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Accurately perceiving spatial locations of virtual sounds using stereo earphones or head-
phones requires individual head-related transfer functions (HRTFs) for each listener. However,
accurate HRTF measurement is usually difficult. While previous studies have proposed meth-
ods of HRTF personalization without HRTF measurement, localization errors often remain and
further modifications are challenging. We therefore propose a method that uses reinforcement
learning and listener evaluation to obtain an accurate individual HRTF without measurement.
We conducted a proof-of-concept simulation and an experiment involving human subjects. In
the simulation, we confirmed that the proposed method could acquire individual HRTFs close
to the measured HRTF from a dummy-head HRTF. Next, we conducted a learning experiment
in one direction using the proposed method without individual HRTFs and observed improved
horizontal-plane localization for the learned HRTF compared to the dummy-head HRTF. These
results collectively demonstrate the possibility of the proposed reinforcement-learning-based
personalization method for individual HRTFs that enables listeners to experience accurate
virtual sound environments.

0 INTRODUCTION

Virtual sound synthesis is a method for auditory im-
ages that are perceived at spatial locations outside the head
with stereo earphones or headphones [1–3]. This method is
achieved by equalizing sound from loudspeakers and ear-
phones, respectively, to the eardrum. To generate accurate
virtual sound, a head-related transfer function (HRTF) is
needed. The HRTF is a transfer function that represents
the characteristics of a direction-dependent transformation
into a sound signal, which is imposed by the head and
pinna of the listener. By filtering arbitrary sound through
an HRTF, one can produce virtual sound using earphones.
Because the shapes of the head and pinna are different for
each individual [2, 3], individual HRTFs are required for
accurate sound localization. However, measuring an indi-
vidual HRTF is impractical because it requires a special
environment such as a large anechoic chamber.

Several methods have been proposed to obtain HRTF
without measurement. One approach is to use anthropo-
metric features of the listener’s ear, head, and torso [4–
8]. Based on the similarity of the anthropometric features,
these methods select one of the HRTFs in the database.
Additionally, some recent advanced works have shown that
the morphological information obtained via magnetic res-

onance imaging can be used to develop an acoustic simula-
tor and to generate a simulated HRTF based on numerical
analysis techniques [9, 10]. These methods can be the mor-
phological information very accurately but requires special
environments.

Another approach is to select a well-localized HRTF
from candidates using a listener’s evaluation [11–13]. For
example, Middlebrooks et al. [11] and Fink and Ray [13] an-
alyzed HRTFs using principal component analysis (PCA),
and they achieved better localization by changing the prin-
cipal component weights based on a listener’s evaluation
and no special environment is necessary.

However, even when using these methods, localization
errors often remain because many conventional methods
do not estimate the user’s own HRTF directly [4–7, 11–
13] because these methods can be used to select good (or
the best) HRTFs from the prepared database. Therefore,
further improvement is difficult even when the selected
“best” HRTF does not provide good localization accuracy.

To overcome this issue, we propose a method based on re-
inforcement learning to modify the HRTF according to the
user’s feedback. Reinforcement learning is an algorithm for
learning a function in which the maximum reward (user’s
evaluation in this case) is achieved without a supervised sig-
nal (i.e., information of the measured HRTFs in this case)
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Fig. 1. Overview of the proposed method.

[14, 15] (see below or Appendix 1 for details). Our method
does not have any restrictions or assumptions regarding the
shape of the HRTF. Therefore, we expect that it can estimate
any HRTF from the subjective evaluation alone, even when
information on how to modify the HRTF is unavailable.

We herein present a simulation and an experiment to
acquire an individual HRTF from the dummy-head HRTF
as a proof-of-concept of our proposed method. Thus, by
setting the reward as the user’s evaluation for sound local-
ization, we can obtain an individual HRTF that provides
good localization without an HRTF measurement.

1 REINFORCEMENT-LEARNING-BASED HRTF
PERSONALIZATION METHOD

We propose a method to obtain an accurate individual
HRTF from an existing one using reinforcement learning.
Based on a user’s evaluation for sound localization, this
method searches for parameters for the HRTF in order to
acquire an accurate individual HRTF (Fig. 1). Our pro-
posed method consists of two parts: HRTF modeling and
reinforcement learning.

1.1 Modeling of HRTF
In the present study we define HRTF as a transfer func-

tion of the input sound signals of loudspeakers into the
output signals of the microphone placed in the ear canal
(sometimes referred to as a spatial sound transfer function).
This HRTF includes the head and pinna characteristics as
well as the loudspeakers, microphones at the ear canal, and
room reverberation. Note that this definition differs from
those described in other works (e.g., [1]). Virtual sounds
are created as signals convolved with a head-related im-
pulse response (HRIR), which is the impulse response cor-
responding to an HRTF, through the stereo earphones. This
procedure for generating virtual sounds is independently
performed for each ear.

