s3, s2t, stu, su(u− s), u2(u− s)] ⊂ k[s, t, u].

It is easy to see that dim(S/I) = 3, arith-deg2(S/I) = deg(S/I) = 4 and
arith-degi(S/I) = 0 for i = −1, 0, 1. A calculation gives AnnS(Ext3S(S/I, S))
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= (x1, x2, x3, x4). In particular, X is not locally Cohen-Macaulay at P =
(x1, x2, x3, x4). If taking a homogeneous polynomial f ∈ P \ I, we see that
arith-deg0(S/(I + (f))) > 0. Thus we have

arith-deg0(S/(I + (f))) > deg(f) · arith-deg1(S/I).

Example 4.6 ([10, (5.1)]). Let S = k[x0, x1, x2, x3] be the polynomial ring
over a field k. Let m be the irrelevant ideal of S. Let us take an ideal
Q = (x0x3−x1x2, x20, x21, x0x1) of S. Note that Q is a primary ideal belonging
to (x0, x1). We set I = Q∩ (x20, x1, x2). In other words, I is the defining ideal
of a double line in the smooth quadric surface with an embedded point. A
computer software, say Macaulay [2], shows that dim(Ext3S(S/I, S)) = 1 and
deg(Ext3S(S/I, S)) = 1. Hence we have arith-deg0(S/I) = 1. Also we have
that m ∈ Ass(Ext3S(S/I, S)) by computing Ext4S(Ext3S(S/I, S), S)). Thus we
see

arith-deg−1(S/(I + (f))) > deg(f) · arith-deg0(S/I) = deg(f) > 0,

for any f ∈ m \ (x0, x1, x2) by (4.1).

Analyzing the classical degree theory (see, e.g., [7, (3.5)]), one might be
attempted to ask the following question:

Assume that arith-degr−1(S/(I+(f))) ≥ deg(f)·arith-degr(S/I) for some
integer r and deg(f) ≥ 2. Then is there f not belonging to any associated
prime P of I with dim(S/P ) ≥ r + 1?

However this question has a negative answer:

Example 4.7. Let S be the polynomial ring k[x, y, z] and t be an integer
with t ≥ 2. We set I = (xz, xyt) = (x) ∩ (yt, z) of S. We take f = xz ∈ I
and r = 1. Then we see that arith-deg0(S/(I + (xz))) = arith-deg0(S/I) = t
and deg(xz) · arith-deg1(S/I) = 2.
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5 Bertini-type theorem for primary compo-

nents

A study of the arithmetic degree involves Bertini-type results, see, e.g.,
[1, 10, 11]. In this section we describe a Bertini-type theorem for primary
components including embedded primes.

Theorem 5.1 ([11, (3.1)]). Let S be the polynomial ring k[x0, · · · , xn] over
a field k. Let m be the irrelevant ideal of S. Let M be a finitely generated
graded S-module with depth(M) ≥ 1. Let f be a homogeneous element of S
with deg(f) = τ ≥ 1 satisfying that f is a non-zero-divisor for M . If

f 6∈
[
r≥1
{P ∈ MinS(Extn−rS (M,S)) | dim(S/P ) = r},

then
AssS(M/fM) \ {m} ⊆

[
P 0∈AssS(M)

MinS(S/P
0 + (f)).

Proof. Let P be an associated prime of M/fM with dim(S/P ) = r > 0.
From the short exact sequence:

0→M
·f→M →M/fM → 0,

we have the following exact sequence of S-modules:

Extn−rS (M,S)P → Extn−r+1S (M/fM,S)P → Extn−r+1S (M,S)P .

On the other hand, since f ∈ P , we see that P 6∈ Ass(M) by the assump-
tion. In other words, Extn−r+1S (M,S)P = 0 by (2.3). Further we know that
Extn−r+1S (M/fM, S)P 6= 0 by (2.3). Therefore we have Extn−rS (M,S)P 6= 0.
By the assumption, P is not a minimal prime of Extn−rS (M,S). Hence there
exists a homogeneous prime P 0 such that P 0 ⊂ P and Extn−rS (M,S)P 0 6= 0.
Since dim(Extn−rS (M,S)) ≤ r + 1, we see that P 0 is a minimal prime of M
with dim(S/P 0) = r + 1. In particular, f does not belong to P 0. Therefore
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P is a minimal prime of P 0 + (f). Hence the assertion is proved.

Remark 5.2. The converse of (5.1) is also true. Further, an extended result
is shown in [11, (3.1)].

The following examples illustrate the converse.

