Induced Aluthge sequence of compact operators

Takeaki Yamazaki (Toyo University)

2023 ICMTA-China-Korea-Japan

December 1-4, 2023
This is a joint work with Professor Hiroyuki Osaka.

Contents

(1) Introduction

(2) Compact operators
(3) $\mathcal{A N}$ and $\mathcal{A M}$ operators
(4) An example in finite von Neumann algebra

contents

(1) Introduction

(2) Compact operators

(3) $\mathcal{A N}$ and $\mathcal{A M}$ operators
(4) An example in finite von Neumann algebra

Aluthge transform

$\mathcal{B}(H): C^{*}$-algebra of all bounded linear operators on a Hilbert space H.

Aluthge transform (Aluthge, IEOT 13 (1990), 307-315.)

Let $T=U|T| \in \mathcal{B}(H)$ be the polar decomposition. Then the Aluthge transform $\Delta(T)$ is defined by $\Delta(T)=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$.

Properties of Aluthge transform.

(1) $\sigma(T)=\sigma(\Delta(T))$. (Huruya, PAMS 125 (1997), 3617-3624.)
(2) T has an invariant subspace if and only if $\Delta(T)$ does so.
(Chō, Jung and Lee, IEOT 53 (2005), 321-329.)
(3) If T is a n-by- n matrix, then $\left\{\Delta^{n}(T)\right\}$ converges to a normal matrix as $n \rightarrow \infty$.
(Antezana, Pujals and Stojanoff, Adv. Math. 226 (2011), 1591-1620.)
(4) $\lim _{n \rightarrow \infty}\left\|\Delta^{n}(T)\right\|=r(T)$. (Y. PAMS 130 (2002), 1131-1137.)
(5) $\bigcap_{n \in \mathbb{N}} \overline{W\left(\Delta^{n}(T)\right)}=\operatorname{co} \sigma(T)$. (Ando, LAMA 52 (2004), 281-292.)

Mean transform

Mean transform (Lee, Lee and Yoon, JMAA 410 (2014), 70-81.)

Let $T=U|T| \in \mathcal{B}(H)$ be the polar decomposition. Then the mean transform \hat{T} is defined by $\hat{T}=\frac{|T| U+U|T|}{2}$.

Properties of Mean transform.

(1) If T is a matrix, then $\operatorname{Tr}(T)=\operatorname{Tr}(\hat{T})$.
(2) Unfortunately, $\sigma(T) \neq \sigma(\hat{T})$, generally. (Lee, Lee and Yoon, JMAA 410 (2014), 70-81.)
3 If T is a n-by- n matrix, then $\left\{\hat{T}^{(n)}\right\}$ converges to a normal matrix as $n \rightarrow \infty$, where $\hat{T}^{(n)}$ means the n-th iteration of mean transform. (Y. LAA 628 (2021), 1-28.)

Operator means

Operator mean (Kubo and Ando, Math. Ann. 246 (1979/80), 205-224.)
A binary operation $\mathfrak{m}: \mathcal{B}(H)_{+} \times \mathcal{B}(H)_{+} \rightarrow \mathcal{B}(H)_{+}$is called an operator mean if the following four conditions hold:
(1) If $A \leq C$ and $B \leq C$, then $\mathfrak{m}(A, B) \leq \mathfrak{m}(C, D)$.
(2) $X^{*} \mathfrak{m}(A, B) X \leq \mathfrak{m}\left(X^{*} A X, X^{*} B X\right)$ for all $X \in \mathcal{B}(H)$.
(3) If $A_{n} \searrow A$ and $B_{n} \searrow B$, then $\mathfrak{m}\left(A_{n}, B_{n}\right) \searrow \mathfrak{m}(A, B)$.
(4) $\mathfrak{m}(I, I)=I$.

Theorem. (Kubo and Ando, Math. Ann. 246 (1979/80), 205-224.)

For any operator mean \mathfrak{m}, there exists a positive operator monotone function f defined on $(0, \infty)$ such that $f(1)=1$ and

$$
\mathfrak{m}(A, B)=A^{\frac{1}{2}} f\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

Induced Aluthge transform

Define $\mathcal{P}_{f}(s, t):=s f\left(\frac{t}{s}\right)$.

Induced Aluthge transform (Y. LAA 628 (2021), 1-28.)