In the modeling process the HRIR for the dummy-head
is modeled by an auto-regressive moving average (ARMA)
model [16] to reduce the number of parameters because the
number of HRIR samples is too large (128 in this study)
to use reinforcement learning. Before modeling, the initial
time delay was removed using the method proposed by
Nishino et al. [7]. This delay was recovered when the virtual
sound was generated. After this processing, the ARMA

modeled impulse response at the k-th sample ĥ[k] was

ĥ [k] =
P∑

n=1

p [n] ĥ [k − n]

+
Q∑

m = 0

q [m] δ [k − m] (1)

where p and q are AR and MA parameters, and P and Q are
the number of AR and MA parameters, respectively. δ is the
Dirac delta function. p and q were each calculated using
the least square method. P and Q were determined in order
to minimize the cost function J , which is the difference
between the measured HRIR h and ĥ [16],

J =
∑N

k=0

(
h [k] − ĥ [k]

)2∑N
k=0 h2 [k]

, (2)

where N is the number of samples for HRIR. This modeling
results in a reduced number of parameters for reinforcement
learning.

1.2 Reinforcement-Learning-Based
Personalization

The proposed method is additionally comprised of re-
inforcement learning (Fig. 1). This algorithm is used to
modify the HRTF using the reward r provided by the user
in a sound-localization task. We use the actor-critic rein-
forcement learning method with continuous state modeling
for discrete time [14, 15], which enables fine-tuning of the
HRTF. At a trial iteration t, the actor selects the appropriate
coefficients of ARMA models x[t] as outputs. The critic
evaluates the values of the selected coefficients V(x[t]) and
calculates the temporal-difference (TD) error δT D based on
the reward at trial t (r[t]). This error is used for updating the
actor and critic [14, 15]. For further details of the algorithm
and parameters, refer to Appendix 1 and [14, 15].

2 SIMULATION

The objective of the simulation was to examine whether
the proposed method can learn the target HRTF from the
dummy-head HRTF. Assuming that the dummy-head HRTF
has frequency ranges that are required for sound localiza-
tion for human subjects, we used this HRTF as an initial
value and performed simulations to obtain an individual
HRTF.

2.1 Simulation Setting
This study was approved by the Ethics Committee of

Nagaoka University of Technology. All human subjects
were given instructions about the study and provided
informed consent before the experiment. We measured
the HRIRs for a dummy-head (SAMRAI, Koken, Japan)
and for nine men (ages 20 to 24) in a sound-proof room
(reverberant times: 87 ms) at the Sound Vibration Engi-
neering Center of the Nagaoka University of Technology.
Sixteen-ordered M-sequence signals were generated from
loudspeakers (SD-0.6, Soundevice, Japan). The impulse
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responses were measured by miniature electret condenser
microphones (UC-92, Rion, Japan) placed at the entrance
of the external ear canal. Loudspeakers were located along
24 directions at 15◦ intervals in the horizontal plane with
1.5 m distance. We defined the direction of each loud-
speaker in front of the subject or dummy-head as 0◦.
The right side of the 0◦ loudspeaker had positive angles
whereas the left side had negative angles. Considering
the convergence of HRIR, the sampling number used for
modelling was 128 with a frequency of 44.1 kHz.

The simulation was conducted using MATLAB (Math-
works Inc., USA). HRTFs for 24 directions were tested for
each subject. A set comprised of an HRTF modification
and an evaluation was defined as a trial. In a single simula-
tion, 300,000 trials were conducted for each direction. We
conducted this simulation 30 times with randomly chang-
ing initial search noise. Personalization was said to succeed
when the reward was reduced in comparison to the initial
condition.

To simplify the setting of parameters, each ARMA pa-
rameter (x[t]) was normalized so that its target value was
within ±1 for each direction for each subject. For the actor
and critic, the number of intermediate nodes was initially
set to 1. The averaged number of the ARMA parameters
(P and Q in the Eq. (1)) was 8.8 (standard deviation ± 8.1)
and 54.6 (± 8.1), respectively.

