Induced Aluthge sequence of compact operators

Takeaki Yamazaki (Toyo University)

2023 ICMTA-China-Korea-Japan

December 1–4, 2023 This is a joint work with Professor Hiroyuki Osaka.

1 Introduction

- **2** Compact operators
- 3 \mathcal{AN} and \mathcal{AM} operators
- 4 An example in finite von Neumann algebra

contents

1 Introduction

2 Compact operators

(3) \mathcal{AN} and \mathcal{AM} operators

4 An example in finite von Neumann algebra

Aluthge transform

• $\mathcal{B}(H)$: C^* -algebra of all bounded linear operators on a Hilbert space H.

Aluthge transform (Aluthge, IEOT 13 (1990), 307-315.)

Let $T = U|T| \in \mathcal{B}(H)$ be the polar decomposition. Then the Aluthge transform $\Delta(T)$ is defined by $\Delta(T) = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$.

Properties of Aluthge transform.

- **1** $\sigma(T) = \sigma(\Delta(T))$. (Huruya, PAMS **125** (1997), 3617–3624.)
- 2 T has an invariant subspace if and only if $\Delta(T)$ does so. (Chō, Jung and Lee, IEOT **53** (2005), 321–329.)
- **3** If T is a n-by-n matrix, then $\{\Delta^n(T)\}$ converges to a normal matrix as $n \to \infty$. (Antezana, Pujals and Stojanoff, Adv. Math. **226** (2011), 1591–1620.)
- (a) $\lim_{n \to \infty} \|\Delta^n(T)\| = r(T)$. (Y. PAMS **130** (2002), 1131–1137.)

5
$$\bigcap_{n \in \mathbb{N}} \overline{W(\Delta^n(T))} = \cos(T)$$
. (Ando, LAMA **52** (2004), 281–292.)

Mean transform

Mean transform (Lee, Lee and Yoon, JMAA 410 (2014), 70-81.)

Let $T = U|T| \in \mathcal{B}(H)$ be the polar decomposition. Then the mean transform \hat{T} is defined by $\hat{T} = \frac{|T|U+U|T|}{2}$.

Properties of Mean transform.

- **1** If T is a matrix, then $Tr(T) = Tr(\hat{T})$.
- **2** Unfortunately, $\sigma(T) \neq \sigma(\hat{T})$, generally. (Lee, Lee and Yoon, JMAA **410** (2014), 70–81.)
- **3** If T is a n-by-n matrix, then $\{\hat{T}^{(n)}\}\$ converges to a normal matrix as $n \to \infty$, where $\hat{T}^{(n)}$ means the n-th iteration of mean transform. (Y. LAA **628** (2021), 1–28.)

Operator means

Operator mean (Kubo and Ando, Math. Ann. 246 (1979/80), 205-224.)

A binary operation $\mathfrak{m} : \mathcal{B}(H)_+ \times \mathcal{B}(H)_+ \to \mathcal{B}(H)_+$ is called an operator mean if the following four conditions hold:

- 1 If $A \leq C$ and $B \leq C$, then $\mathfrak{m}(A, B) \leq \mathfrak{m}(C, D)$.
- $2 X^* \mathfrak{m}(A,B) X \leq \mathfrak{m}(X^*AX,X^*BX) \text{ for all } X \in \mathcal{B}(H).$
- **3** If $A_n \searrow A$ and $B_n \searrow B$, then $\mathfrak{m}(A_n, B_n) \searrow \mathfrak{m}(A, B)$.

Theorem. (Kubo and Ando, Math. Ann. 246 (1979/80), 205-224.)

For any operator mean m, there exists a positive operator monotone function f defined on $(0,\infty)$ such that f(1)=1 and

$$\mathfrak{m}(A,B) = A^{\frac{1}{2}} f(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^{\frac{1}{2}}$$

Induced Aluthge transform

• Define
$$\mathcal{P}_f(s,t) := sf(\frac{t}{s})$$
.

Induced Aluthge transform (Y. LAA 628 (2021), 1–28.)