Let $T \in \mathcal{B}(H)$ be invertible with the polar decomposition $T=U|T|$, and let $|T|=\int_{\sigma(|T|)} s d E_{s}$ be the spectral decomposition. Then for any operator mean \mathfrak{m} with the representing function f, the induced Aluthge transformation $\Delta_{f}(T)$ with respect to \mathfrak{m} is defined as follows.

$$
\Delta_{f}(T):=\int_{\sigma(|T|)} \int_{\sigma(|T|)} \mathcal{P}_{f}(s, t) d E_{s} U d E_{t} .
$$

Define $\Delta_{f}^{n}(T):=\Delta_{f}\left(\Delta_{f}(T)\right)$ and $\Delta_{f}^{0}(T)=T$. We call $\left\{\Delta_{f}^{n}(T)\right\}$ induced Aluthge sequence. Properties of induced Aluthge transform.
(1) If T is a matrix, then $\operatorname{Tr}(T)=\operatorname{Tr}\left(\Delta_{f}(T)\right)$.
(2) Unfortunately, $\sigma(T) \neq \sigma\left(\Delta_{f}(T)\right)$ unless $f(t)=\sqrt{t}$.

Example.

Let $T=U|T| \in \mathcal{B}(H)$ be invertible, and $\lambda \in[0,1]$.
(i) Arithmetic mean. Let $f_{\lambda}(x)=1-\lambda+\lambda x$. Then

$$
\Delta_{f_{\lambda}}(T)=(1-\lambda)|T| U+\lambda U|T|
$$

Especially, $\Delta_{f_{1 / 2}}(T)=\hat{T}$ mean transform.
(ii) Geometric mean. Let $g_{\lambda}(x)=x^{\lambda}$. Then

$$
\Delta_{g_{\lambda}}(T)=|T|^{1-\lambda} U|T|^{\lambda}
$$

We obtain $\Delta_{g_{1 / 2}}=\Delta$, the Aluthge transform.
(iii) Power mean. For $r \in[-1,1] \backslash\{0\}$, let $f_{r, \lambda}(x)=\left[1-\lambda+\lambda x^{r}\right]^{\frac{1}{r}}$. Then

$$
\Delta_{f_{\frac{1}{n}, \lambda}}(T)=\left(\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k}|T|^{\frac{k}{n}} U|T|^{\frac{n-k}{n}}\right) .
$$

Question.

For any $T \in \mathcal{B}(H)$ and an positive operator monotone function f on $(0, \infty)$ such that $f(1)=1$, does $\left\{\Delta_{f}^{n}(T)\right\}$ converge?

Partial answers. Assume that $T \in \mathcal{B}(H)$ is invertible. No condition Semi-hypo Matrices

Arithmetic mean	$\times[5]$	$\bigcirc[3]$	$\bigcirc[5]$
Geometric mean	$\times[2]$	$\triangle[4]$	$\bigcirc[1]$
Power mean	$\times[5]$	$\triangle[4]$	$\triangle[4]$
General case	$\times[5]$	$\triangle[4]$	$\triangle[4]$

(1) T is semi-hypo \Longleftrightarrow $\left|T^{*}\right| \leq|T|$.
(2) $\triangle: T$ is centered \Longleftrightarrow $U^{* n}|T| U^{n},|T|, U^{m}|T| U^{* m}$ are commuting.
[1] Antezana, Pujals, Stojanoff, Adv. Math. 226 (2011), 1591-1620.
[2] Chō, Jung, Lee, IEOT 53 (2005), 321-329.
[3] Golla, Osaka, Udagawa, Y., Linear Algebra Appl. 678 (2023) 206-226.
[4] Osaka, Y., preprint.
[5] Y., LAA, 628 (2021), 1-28.

Question.

How about the compact operators case?

Contents

(1) Introduction

(2) Compact operators
(3) $\mathcal{A N}$ and $\mathcal{A M}$ operators
(4) An example in finite von Neumann algebra

Iteration

Let $T=U|T|$ be the polar decomposition and invertible, and let $n=0,1,2, \ldots$

Arithmetic mean case. (Chabbabi, Curto, Mbekhta, PAMS 147 (2019), 1119-1133.)

