On numerical range of a generalization of the Aluthge transform

Takeaki Yamazaki (Toyo Univ.)

June. 23, 2018 @ ICMAA2018
Introduction (Aluthge transform)

- $B(\mathcal{H})$: C^*-algebra of all bounded linear operators on a Hilbert space

Definition 1 (Aluthge transform).

Let $T = U|T|$ be the polar decomposition. Then the Aluthge transform \tilde{T} of T is defined as follows.

$$\tilde{T} = |T|^{1/2}U|T|^{1/2}$$

- $\sigma(T) = \sigma(\tilde{T})$
- If T is semi-hyponormal (i.e., $|T^*| \leq |T|$), then \tilde{T} is hyponormal (i.e., $|\tilde{T}^*|^2 \leq |\tilde{T}|^2$).

Aluthge, Integral Equations Operator Theory, 13 (1990), 307-315.
Basic properties

- \tilde{T} has an invariant subspace iff T does so.
- If T is a $n \times n$ matrix, then iteration of the Aluthge transform converges to a normal matrix N such that $\sigma(N) = \sigma(T)$.
- $\lim_{n \to \infty} \|\tilde{T}^{(n)}\| = r(T),$
 where $\tilde{T}^{(n)}$ means n-th iterated of the Aluthge transform.
- $cos(T) = \cap_{n \in \mathbb{N}} W(\tilde{T}^{(n)})$.

Definition 2 (left and right multiplication).
Let $A, B \in B(H)$. Define linear mappings $B(H) \to B(H)$ defined as
\[
\mathbb{L}_A X := AX, \quad \mathbb{R}_B X := XB \quad (X \in B(H)).
\]

Remark

- \mathbb{L}_A and \mathbb{R}_B commute with each other, i.e.,
 \[
 \mathbb{L}_A \mathbb{R}_B X = \mathbb{L}_A XB = AXB = \mathbb{R}_B AX = \mathbb{R}_B \mathbb{L}_A X.
 \]
- If A and B are positive semi-definite (or positive invertible), then
 \[
 (\mathbb{L}_A)^\alpha = \mathbb{L}_A^\alpha, \quad (\mathbb{R}_B)^\alpha = \mathbb{R}_B^\alpha \quad (\alpha > 0 \text{ or } \alpha \in \mathcal{R}).
 \]
- Geometric mean: $(\mathbb{R}_B \#_{\lambda} \mathbb{L}_A)X = A^\lambda XB^{1-\lambda}$ for $\lambda \in [0,1]$.
 Especially, $(\mathbb{R}_{|T|} \#_{\lambda} \mathbb{L}_{|T|})U = |T|^\lambda U |T|^{1-\lambda}$ is the λ – Aluthge transform.

Introduction

◆ \mathcal{P}: The set of all positive definite operators on a Hilbert space.

Definition 3 (Operator mean). Let $\sigma: \mathcal{P}^2 \to \mathcal{P}$. If σ satisfies the following conditions, then σ is called an operator mean.

1. $\sigma(A, B) \leq \sigma(C, D)$ if $A \leq C$ and $B \leq D$,
2. $X^*\sigma(A, B)X \leq \sigma(X^*AX, X^*BX)$ for all bounded linear operator X,
3. σ is upper semi-continuous on \mathcal{P}^2,
4. $\sigma(I, I) = I$.

Introduction

◆ \mathcal{M}: The set of all operator monotone functions on $(0, \infty)$.

Theorem A (representing function).
Let σ be an operator mean. Then $\exists f \in \mathcal{M}$ such that $f(1) = 1$ and

$$
\sigma(A, B) = A^2 f \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\frac{1}{2}}
$$

for all $A, B \in \mathcal{P}$.

Examples. Let $\lambda \in [0,1]$.

● Arithmetic mean: $f(x) = 1 - \lambda + \lambda x$,

● Geometric mean: $f(x) = x^\lambda$,

● Harmonic mean: $f(x) = [1 - \lambda + \lambda x^{-1}]^{-1}$,

● Power mean: $f_r(x) = [1 - \lambda + \lambda x^r]\frac{1}{r}$ ($-1 \leq r \leq 1$).