2.2 Reward Setting
To determine whether our method can generate an indi-

vidual HRTF in which virtual sound is accurately localized,
the measured individual HRTFs for each subject were used
as the target HRTFs. Thus, we examined how our method
modifies the dummy-head HRTF into the target HRTF us-
ing the reward. We used the spectral distortion (SD) [7]
between the target and learned HRTFs as the reward r. This
index indicates the differences between two HRTFs in the
frequency domain, which is defined as

r = − SD

= −
√√√√ 1

N f

N f∑
k = 1

(
20log10

|H (ωk)|∣∣Ĥ (ωk)
∣∣
)2

[dB] . (3)

Here, H (ωk) and Ĥ (ωk) are targets and learned HRTFs at
frequency ωk , respectively. N f is the number of samples for
HRTF. This value is 64 because HRTF was calculated from
128 samples of HRIR by the discrete Fourier transform.
The HRTF was calculated in the frequency range from
500 Hz to 16 kHz because this range is the most-relevant
for sound localization [17, 18]. Negative SD was set as a
reward because a large SD indicates dissimilarity between
the target and learned HRTFs. To determine whether our
method can acquire actual localized HRTF, the measured
individual HRTF for each subject was used as the target
HRTF. (This target is not available when one wants to obtain
an individual HRTF without its measurement.)

2.3 Simulation Results
For all 9 subjects and 24 directions, we performed 30

simulations and found that the learned HRTFs were close
to the target HRTFs in almost all cases. An example of this
improvement for the right 30◦ direction for three represen-
tative subjects is shown in Fig. 2(a). The target (individ-
ual) HRTF was obtained from the dummy-head HRTF. As
shown in Fig. 2(b), the initial SD (reward) was influenced
by the speed of convergence and required approximately
200,000 to 300,000 trials to obtain a stable SD at 1–2 dB.
Similar results were obtained for all the subjects. On an
average, 26.8 simulations (±1.7 standard deviation across
subjects) out of 30 succeeded. This number corresponds
to 89% of the total simulations. The SD when checked
specifically after learning, showed a value less than 5 dB
in 88% of the simulations and less than 2 dB in 77% of
the simulations. The SD reached a value of less than 1
dB in about one-third of the simulations. At this level (1–
2 dB), the user typically cannot differentiate between the
HRTFs [19]. Even the initial SDs were greater than 10 dB,
and decreasing SDs were confirmed for all 24 directions
(Fig. 2(c)).

2.4 Evaluation of the Learned HRTF
In this study we used SDs to evaluate the learned HRTF.

However, it has been suggested that SD does not fully de-
scribe the effect of the spectral cues on the sound localiza-
tion [20, 21]. Thus, decreasing SDs might not be related
to the actual localization. To check that the learned HRTFs
after learning show better sound localization, we conducted
the experiment involving human subjects.

2.4.1 Protocol
Of the subjects, for which HRTFs were measured in

the simulation, six out of nine participated in this ex-
periment. HRTFs for both ears were prepared in order
to generate virtual sounds. We examined two evalua-
tions; the localization accuracy and subjective evaluation
(five-grade evaluation) for the measured HRTF, learned
HRTF after the simulation (Sec. 2.3), and dummy-head
HRTFs.

In the localization accuracy evaluation, the subjects were
asked to immediately determine the direction of the sound
and select 1 out of the 12 directions (forced choice). In
the five-grade evaluation, the subjects were asked to as-
sess the extent to which the direction of the evaluation
sound deviated from that of the reference sound using
five criteria/grade. The detailed protocol is described in
Appendix 2.

2.4.2 Evaluation Results
Results of the localization accuracies and the five-grade

evaluation are shown in Fig. 3. The learned and measured
HRTFs showed similar localization results. However,
the results from the dummy-head HRTF differed. This
similarity and difference is easily observed in the five-grade
evaluation. Similar to the measured HRTF, the learned
HRTF is rated almost five, meaning that the perceived
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Fig. 2. Simulation results. (a) Learned HRTFs of the right ear in a 30◦ direction to the right for three representative subjects (Sub A, B,
and C). A bold black line indicates the dummy-head HRTF (initial values), and colored lines respectively represent the learned HRTF for
each subject (values after learning). The diamond markers denote the measured individual HRTFs (the targets). Each color corresponds
to each subject. (b) Rewards along with the trials. The same color in the right panel is assigned for each subject. For illustration purposes,
the reward was averaged and plotted for every 50 trials. (c) Initial and learned SDs for each direction in the horizontal plane. The SD
shown is the average across subjects, and the error bar indicates its standard deviation for the subjects.

direction of the evaluation sound was the same as that of
the reference. On the other hand, the dummy-head HRTF
was poorly perceived because it was generated from a
different direction. The average localization accuracy of
the learned HRTF across six subjects was significantly
larger than the one obtained from the dummy-head HRTF
(p < 0.01). No significant difference was found between
the localization accuracies of the measured and learned
HRTF, which further indicates that both HRTFs were
similar. Although the rating in Evaluation 2 for the learned
HRTF was smaller, compared to that of the measured one
(p < 0.01) (Fig. 3), this rating for the learned HRTF was
still significantly better than the one for the dummy-head
HRTF (p < 0.05). Moreover, its average rate was four,
which indicates that the location of the sound generated
from the learned HRTF was within 15◦ of the left/right
field. Thus, these results suggest that the learned HRTF
was sufficient to achieve better localization performance.