Example 5.3. Let S = k[x0, x1, x2, x3, x4] be the polynomial ring over a
field k. Let us take an ideal I = (x1, x2) ∩ (x3, x4) of S. We see that
AssS(Ext

3
S(S/I, S)) = {P}, where P = {(x1, x2, x3, x4)}. For any non-zero-

divisor f ∈ P for S/I, we see that
P ∈ AssS(S/I + (f))

and
P 6∈

[
Q∈AssS(S/I)

MinS(S/Q+ (f)).

From a geometric point of view, the ideal I is the defining ideal of two planes
meeting at the closed point p, corresponding to the prime ideal P , in P4.
Let F be a hypersurface of P4 which intersects each primary component of
X transversally. If F contains p, then p is an embedded point of X ∩ F .
Note that the local ring of X at p has depth 1, since X is not connected in
codimension 1 at p.

Example 5.4. Let us consider the example in (4.5). Then Ext3S(S/I, S)
has a minimal prime P = (x1, x2, x3, x4) and dim(S/P ) = 1. Then we see
that, for any homogeneous element f ∈ P \ I, P ∈ AssS(S/I + (f)). On the
other hand, since the ideal I is a prime ideal with dim(S/I) = 3, we see that
P 6∈ MinS(S/I + (f)).

Remark 5.5. Although we state the results of this section in homogeneous
case, the proof works similarly for the statement over a Cohen—Macaulay
local ring S admitting the canonical module ωS if we replace Ext

n−r
S (M,S)

by Extn−rS (M,ωS).
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6 Some bounds on degrees

In this section we investigate upper bounds on the arithmetic and geometirc
degrees according to [1].

First we study an upper bound on the arithmetic degree in term of the
Catselnuovo-Mumford regularity. Let S be the polynomial ring k[x0, · · · , xn]
over a field k. Let m be the irrelevant ideal of S. Let M be a finitely
generated graded S-module. Let m be an integer. Then the S-module M is
said to be m-regular if h

Him(M)
i
j
= 0,

for all i and j with i + j ≥ m, where [N ]j denotes the j-th graded part of
a graded S-module N . The Castelnuovo-Mumford regularity of M is the
smallest integer m such that M is m0-regular for all m0 > m and is denoted
by reg(M). Equivalent definitions of the Castelnuovo-Mumford regularity
are given in terms of the minimal free resolution of the graded S-module M .
(See [1, (3.2)] or [5].)

The following is a well-known result which describes an important prop-
erty of the regularity.

Lemma 6.1. Let S be the polynomial ring k[x0, · · · , xn] over a field k. Let
M be a graded S-module. We denote the Hilbert funtion and the Hilbert
polynomial of the S-module M by H(M, `) and P(M, `) respectively. Then
we have

H(M, `) = P(M, `)

for all ` ≥ reg(M)− depth(M) + 1.

Proof. Let us take the minimal free resolution of the S-module M

0→ Fs → · · ·→ F1 → F0 →M → 0,
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where s = n + 1 − depth(M) and Fi = ⊕jS(−αij) for some αij. Then we
have

H(M, `) =
X
i,j

(−1)i dimk [S(−αij)]`

for all `. Thus we see that H(M, `) is a polynomial for all ` ≥ maxi,j(αij−n),
because dimk[S]` = (`+ n) · · · (`+ 1)/n! for all ` ≥ −n. On the other hand,
` ≥ reg(M) − depth(M) + 1 ≥ (αij − i)− (n+ 1− i) + 1 = αij − n for all i
and j. Hence the assertion is proved.

Theorem 6.2 ([10, (3.1)]). Let S be the polynomial ring k[x0, · · · , xn] over
a field k. LetM be a graded S-module. Then we have, for any integer r ≥ 0,

arith-degr(M) ≤ ∆rP(M, `)

for all integers ` ≥ reg(M), where∆rP(M, `) is defined inductively as∆P(M, `)
= P(M, `)− P(M, `− 1) and ∆rP(M, `) = ∆r−1P(M, `)−∆r−1P(M, `− 1).

Proof. We may assume that depth(M) > 0. First we prove the case r = 0.
By (2.5), we see that

arith-deg0(M) = P(M1, `).

Note that dim(M1) ≤ 1. From the short exact sequence:

0→M1 →M →M≥1 → 0,

we see that
H1m(M1)→ H1m(M)

is injective, where m is the irrelevant ideal of S. Hence we have reg(M1) ≤
reg(M), and by (6.1) H(M, `) = P(M, `) and H(M1, `) = P(M1, `) for ` ≥
reg(M). Also we see that

H(M1, `) = H(M, `)− H(M≥1, `),

for all `. Thus we have

arith-deg0(M) = P(M, `)− P(M≥1, `) ≥ P(M, `)
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for ` ≥ reg(M).