For $\lambda \in[0,1]$, let $f(x)=1-\lambda+\lambda x$. Then the polar decomposition of $\Delta_{f}^{n}(T)$ is given by

$$
\Delta_{f}^{n}(T)=U\left[\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} U^{* k}|T| U^{k}\right]
$$

Power mean case.(Osaka, Y., preprint.)
Let T be a centered operator. For $\lambda \in[0,1]$ and $r \in[-1,1] \backslash\{0\}$, let $f(x)=\left[1-\lambda+\lambda x^{r}\right]^{\frac{1}{r}}$. Then the polar decomposition of $\Delta_{f}^{n}(T)$ is given by

$$
\Delta_{f}^{n}(T)=U\left[\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} U^{* k}|T|^{r} U^{k}\right]^{\frac{1}{r}}
$$

Ergodic theorem

Theorem 1.

Let $T \in \mathcal{B}(H)$ be a contraction, i.e., $\|T\| \leq 1$ and $\lambda \in(0,1)$. Then, for every $v \in H$, the vector

$$
L_{n}(\lambda)(v)=\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} T^{k} v
$$

converges to $P v$ as $n \rightarrow \infty$, where P is the orthogonal projection of H onto its subspace $\operatorname{ker}(T-I)=\{x \in H \mid T x=x\}$.
$\lambda=\frac{1}{2}$ case has been shown by Dykema, Schultz, TAMS 361 (2009), 6583-6593.

Theorem 2.

Let $T \in \mathcal{B}(H)$ be a contraction, i.e., $\|T\| \leq 1$ and $\lambda \in(0,1)$. Then, for every $v \in H$, there exists $\lim _{n \rightarrow \infty} L_{n}(\lambda)(v)$, and it does not depend on λ.

Compact operators case.

Let $\mathcal{K}(H)$ and $\mathcal{F}(H)$ be the sets of all compact and finite rank operators in $\mathcal{B}(H)$, respectively.

Theorem 3. (Compact operators case)

For $\lambda \in(0,1)$ and $r \geq 0$, let $f_{r, \lambda}(x)=\left[1-\lambda+\lambda x^{r}\right]^{1 / r}$. Assume that $T=U|T| \in \mathcal{B}(H)$ is centered. If $T \in \mathcal{K}(H)$ or $T \in \mathcal{F}(H)$, then there exists $\lim _{n \rightarrow \infty} \Delta_{f_{r, \lambda}}^{n}(T)$. Moreover, the limit point does not depend on λ.

- If $r=1$, the centered condition of T is not needed.
- $f_{r, \lambda}(x)=\left[1-\lambda+\lambda x^{r}\right]^{1 / r}$ is a representing function of the power mean.
- $\lim _{r \rightarrow 0} f_{r, \lambda}(x)=x^{\lambda}$, a representing function of the geometric mean.

Sketch of the proof (finite rank operators case).

(1) Let $\mathcal{C}_{2}(H)$ be the Schatten class with a inner product $\langle A, B\rangle=\operatorname{Tr} B^{*} A$. Then $\mathcal{C}_{2}(H)$ is a Hilbert spaces, and $\mathcal{F}(H) \subset \mathcal{C}_{2}(H)$. Since the polar decomposition of $\Delta_{f}^{n}(T)$ is

$$
\Delta_{f}^{n}(T)=U\left[\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} U^{* k}|T|^{r} U^{k}\right]^{\frac{1}{r}}
$$

we consider the positive part only. Especially, we consider $\left|\Delta_{f}^{n}(T)\right|^{r}$.
Let $\alpha(X):=U^{*} X U$ on $\mathcal{F}(H)$. Then $\alpha \in \mathcal{B}(\mathcal{F}(H))$ and $\alpha^{n}(X):=U^{* n} X U^{n}$. Then by Theorem 1,

$$
L_{n}(\lambda)\left(|T|^{r}\right)=\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} \alpha^{k}\left(|T|^{r}\right)=\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} U^{* k}|T|^{r} U^{k}
$$

Sketch of the proof (compact operators case).

Let $\mathcal{K}(H)_{+}$(resp. $\mathcal{F}(H)_{+}$) be the set of all positive definite compact (resp. finite rank) operators, respectively.

Using the following fact and finite rank operators case, we can prove the compact operators case.