3 LEARNING EXPERIMENT

Next we performed a proof-of-concept learning exper-
iment where an individual HRTF was acquired using our
proposed method without a measured HRTF.

3.1 Protocol
Six subjects (ages 21 to 24) participated in this experi-

ment, which was approved by the Ethics Committee of Na-
gaoka University of Technology. All subjects were given
instructions about the study and provided informed con-
sent before the experiment. The experiment was done in
a sound-proof room where HRTF was measured. For each
subject, we set one target direction (Table 1). The target di-
rection was informed to the subject before the experiment.
This was different for each subject and selected randomly
from 24 directions used in the simulation. To simplify the
experiment, we personalized (learned) one of the left and
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Table 1. Evaluations after the learning experiment

Azimuth direction (in degrees)

Sub Target Learned (error) Learned (error) �Dir Score

1 30 25.5 (–4.5) 25.0 (–5.0) 0.5 0.65
2 –45 –39.5 (+5.5) –33.5 (+11.5) 6.0 2.00
3 –45 –91.5 (–46.5) –100.0 (–55.0) 8.5 1.05
4 –45 –61.0 (–16.0) –48.5 (–3.5) –12.5 –0.10
5 60 60.0 (0) 86.7 (+26.7) 26.7 1.10
6 –30 –28.5 (+1.5) 30.0 (+60) 58.5 1.05
Ave (12.3) ∗ (26.7) ∗ 14.3 0.96

∗ Averaged absolute directional errors across subjects.

right HRTFs from the dummy-head HRTF for the target di-
rection while the other HRTF was fixed at the dummy-head
HRTF. This simple setting allowed the subjects to perform
the experiment without excessive fatigue.

The subjects wore intra-concha earphones (MDR-
ED238, Sony, Japan) and the sound was amplified through
a USB audio interface (UA-55, Roland, Japan). The ex-
periment consisted of 300 trials. In a trial, a series of two
virtual sounds (1000 ms in duration) were presented to the
subject by convolving the HRIR with white noise (100 Hz–
15 kHz) (Fig. 4(a)). First, the sound used in the previous
trial was provided as a reference sound. At the same time,
the evaluated direction (position) of the previous trial was
also presented on the display. Then, the evaluation sound
was generated from the learned HRTF and presented 500 ms

(generated from 
Learned HRTF)

Reference Sound
(Sound in the 
previous trial)

Evaluation 
Sound

♪ ♪Interval Response 
Localization

1000 [ms] 500 [ms] 1000 [ms]

b
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 0: Same

-1: First is near

-2: First

c

Fig. 4. (a) Experimental protocol for the learning experiment.
Note that the sound was presented for 1000 ms with a 500-ms
interval. (b) Display for localization responses in the azimuth
direction evaluation. (c) Five criteria for the closeness evaluation.
The subject was asked to answer which sound (first or second) is
closer to the target.

after the first sound. In the first trial, the subjects were pre-
sented with only the evaluation sound, which was generated
using the dummy-head HRTF. During the second trial, both
the reference and evaluation sounds were presented.

After listening to the two sounds, the subjects evaluated
the direction of the second sound (danswer ) in the horizontal
plane by pointing to it using a graphical user interface (Fig.
4(b)). Using this subjective evaluation of the direction, the
method updated the learned HRTF.

The reward for reinforcement learning was defined as:

r = −
∣∣dtarget − danswer

∣∣
10

, (4)

where dtarget are the directions (in degrees) of the targets.
This reward indicates directional difference between target
and perceived sounds and was set so that r becomes –1 when
the directional difference is 10◦. Note that we modified an
HRTFs ipsilateral to the target direction; the HRTF for the
right ear was modified (learned) when the target was on
the right side (positive angle), whereas that for the left ear
was modified when the target was on the left side (negative
angle).

3.2 Learning Results
The reward r obtained via the learning experiment ex-

hibited a gradual decrease in magnitude for many subjects
as the sound generated from the learned HRTF approached
the target direction. The averaged r across the subjects in
the first trial was –4.4 and decreased to –1.1 at the end of
the trials. The learning experiment took approximately 30
minutes.
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3.3 Post Evaluations (The Direction and the
Closeness)

On a different day after conducting the experiment, the
directions and proximity to targets for the sounds generated
by the learned HRTF were assessed (post evaluations). In
the direction evaluation, two types of virtual sounds, those
generated using the dummy-head HRTF and the learned
HRTF (after 300 trials), were presented randomly and were
each evaluated 10 times using the interface (Fig. 4(b)). Im-
provement of the localization was defined as the directional
difference between the learned and initial sound (�Dir) in
the horizontal plane. A positive �Dir shows that the learned
sound was closer to the target than the initial sound.