Now let us assume that r > 0. For general hyperplanes h1, · · · , hr, we
have

arith-degr(M) = arith-deg0(M/(h1, · · · , hr)M)
= arith-deg0((M/(h1, · · · , hr)M)≥0)

by (4.2). On the other hand, we see that

∆rP(M, `) = P(M/(h1, · · · , hr)M, `)
= P((M/(h1, · · · , hr)M)≥0, `)

for all `. Since reg(M) ≥ reg((M/(h1, · · · , hr)M)≥0), we have

arith-degr(M) ≤ ∆rP(M, `)

for ` ≥ reg(M). Hence the assertion is proved.

Corollary 6.3 ([1, (3.6)]). Let S be the polynomial ring k[x0, · · · , xn] over
a field k, and let I be a homogeneous ideal of S. Let r be a non-negative
integer. Let reg(I) = m. Then we have, for any integer r ≥ 0,

arith-degr(S/I) ≤ ∆rP(S, `)

for all integers ` ≥ m− 1. In particular,

arith-degr(S/I) ≤ mn−r.

Proof. First we show ∆rP(I, `) ≥ 0 for all ` ≥ m− 1 by induction, which is
left to the readers, or see [10, (3.5)]. Since reg(S/I) = m− 1, we have

arith-degr(S/I) ≤ ∆rP(S/I, `)

≤ ∆rP(S, `)

for all integers ` ≥ m− 1 by (6.2). The second assertion follows immediately
from the first one.
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Next we study an upper bound on the geometric degree of homogeneous
ideals in term of the degree of the minimal generators of the ideal, according
to [9]. Let S be the polynomial ring k[x0, · · · , xn] over a field k. Let I be an
homogeous ideal of S. For a minimal generater f1, · · · , ft of the ideal I of S,
we set d1 = deg(f1), · · · , dt = deg(ft) and assume d1 ≥ · · · ≥ dt. The number
of the generaters t and the sequence d1, · · · , dt does not depend on the choice
of minimal generators of I. Then we define d(I) = d1 and μ(I) = t. It is
known that reg(I) ≥ d(I).

Theorem 6.4 ([1, (3.5)], [9, Theorem II]). Let S be the polynomial ring
k[x0, · · · , xn] over a field k. Let I be an homogeous ideal of S. Then we have

geom-degr(S/I) ≤ d(I)n−r

for all integer r.

Proof. We may assume that r ≥ 0 and k is algebraically closed. Further
we may assume that the ideal I has at least one isolated prime P with
dim(S/P ) = r + 1. Then we note that μ(I) ≥ n − r. Let P1, · · · , Pm be the
isolated primes of I of height n− r. Then, for each i = 1, · · · ,m, we can take
a homogeneous prime ideal Qi with dim(S/Qi) = 1 which contains Pi and
does not contain any other minimal prime of I. For a homogeneous ideal J
of S, we define the contracted extension J∗ as

J∗ = JSQ1 ∩ · · · ∩ JSQm ∩ S.

Note that the set of the minimal primes of I∗ is {P1, · · · , Pm}. Let h be
a linear from of S such that h is not contained in any of Q1, · · · , Qm. Let
f1, · · · , fμ(I) be a generator of I with degree d1, · · · , dμ(I). We set that S is a k-
linear subspace of the homogeneous polynomials of S of degree d(I) generated
by ha1f1, · · · , haμ(I)fμ(I), where a1 = d(I)− d1, · · · , aμ(I) = d(I)− dμ(I).

Now we inductively construct, for i = 1, · · · , n−r, an ideal Ii generated by
elements g1, · · · , gi of S such that the contracted extention (Ii)∗ is unmixed
of height i.
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In case i = 1, we take a non-zero element g1 in S. Suppose that Ii−1 =
(g1, · · · , gi−1) such that the contracted extention (Ii−1)∗ is unmixed of height
i − 1. In order to construct Ii we show that, for any minimal prime P of
(Ii−1)∗, not all of f1, · · · , fμ(I) lie in P . In fact, if not, then I∗ ⊆ P . It
contradicts that ht(P ) = i − 1 and MinS(S/I∗) = {P1, · · · , Pm}. Thus we
can take an element gi in S such that gi is not contained in any minimal
prime of the ideal (Ii−1)∗, because h is not contained in any minimal prime
P of (Ii−1)∗ and k is an infinite field.

Now we have the ideal In−r generated by elements g1, · · · , gn−r of S such
that (In−r)∗ is unmixed of height n− r. Thus we see that

geom-degr(S/I) = deg(S/I
∗) ≤ deg(S/(In−r)∗) ≤ d(I)n−r.

Hence the assertion is proved.
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