Definition 4 (Extension of the Aluthge transform).
Let $T = U|T|$ be the polar decomposition. For an operator mean σ, the extension of the Aluthge transform $\Delta_{\sigma}(T)$ of T is defined as follows.

$$\Delta_{\sigma}(T) = \sigma(\mathbb{R}|T|, \mathbb{L}|T|)U$$

Examples.

- Arithmetic mean case. $\Delta_A(T) = (1 - \lambda)U|T| + \lambda|T|U$
 (mean transform, S.H. Lee-W.Y. Lee-Yoon, 2014.)

- Geometric mean case. $\Delta_G(T) = |T|^{\lambda}U|T|^{1-\lambda}$
 (λ – Aluthge transform, Furuta, 1996.)

Definition

Definition 4 (Extension of the Aluthge transform). Let $T = U|T|$ be the polar decomposition. For an operator mean σ, the extension of the Aluthge transform $\Delta_\sigma(T)$ of T is defined as follows.

$$\Delta_\sigma(T) = \sigma(\mathbb{R}|T|, \mathbb{L}|T|)U$$

Matrix case

Let $T = U|T|$ be the polar decomposition and

$$U = (u_{ij}), \quad |T| = V^* \text{diag}(s_1, \ldots, s_n)V, \quad (V: \text{unitary}).$$

Then

$$\Delta_\sigma(T) = V^*\{VUV^* \circ [\sigma(s_i, s_j)]\}V.$$
Today’s talk

| Formula | \(\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}\) | Theorem 2 |
|---------|---------------------------------|-----------|
| Fixed Point | \(\tilde{T} = T \iff |T|U = U|T|\) (quasinormal) | Theorem 3 |
| Iteration | Converge (finite dim.) Not converge (infinite dim.) | Theorem 4 (arithmetic mean case) |
| Numerical range | \(\overline{W(\tilde{T})} \subseteq \overline{W(T)}\) | Theorems 5 and 6 |
Concrete formula (Harmonic mean case)

<table>
<thead>
<tr>
<th></th>
<th>\tilde{T}</th>
<th>$\Delta_\sigma(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>$\tilde{T} =</td>
<td>T</td>
</tr>
</tbody>
</table>

Proposition 1.
Let $T \in B(H)$ be invertible and $T = U|T|$ be the polar decomposition, and let H_λ be the λ-weighted harmonic mean for $\lambda \in [0,1]$. Then

$$
\Delta_{H_\lambda}(T) = \int_0^\infty e^{-\lambda t|T|^{-1}}Ue^{-(1-\lambda)t|T|^{-1}} dt.
$$

The harmonic mean case for a **unilateral shift** is firstly considered by S.H. Lee, 2016.

Proof

Theorem A (Bhatia, Matrix Analysis, Theorem VII.2.3). Let A and B be operators whose spectra are contained in the open right half-plane and the open left-plane, respectively. Then the solution of the equation $AX - XB = Y$ can be expressed as

$$X = \int_0^\infty e^{-tA}Ye^{tB} \, dt.$$

Proof of Proposition 1. Let $X = \Delta_{H_\lambda}(T)$. Then we have

$$\left[(1 - \lambda)\mathbb{R}|T|^{-1} + \lambda\mathbb{L}|T|^{-1}\right]^{-1}U = X$$

It is equivalent to

$$U = \left[\lambda\mathbb{L}|T|^{-1} + (1 - \lambda)\mathbb{R}|T|^{-1}\right]X$$

$$= \lambda|T|^{-1}X + (1 - \lambda)X|T|^{-1}$$

$$= (\lambda|T|^{-1})X - X(-(1 - \lambda)|T|^{-1})$$

Hence

$$\Delta_{H_\lambda}(T) = \int_0^\infty e^{-\lambda t|T|^{-1}}Ue^{-(1-\lambda)t|T|^{-1}} \, dt.$$
Concrete formula (general case)

<table>
<thead>
<tr>
<th></th>
<th>\tilde{T}</th>
<th>$\Delta_{\sigma}(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>$\tilde{T} =</td>
<td>T</td>
</tr>
</tbody>
</table>

Theorem 2.
Let $T \in B(H)$ be invertible and $T = U|T|$ be the polar decomposition and let σ be an operator mean. Then there exists a probability measure $d\mu(\lambda)$ on $[0, 1]$, s.t.,

$$\Delta_{\sigma}(T) = \int_{0}^{1} \int_{0}^{\infty} e^{-\lambda t|T|^{-1}} U e^{-(1-\lambda) t|T|^{-1}} dt d\mu(\lambda).$$

Corollary 3. $\text{tr}(\Delta_{\sigma}(T)) = \text{tr}(T)$.