If $T \in \mathcal{K}(H)$, then $|T| \in \mathcal{K}(H)_{+}$and there exists $\left\{P_{m}\right\} \subset \mathcal{F}(H)_{+}$such that $\left\|P_{m}-|T|\right\| \rightarrow 0$ as $m \rightarrow \infty$. \square

Question.

Let $T \in \mathcal{K}(H)$. For any operator mean \mathfrak{m}, does $\left\{\Delta_{\mathfrak{m}}^{n}(T)\right\}$ converge as $n \rightarrow \infty$?

Contents

(1) Introduction

(2) Compact operators
(3) $\mathcal{A N}$ and $\mathcal{A M}$ operators
(4) An example in finite von Neumann algebra

$\mathcal{A N}$ and $\mathcal{A M}$ operators

$\mathcal{A N}$ operators (Carvajal, Neves, IEOT 72 (2012), 179-195).

T : absolutely norm attaining operator or $T \in \mathcal{A N}(H) . \Longleftrightarrow$ There exists a unit vector $x \in M$ such that $\left\|\left.T\right|_{M}\right\|=\left\|\left.T\right|_{M} x\right\|$ for all closed subspace $M \subseteq H$.

$\mathcal{A M}$ operators $([1,2])$.

T : absolutely minimal attaining operator or $T \in \mathcal{A} \mathcal{M}(H)$. \Leftrightarrow There exists a unit vector $x \in M$ such that $m\left(\left.T\right|_{M}\right)=\left\|\left.T\right|_{M} x\right\|$, where $m(T)=\inf \left\{\|T x\| \mid x \in S_{H_{1}}\right\}$ for all closed subspace $M \subseteq H$.
[1] Bala, Ramesh, Banach J. Math. Anal. 14 (2020), 630-649.
[2] Carvajal, Neves, Bull. Braz. Math. Soc. (N.S.) 45 (2014), 293-312.

$\mathcal{A N}$ and $\mathcal{A M}$ operators

(1) Class of $\mathcal{A N}$ operators contains compact operators.
(Carvajal, Neves, IEOT 72 (2012), 179-195.)
(2) If T is isometry then $T \in \mathcal{A N}(H) \cap \mathcal{A M}(H)$.
(3) If T is an orthogonal projection with a finite dimensional kernel, then $T \in \mathcal{A N}(H)$.
(Carvajal, Neves, IEOT 72 (2012), 179-195.)
(4) If T is a partial isometry with a finite dimensional kernel, then $T \in \mathcal{A N}(H)$. (Bala, Ramesh, Banach J. Math. Anal. 14 (2020), 630-649.)

Theorem 4.

For $\lambda \in(0,1)$ and $r \in[-1,1] \backslash\{0\}$, let $f_{r, \lambda}(x)=\left[1-\lambda+\lambda x^{r}\right]^{1 / r}$. Let $T=U|T| \in \mathcal{B}(H)$ be invertible and centered. If $T \in \mathcal{A} \mathcal{N}(H)$ (resp. $T \in \mathcal{A} \mathcal{M}(H)$). Then, there exists $\lim _{n \rightarrow \infty} \Delta_{f_{r, \lambda}}^{n}(T) \in \mathcal{A} \mathcal{N}(H)$ (resp. $\left.\mathcal{A} \mathcal{M}(H)\right)$. Moreover, the limit point does not depend on λ.

- If $r=1$, the centered condition of T is not needed.
- $f_{r, \lambda}(x)=\left[1-\lambda+\lambda x^{r}\right]^{1 / r}$ is a representing function of the power mean.
- $\lim _{r \rightarrow 0} f_{r, \lambda}(x)=x^{\lambda}$, a representing function of the geometric mean.

Sketch of the proof ($\mathcal{A N}$ operators case).

Let $T \in \mathcal{A} \mathcal{N}(H)$ with the polar decomposition $T=U|T|$. Then $|T| \in \mathcal{A} \mathcal{N}(H)_{+}$. Moreover $|T|^{r} \in \mathcal{A N}(H)_{+}$for $r \geq 0\left(|T|^{r} \in \mathcal{A M}(H)_{+}\right.$for $\left.r<0\right)$, and there exist $\alpha \geq 0, K \in \mathcal{K}(H)_{+}$ and $F \in \mathcal{F}(H)_{+}$such that

$$
|T|^{r}=\alpha I+K-F,
$$

$K F=O$ and $0 \leq F \leq \alpha I$. (Naidu, Ramesh, Proc. Indian Acad. Sci. (Math. Sci.) 129 (2019) 54.)
Hence by Theorem 3,

$$
\begin{aligned}
\left|\Delta_{f}^{n}(T)\right|^{r} & =\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} U^{* k}|T|^{r} U^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} U^{* k}(\alpha I+K-F) U^{k} \\
& =\alpha I+\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} U^{* k} K U^{k}-\sum_{k=0}^{n}\binom{n}{k}(1-\lambda)^{k} \lambda^{n-k} U^{* k} F U^{k}
\end{aligned}
$$

Sketch of the proof ($\mathcal{A M}$ operators case).