Next, in order to subjectively evaluate the sound gen-
erated from the learned HRTF, the closeness (proximity

to targets) evaluation was conducted. The subjects were
presented with the two sounds (the dummy-head and the
learned sounds) consecutively. The sound presentation or-
der was counter-balanced: The dummy-head sound was
presented first (first presented sound) in the first half of the
trials and the learned sound was presented first in the rest of
trials. The subjects assessed the extent to which the sound
was close to the target direction (with five graded values:
–2, –1, 0, 1, and 2; Fig. 3(c)). A grade of –2 was awarded
when only the first presented sound was heard from the
target direction, while grade 2 was assigned when only the
second sound was heard from the target direction. Grades 1
and –1 mean that the second sound was closer to the target
than the first one, and vice versa, respectively. When the
two sounds were heard from the same direction, a value of
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0 was awarded. The evaluation was conducted 20 times in
total. The subject was not informed which sound was gen-
erated using the learned HRTF. We converted the graded
values into corresponding subjective values (referred to as
the score), which represented the extent to which the sound
generated using the learned HRTF was localized to the tar-
get. This was achieved by multiplying the graded values
by –1 for the data when the first presented sound was gen-
erated using the dummy-head HRTF because meaning of
the graded values was different depending on the first pre-
sented sound. We averaged this value across the trials for
each subject and conducted statistical analysis using one-
tailed Wilcoxon signed rank test (n = 6).

In both evaluations, we also presented sounds generated
using the measured or learned HRTF after 150 trials. How-
ever, the results obtained were not used for the analysis
based on the purpose of the experiment.

3.4 Post Evaluation Results
The results for the post evaluations revealed that the

sound generated from the learned HRTF was closer to the
target than that from the dummy-head HRTF for five out
of six subjects (Table 1), although it still deviated from
the target (by 12.3◦ on average). Similarly, the difference
between learned and initial HRTFs (�Dir) was positive
(14.3◦) on average. The scores obtained from the closeness
evaluation also supported improvement in localization ac-
curacy. A significantly positive score was obtained (p <

0.05, signed-rank: 20), suggesting that the sound generated
from the learned HRTF was closer to the target.

In the result for subject 6, the initial direction of the sound
was 30◦ while the target was in the opposite lateral direction
(–30◦). This is very difficult to interpret because of the left-
right confusion that does not occur usually. However, even
after excluding this subject, we observed a similar tendency;
the average directional error was 14.5, �Dir was 5.4, and
the score was 0.94.

3.5 HRTF Spectral Changes
On comparing the spectral magnitude of learned HRTFs

to the initial one (dummy-head), we found that the changes
in the amplitude were observed at the frequencies of 2–8
kHz (Fig. 4). A decrease in the amplitude at frequencies of
7–8 kHz was observed for the data with a negative target
angle (subjects 2, 3, 4, and 6), whereas this change was not
observed for the data with a positive target angle (subjects
1 and 5). Also, amplitudes in the frequency range of 2–6
kHz are higher for data with a negative target but it was
lower for subject 5 (target angle was 60◦). Thus, HRTFs
were differently modified depending on the target angle of
the subject.

In this study we focused on the HRTF spectrum and
removed the initial delay before the modeling (see Sec. 1.1).
Therefore, we expected that the interaural time difference
(ITD) was unchanged. When we examined the changes of
the ITD after the learning, we found a small increase (just
one sample; 0.023 ms) of ITD for two participants (subject 1
and 3). However, for the other participants we did not. This

change of ITD corresponds to the 1.9◦ of ITDs calculated
by theoretical ITD models (Kuhn 1977). Thus, changes of
ITD resulting from the modification of the spectral phase
of HRTF were not obvious from our results.

4 DISCUSSION

We proposed a new reinforcement learning method based
on HRTF personalization to improve virtual sound local-
ization for human listeners. To demonstrate its feasibility,
we conducted a simulation and an experiment with hu-
man subjects (learning experiments). In simulations, we
showed that our method can learn an individually person-
alized HRTF from a dummy-head HRTF. These results
demonstrate that our method can be used for any direc-
tion and any user if the learning is completed. Furthermore,
we confirmed the improvement of the localization accuracy
for the learned HRTF in the learning experiment, where no
measured HRTF for individuals was obtained. This result
suggests that our method has potential for a practical ap-
plication. We now discuss the advantages and problems of
these results.

