MISC

2008年11月

A method for constructing a self-dual normal basis in odd characteristic extension fields

FINITE FIELDS AND THEIR APPLICATIONS
  • Yasuyuki Nogami
  • ,
  • Hiroaki Nasu
  • ,
  • Yoshitaka Morikawa
  • ,
  • Satoshi Uehara

14
4
開始ページ
867
終了ページ
876
記述言語
英語
掲載種別
DOI
10.1016/j.ffa.2008.04.001
出版者・発行元
ACADEMIC PRESS INC ELSEVIER SCIENCE

This paper proposes a useful method for constructing a self-dual normal basis in an arbitrary extension field F-p(m) such that 4p does not divide m(p - 1) and m is odd. In detail, when the characteristic p and extension degree in satisfies the following conditions (1) and either (2a) or (2b); (1) 2km + 1 is a prime number, (2a) the order of p in F2km+ 1 is 2km, (2b) 2 dagger km and the order of p in F2km + 1 is km, we can consider a class of Gauss period normal bases. Using this Gauss period normal basis, this paper shows a method to construct a self-dual normal basis in the extension field F-p(m). (C) 2008 Elsevier Inc. All rights reserved.

Web of Science ® 被引用回数 : 8

リンク情報
DOI
https://doi.org/10.1016/j.ffa.2008.04.001
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000260625300002&DestApp=WOS_CPL
ID情報
  • DOI : 10.1016/j.ffa.2008.04.001
  • ISSN : 1071-5797
  • Web of Science ID : WOS:000260625300002

エクスポート
BibTeX RIS