Let $T \in \mathcal{A M}(H)$ with the polar decomposition $T=U|T|$. Then $|T| \in \mathcal{A M}(H)_{+}$. Moreover $|T|^{r} \in \mathcal{A M}(H)_{+}$for $r \geq 0\left(|T|^{r} \in \mathcal{A N}(H)_{+}\right.$for $\left.r<0\right)$, and there exist $\alpha \geq 0, K \in \mathcal{K}(H)_{+}$ and $F \in \mathcal{F}(H)_{+}$such that

$$
|T|^{r}=\alpha I-K+F,
$$

$K F=O$ and $0 \leq K \leq \alpha I$. (Ganesh, Ramesh, Sukumar, JMAA 428 (2015) 457-470.)

By the same way to the $\mathcal{A N}$ operators case, we can prove Theorem 4.

Contents

(1) Introduction

(2) Compact operators
(3) $\mathcal{A N}$ and $\mathcal{A M}$ operators
(4) An example in finite von Neumann algebra

An example in finite von Neumann algebra

Let (X, μ) be a probability space, ϕ be an invertible, measure preserving transformation of X.
Consider the crossed product algebra $M=L^{\infty}(X, \mu) \rtimes_{\alpha_{\phi}} \mathbb{Z}$.

- There is a unitary U such that $\alpha_{\phi}(f)=U f U^{*}=f \circ \phi$ for all $f \in L^{\infty}(X, \mu)$.
- Linear span $\left\{U^{k} f \mid k \in \mathbb{Z}, f \in L^{\infty}(X, \mu)\right\}$ is strongly dense in M.
- Any element in $\left\{U^{k} f \mid k \in \mathbb{Z}, f \in L^{\infty}(X, \mu)\right\}$ is centered.

Theorem 5.

Let $T=U|T| \in M$ such that $|T| \in L^{\infty}(X, \mu)$. For $r \in[-1,1] \backslash\{0\}, \lambda \in(0,1)$ and $f_{r, \lambda}(x)=\left[1-\lambda+\lambda x^{r}\right]^{1 / r}$,

$$
\Delta_{f_{r, \lambda}}^{n}(T) \rightarrow U H(n \rightarrow \infty)
$$

in the strongly operator topology, where $H=\left(E^{\phi}\left(|T|^{r}\right)\right)^{1 / r}$.
The proofs are similar to Dykema, Schultz, TAMS 361 (2009), 6583-6593.

Conclusion.

Question.

For any $T \in \mathcal{B}(H)$ and an positive operator monotone function f on $(0, \infty)$ such that $f(1)=1$, does $\left\{\Delta_{f}^{n}(T)\right\}$ converge?

No condition Semi-hypo Matrices Compact $\mathcal{A N}$ and $\mathcal{A M}$

Arithmetic mean	$\times[5]$	$\bigcirc[3]$	$\bigcirc[5]$	\bigcirc	\bigcirc
Geometric mean	$\times[2]$	$\triangle[4]$	$\bigcirc[1]$	\triangle	\triangle
Power mean	$\times[5]$	$\triangle[4]$	$\triangle[4]$	\triangle	\triangle
General case	$\times[5]$	$\triangle[4]$	$\triangle[4]$	not yet	not yet

[1] Antezana, Pujals, Stojanoff, Adv. Math. 226 (2011), 1591-1620.
[2] Chō, Jung, Lee, IEOT 53 (2005), 321-329.
[3] Golla, Osaka, Udagawa, Y. Linear Algebra Appl. 678 (2023) 206-226.
[4] Osaka, Y., preprint.
[5] Y., LAA, 628 (2021), 1-28.

Thanks!

Thank you very much for your attention!