4.1 Advantage of Reinforcement-Learning-
Based Personalization

The advantage of the proposed method is that any HRTF
can be estimated based on the user’s evaluation. When us-
ing another individual’s HRTF that seems to be very similar
in objective [4–7] or perceptual standpoint [12], an HRTF
might be selected in which sound is not well localized owing
to the differences of individual HRTFs. Even when combin-
ing or scaling other user’s HRTFs, only a few parameters are
searched [11,13]. In contrast, as described in the Introduc-
tion section, our method can estimate any HRTF from the
subjective evaluation alone without any restriction. In fact,
we found the changes of HRTF after the learning, which
were different among the subjects. The average directional
error compared to the target direction was 12.3◦. Previous
studies reported that the directional error was around 20◦

using the estimated HRTF (21◦ for [13] in the horizontal
plane and 20.7◦ for [5] in the median plane). Thus, our re-
sults indicate a possibility that our method can be used to
obtain better individual HRTFs.

In this study we used an ARMA model to represent
HRTFs (HRIR) because this method effectively models
HRTFs [16]. However, our method can use any other mod-
eling method (e.g., PCA) in order to reduce the number
of parameters modified by reinforcement learning. In ad-
dition, the reinforcement learning process can deal with
such modeling parameters and other information, including
anthropometric features, ITD, and directional information
simultaneously. Thus, our proposed method is flexible in
terms of the parameters to be searched, although there is a
trade-off between the number of parameters for reinforce-
ment learning and personalization (learning) speed. Recent
studies have shown that intraconic components of HRTFs
are more critical for accurate virtual sound localization
than ITD or lateral spectral components [22, 23]; therefore,
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incorporating such information into our method could lead
to promising results.

This flexibility advantage also enables us to apply the
proposed method to both the estimation of an individual
HRTF and to further improvement of the measured HRTF.
Owing to the difficulty of HRTF measurement, a localiza-
tion error for the virtual sounds is usually observed, even
when the sound is generated from the measured HRTF. In
our previous work [24] we showed in a simulation setting
that measured HRTF with added noise can be recovered
by our reinforcement learning method. Thus, our proposed
method can likewise be used to reduce such errors.

4.2 Issues to Be Solved for Rapid
Personalization

Our current method has several limitations. First, it is
necessary to achieve rapid personalization by reducing the
number of trials because the learning speed was slow (Fig.
2(b)) and the improvement did not seem to be complete
(Fig. 2(c)) in the simulation, probably due to the large
search spaces of the HRTF model. Additionally, the per-
sonalization of the HRTF in the learning experiment of the
present study took approximately 30 minutes for a single
direction. This is longer than the time taken in previous
studies [11, 12], where customization of HRTFs for mul-
tiple directions were performed within 20 minutes using
subjective evaluation or selection of HRTFs. Although re-
wards used in the simulations and the learning experiment
(i.e., SD and user’s evaluation) both represent how much
the current HRTFs differs from the appropriate HRTFs, the
user’s evaluation might be more variable or noisy than SD
because of the variability human perception in the partici-
pants. This could result in lower learning speed during the
learning experiment.

One solution would be to select an appropriate initial
HRTF instead of the dummy-head HRTF. Here we started
HRTF personalization from the dummy-head HRTF. This
was because the dummy-head represents an average-size
human upper body and head. Therefore, the difference be-
tween the dummy-head HRTF and individual HRTF to be
estimated may have been minimized on average. How-
ever, the difference varied among subjects. This affected
the number of trials necessary for obtaining an individ-
ual HRTF in the simulation. The larger the initial SD, the
longer the time necessary for success. Additionally, the SD
did not become zero in the simulation, and hence, there
exists a small error or difference as compared to the mea-
sured HRTFs (Fig. 2(c)). We speculate that this happens
because the dummy-head HRTF deviates from individual
HRTFs and perhaps parameters of ARMA modeling are
specific to the dummy-head HRTF. Therefore, it was ex-
pected that a different initial HRTF promoted quick learning
of the individual HRTF. We expect that rapid personaliza-
tion can be achieved by selecting an initial HRTF using
the above-mentioned previous approaches, which select an
HRTF based on the similarity of anthropometric features
[4–8] or generate a simulated HRTF by numerical analysis
techniques based on morphological information [9,10].