- Spectral of T and $\Delta_{\sigma}(T)$ do not coincide, generally.

Other means cases

Theorem 2.
Let $T \in B(H)$ be invertible and $T = U|T|$ be the polar decomposition and let σ be an operator mean. Then there exists a probability measure $d\mu(\lambda)$ on $[0, 1]$, s.t.,

$$\Delta_{\sigma}(T) = \int_0^1 \int_0^\infty e^{-\lambda t |T|^{-1}} U e^{-(1-\lambda)t |T|^{-1}} \, dt \, d\mu(\lambda).$$

Proof. Every representing function of operator mean can be given by

$$f(x) = \int_0^1 [1 - \lambda + \lambda x^{-1}]^{-1} d\mu(\lambda)$$

for a probability measure $d\mu(\lambda)$. Hence we have

$$\Delta_{\sigma}(T) = \int_0^1 \left[(1 - \lambda)R_{|T|^{-1}} + \lambda L_{|T|^{-1}}\right]^{-1} d\mu(\lambda)U$$

$$= \int_0^1 \Delta_{H_\lambda}(T') \, d\mu(\lambda) = \int_0^1 \int_0^\infty e^{-\lambda t |T|^{-1}} U e^{-(1-\lambda)t |T|^{-1}} \, dt \, d\mu(\lambda).$$
Theorem 3.
Let $T ∈ B(ℋ)$ and let $σ$ be an operator mean. Then

$$Δ_σ(T) = T ⇔ |T|U = U|T| \text{ (i.e., } T \text{ is quasinormal)}.$$

Fixed Point	\tilde{T}	$Δ_σ(T)$
Fixed Point | $\tilde{T} = T ⇔ |T|U = U|T|$ (quasinormal) | Theorem 3 |
Iteration (finite dimensional case)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>\tilde{T}</th>
<th>$\Delta_\sigma(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converge (finite dim.)</td>
<td>Not converge (infinite dim.)</td>
<td>Theorem 4 (arithmetic mean case)</td>
</tr>
</tbody>
</table>

Theorem 4.
Let T be an invertible matrix and A be an non-weighted arithmetic mean. Then the sequence $\{\Delta^n_A(T)\}$ of n-th iterated mean transform converges to a normal matrix.
Iteration (infinite dimensional case)

Remarks.
● There exists a weighted shift operator s.t., \(\{ \Delta^n_G(T) \} \) does not converge, where \(G \) means a non-weighted geometric mean.

● There exists a weighted shift operator s.t., \(\{ \Delta^n_A(T) \} \) does not converge, where \(A \) means a non-weighted geometric mean by modification of the geometric mean case.

Problem.
Let \(T \) be a matrix, and \(G \) be an non-weighted geometric mean. Then can you give another proof that \(\{ \Delta^n_G(T) \} \) converge to a normal matrix by modification of the arithmetic mean case?

Iteration (infinite dimensional case)

- T: semi-hyponormal $\iff |T| \geq |T^*|$
- T: hyponormal $\iff |T|^2 \geq |T^*|^2$

Proposition 5.
Let T be an invertible semi-hyponormal operator and A be an non-weighted arithmetic mean. Then the sequence $\{\Delta^n_A(T)\}$ of n-th iterated mean transform converges to a quasinormal operator, strongly.