There are some limitations to our experimental setting.
Our proposed method focused on the modification of the
HRTF spectrum and it obtained improvements in local-
ization accuracy (Table 1), suggesting the effectiveness of
our method and importance of the HRTF spectrum in the
horizontal-plane localization. However, it has been well-
known that in addition to the spectral changes of HRTFs,
ITD, and interaural level differences (ILD) are important for
accurate sound localization in the horizontal plane [1]. In
addition, the degrading accuracy due to the non-individual
HRTFs are likely to be relatively small [22]. Therefore, im-
provements of the sound localization could be limited to
some extent in our current settings. Considering the rest of
cues (ITD and ILD), as well as the HRTF spectrum, may
promote efficient and rapid personalization. We must also
examine the feasibility of our method in a more practical
scenario by including the median plane or the sagittal plane.
It is necessary to adopt a setting enabling personalization
for multiple directions simultaneously. Because the current
experimental setup was very simple, and the HRTF was
modified for one ear and one direction only.

The adaptation to a specific sound could be another fac-
tor to improve the localization performance. A previous
study has shown that the human listener improved the lo-
calization accuracy for sound generated by non-individual
HRTFs [25]. Effects of the adaptation in our results could
be small because we evaluated the improvements of the
localization on a different day of the learning experiment
(see Sec. 3.3). However, one of the subjects’ performance
degraded post evaluation (Table 1), even though the reward
was decreased during learning. This could be because this
subject adapted to the sound during learning and the adap-
tion during learning affected user’s evaluation.

Thus, our method has the possibility of obtaining per-
sonalized HRTFs; however, it currently may not work well
for everyone. To solve this issue, it may be necessary to
examine the details of the learned HRTFs, i.e., SDs and
other measures reflecting human auditory systems [20, 21]
as well as effects of the adaptation on user’s evaluation.
These topics should be addressed in future work.

5 CONCLUSION

In this paper we proposed a method based on reinforce-
ment learning to obtain a personalized HRTF and tested
the feasibility of the method. The results may serve as a
proof-of-concept of our method. After improving learning
speed and testing in more practical settings, our method is
expected to be applied to easily obtain a personalized HRTF
at any location.
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8 APPENDIX 1: DETAILS OF REINFORCEMENT
LEARNING ALGORITHM

We use the actor-critic reinforcement learning method,
which is a temporal-difference (TD) learning method. The
actor selects the appropriate coefficients of ARMA models
as outputs. The critic evaluates the values of the selected
coefficients (i.e., states) and calculates the TD error δT D .
This error is used for updating the actor and critic functions.

In this study we used continuous state modeling [14, 15]
of the coefficients for the discrete time, which enabled fine-
tuning of the HRTF. For further details of the algorithm and
parameters, see [14, 15].

8.1 Critic
Using the current state of the ARMA coefficients, x[t],

the critic evaluated the value function at trial iteration t,
V (x[t]), as follows:

x [t] = [
p (1) , p (2) , · · · , p (P) , q (0) , q (1) ,

· · · , q (Q)
]
, V (x [t]) =

∑
i

vi bi (x [t]) , (5)

where vi is a weight and bi () is a basis function. The pa-
rameter p and q are AR and MA parameters, and P and
Q are the number of AR and MA parameters, respectively.
The value function V (x[t]) is a linear combination of the
weight vi and basis function bi . Based on V (x[t]), the TD
error is

δT D [t] = r [t] + γV (x [t]) − V (x [t − 1]) . (6)

Here, r [t] is the reward for the reinforcement learning
at trail t, and the reward (in the simulation) is defined as
a spectrum distortion. γ = 0.95 is a discount rate. Using
this TD error, the weight is updated as

vi = αδ̇T Dei (t) , (7)

where α is the learning rate, ei is an eligibility trace, and
δ̇T D[t] = δT D [t] − δT D[t − 1]. To avoid learning by the
actor when the critic cannot properly evaluate the values of
the current state, α is set depending on the trial number t as

α = min

[
αc,

αc

2

(
1 + t

T

)]
. (8)

Here αc = 0.12 is a predefined learning rate and T =
1,000 is the number of trials to use αc. The eligibility trace
is updated by the following rule:

ėi [t + 1] = γλei [t] + bi (x [t)] , (9)

where λ = 0.91 is the decay parameter of the trace.

8.2 Actors
The actor is used to update the ARMA modeled param-

eters as follows:

u j [t] = u j
max g

(∑
i

wi j bi (x [t]) + σn j [t]

)

+ u j
bias, (10)

where u j [t] is the j-th component of the updated ARMA
parameters u[t], u j

max = 2 denotes the maximum val-
ues of u j , and u j

bias = −1 is a bias (constant). In the
present study, outputs of the actor u[t] become the states
in the next trial (x[t + 1]). In addition, wi j is a weight
and g(z) = 1/1 + e−sz is a sigmoid function with gain
s ( = 2.2). n j [t] is the Gaussian noise for the j-th com-
ponent of u[t] generated from the Gaussian distribution
n0 × N (0, 1). The search noise is defined as σn j [t] and
the magnitude of the search noise σ is set as

σ = σ0 min

[
1, max

[
0,

V1 − V (x [t])

V1 − V0

]]
, (11)

where σ0 = 1 is the noise gain and V1 = 0 and Vo = −100
are the maximum and minimum of V (x[t]), respectively.
The update rule for the weight is

wi j ← wi j + βδT D [t] σn j [t] bi (x [t]) . (12)

The weight learning rate for the actor is modulated de-
pending on t as

β = min

[
βc,

βc

2

(
1 + t

T

)]
. (13)

Both αc and βc are set to the same value (0.12). The basis
function bi () is modeled by the incremental normalized
Gaussian network (INGnet) [3] as

bi (x [t]) = ai (x [t])∑K
l=1 al (x [t])

, (14)

where ai (x[t]) is called the activation function and is de-
fined by

ai (x [t]) = exp

(
−1

2
Mk(x [t] − ck)2

)
. (15)

Here, exp is the exponential function, Mk is the full width
at half maximum set as 2.5 for all k, and ck is the center of
the Gaussian function. Using INGnet, the model adds a new
intermediate node (for the critic and the actor) according to
the amount of TD errors. A new node in the intermediate
layer for the critic is added when the following condition is
met:

δT D [t] > emax and maxi ai (x [t]) < amin (16)

Similarly, a new node is added for the actor under the
following condition:

max
∣∣δT D [t] σn j [t]

∣∣ > emax and maxi ai (x [t])

< amin . (17)

In this case, the intermediate layer is initialized as ck =
x[t] and wk j = x j [t] + δT D[t]σn j [t]. amin is set to 0.4.
To avoid unnecessary incrementing of the node during the
initial phase of the learning on account of the incomplete
weight learning, the threshold emax is defined as

emax = 0.4 exp

(
− t

T

)
. (18)
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Fig. 6. (a) Experimental protocol for the evaluation experiment.
(b) Display for localization responses in Evaluation 1. The ques-
tion mark located at the center of the display was to be pressed
when the subject was unable to identify the direction. (c) Five-
grade evaluation criteria for comparison with the reference in
Evaluation 2. These criteria were shown in the display and the
subject was asked to click the button (number) corresponding to
the evaluation.

9 APPENDIX 2: DETAILS OF EVALUATION
EXPERIMENT FOR LEARNED HRTF

We performed an experiment with human subjects to
show that the learned HRTF in the simulation was actually
used for sound localization. This study was approved by the
Ethics Committee of Nagaoka University of Technology.
All the human subjects were given instructions concerning
the study and their informed consent was taken before the
experiment. The experiment was conducted in a soundproof
room where the HRTF was measured.

9.1 Protocol Details
Similar to the learning experiment, the subjects wore

intra-concha earphones and the sound was amplified
through a USB audio interface. A series of two virtual
sounds were presented to the subjects (Fig. 6(a)). The first
sound served as a reference; the second was an evaluation
sound. The sound was prepared by convoluting HRIR with
white noise, and its direction was selected from 12 direc-
tions in 30◦ intervals. The subject was instructed to listen
to these two sounds and evaluate whether the second sound
was generated from the same direction as the first one. The
measured HRTF for each subject was used as the refer-
ence sound. For the evaluation sound, either the learned
HRTF from the simulation or the dummy-head HRTF was
used. The HRTF with the lowest SD at the end of learn-
ing in the simulation was selected and used as the learned
HRTF. The order in which these two sounds were presented
was pseudo-randomized. A trial consisted of hearing two
sounds (the reference and evaluation sounds) and two sub-
jective evaluations (sound localization in Evaluation 1 and
five-grade evaluations in Evaluation 2). A single session
consisted of 72 trials; therefore, 5 sessions were conducted
for a total of 360 trials. Measurements of 10 sets of evalu-
ations were conducted for each sound direction.

In Evaluation 1, the subjects were asked to immediately
determine the direction of the sound (Fig. 6(b)). In the sec-
ond evaluation (Evaluation 2: five-grade evaluation), the
subjects were asked to assess the extent to which the direc-
tion of the second (evaluation) sound deviated from that of
the first sound (reference) using five criteria (Fig. 6(c)). We
expected that the five-grade evaluation would yield more
detailed information about the comparisons of the two se-
quential sounds because the comparison was easier than
reporting the direction of the sound. Using these two eval-
uations, we aimed to confirm sound localization in a real
setting with the learned HRTF via reinforcement learning.
To test the statistical significance of the localization accu-
racy (Evaluation 1) and five-grade evaluation (Evaluation
2), a paired t-test (n = 6) was performed for each pair of
the evaluation sounds (measured, learned, and dummy-head
HRTFs).
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