<table>
<thead>
<tr>
<th>If T is semi-hyponormal</th>
<th>\tilde{T}</th>
<th>$\Delta_\sigma(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\tilde{T} is hyponormal</td>
<td>$\Delta_A(T)$ is semihypo</td>
</tr>
<tr>
<td>Iteration</td>
<td>?</td>
<td>Proposition 5 (arithmetic mean case)</td>
</tr>
</tbody>
</table>
Numerical range

Definition 5 (Numerical range).
Let $T \in B(H)$. Then the **numerical range** $W(T)$ of T is defined by

$$W(T) = \{ \langle Tx, x \rangle \in \mathbb{C} : |x| = 1 \}.$$

Theorem B (Y. 2002, Patel-Y., 2005).
Let $T \in B(H)$. Then $\overline{W(\Delta_{G_\lambda}(T))} \subseteq W(T)$ for $\lambda \in [0, 1]$, where G_λ is a λ–weighted geometric mean.

<table>
<thead>
<tr>
<th></th>
<th>\tilde{T}</th>
<th>$\Delta_{\sigma}(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical range</td>
<td>$\overline{W(\tilde{T})} \subseteq \overline{W(T)}$</td>
<td>Theorems 5 and 6</td>
</tr>
</tbody>
</table>

Numerical range

Theorem 5.
Let $T \in B(H)$. Then $\mathcal{W}(\Delta_{\sigma_1}(T)) \subseteq \mathcal{W}(\Delta_{\sigma_2}(T))$ if σ_1 and σ_2 are symmetric operator means s.t., $\sigma_1 \preceq \sigma_2$, where $\sigma_1 \preceq \sigma_2$ means a matrix $\begin{bmatrix} \sigma_1(s_is_j) \\ \sigma_2(s_is_j) \end{bmatrix}$ is positive semi-definite for any $s_1, \ldots, s_n > 0$.

- σ is symmetric $\iff \sigma(A, B) = \sigma(B, A)$

Examples of $\sigma_1 \preceq \sigma_2$.
A: non-weighted arithmetic mean
L: logarithmic mean
G: non-weighted geometric mean
H: non-weighted harmonic mean

Then $H \preceq G \preceq L \preceq A$
Key theorems

- \(w(T) = \sup\{ |\lambda| \mid \lambda \in W(T) \} \): numerical radius

Theorem C.

\[
W(T) = \bigcap_{\mu \in \mathbb{C}} \{ \lambda : |\lambda - \mu| \leq w(T - \mu I) \}.
\]

Theorem D. Let \(T \in B(\mathcal{H}) \). Then \(w(T) \leq 1 \) is equivalent to

\[
\| T - zI \| \leq 1 + \left(1 + |z|^2 \right)^{\frac{1}{2}} \text{ for all } z \in \mathbb{C}.
\]

Theorem E. Let \(H, K \) be positive operators and \(\sigma_1, \sigma_2 \) are symmetric. Then **TFAE.**

1. \(\sigma_1 \preceq \sigma_2 \)
2. \(\| \sigma_1(H,K)X \| \leq \| \sigma_2(H,K)X \| \)

for all unitarily invariant norms and \(X \in B(\mathcal{H}) \).

Numerical range

Theorem 6.
Let $T \in B(H)$. Then $\overline{W(\Delta_\sigma(T))} \subseteq \overline{W(T)}$ if σ is the symmetric mean s.t., $\sigma \preceq A$ (A is a non-weighted arithmetic mean).

Examples.
- The non-weighted harmonic mean case. We have
 \[\overline{W(\Delta_H(T))} \subseteq \overline{W(T)} \]
 However, the weighted harmonic mean case is not shown.

- If a representing function f of an operator mean σ can be represented as
 \[f(x) = \int_0^1 x^\lambda d\mu(\lambda) \]
 for a probability vector, then
 \[\overline{W(\Delta_\sigma(T))} \subseteq \int_0^1 \overline{W(|T|^{1-\lambda}U|T|^{\lambda})}d\mu(\lambda) \subseteq \overline{W(T)} \]
Numerical range

Theorem 6.
Let $T \in B(\mathcal{H})$. Then $\overline{W(\Delta_{\sigma}(T))} \subseteq \overline{W(T)}$ if σ is the symmetric mean s.t., $\sigma \preceq A$ (A is a non-weighted arithmetic mean).

Problem.
Let $T \in B(\mathcal{H})$. Then does $\overline{W(\Delta_{\sigma}(T))} \subseteq \overline{W(T)}$ hold for all operator mean σ?
Thanks!

Thank you for your attention!