Let $T \in \mathcal{B}(H)$ be invertible with the polar decomposition T = U|T|, and let $|T| = \int_{\sigma(|T|)} sdE_s$ be the spectral decomposition. Then for any operator mean \mathfrak{m} with the representing function f, the induced Aluthge transformation $\Delta_f(T)$ with respect to \mathfrak{m} is defined as follows.

$$\Delta_f(T) := \int_{\sigma(|T|)} \int_{\sigma(|T|)} \mathcal{P}_f(s, t) dE_s U dE_t.$$

Define $\Delta_f^n(T) := \Delta_f(\Delta_f(T))$ and $\Delta_f^0(T) = T$. We call $\{\Delta_f^n(T)\}$ induced Aluthge sequence. Properties of induced Aluthge transform.

- 1 If T is a matrix, then $Tr(T) = Tr(\Delta_f(T))$.
- 2 Unfortunately, $\sigma(T) \neq \sigma(\Delta_f(T))$ unless $f(t) = \sqrt{t}$.

Example.

Let $T = U|T| \in \mathcal{B}(H)$ be invertible, and $\lambda \in [0, 1]$.

(i) Arithmetic mean. Let $f_{\lambda}(x) = 1 - \lambda + \lambda x$. Then

$$\Delta_{f_{\lambda}}(T) = (1 - \lambda)|T|U + \lambda U|T|.$$

Especially, $\Delta_{f_{1/2}}(T) = \hat{T}$ mean transform.

(ii) Geometric mean. Let $g_{\lambda}(x) = x^{\lambda}$. Then

$$\Delta_{g_{\lambda}}(T) = |T|^{1-\lambda} U|T|^{\lambda}.$$

We obtain $\Delta_{g_{1/2}} = \Delta$, the Aluthge transform.

(iii) Power mean. For $r \in [-1,1] \setminus \{0\}$, let $f_{r,\lambda}(x) = [1 - \lambda + \lambda x^r]^{\frac{1}{r}}$. Then

$$\Delta_{f_{\frac{1}{n},\lambda}}(T) = \left(\sum_{k=0}^{n} \binom{n}{k} (1-\lambda)^k \lambda^{n-k} |T|^{\frac{k}{n}} U|T|^{\frac{n-k}{n}}\right)$$

Question.

For any $T \in \mathcal{B}(H)$ and an positive operator monotone function f on $(0,\infty)$ such that f(1) = 1, does $\{\Delta_f^n(T)\}$ converge?

Partial answers. Assume that $T \in \mathcal{B}(H)$ is invertible.								
	No condition	Semi-hypo	Matrices					
Arithmetic mean	$\times [5]$	\bigcirc [3]	$\bigcirc [5]$					
Geometric mean	$\times [2]$	riangle[4]	$\bigcirc [1]$					
Power mean	$\times [5]$	riangle[4]	$\triangle[4]$					
General case	$\times [5]$	$\triangle[4]$	$\triangle[4]$					

1
$$T$$
 is semi-hypo \iff
 $|T^*| \le |T|.$
2 \triangle : T is centered \iff
 $U^{*n}|T|U^n, |T|, U^m|T|U^{*m}$

are commuting.

- [1] Antezana, Pujals, Stojanoff, Adv. Math. **226** (2011), 1591–1620.
- [2] Chō, Jung, Lee, IEOT 53 (2005), 321-329.
- [3] Golla, Osaka, Udagawa, Y., Linear Algebra Appl. 678 (2023) 206-226.
- [4] Osaka, Y., preprint.
- [5] Y., LAA, 628 (2021), 1–28.

Question.

How about the compact operators case?

Contents

1 Introduction

2 Compact operators

(3) \mathcal{AN} and \mathcal{AM} operators

4 An example in finite von Neumann algebra

Iteration

Let T=U|T| be the polar decomposition and invertible, and let $n=0,1,2,\ldots$

Arithmetic mean case. (Chabbabi, Curto, Mbekhta, PAMS 147 (2019), 1119-1133.)

For $\lambda \in [0,1]$, let $f(x) = 1 - \lambda + \lambda x$. Then the polar decomposition of $\Delta_f^n(T)$ is given by

$$\Delta_f^n(T) = U\left[\sum_{k=0}^n \binom{n}{k} (1-\lambda)^k \lambda^{n-k} U^{*k} |T| U^k\right]$$

Power mean case.(Osaka, Y., preprint.)

Let T be a centered operator. For $\lambda \in [0, 1]$ and $r \in [-1, 1] \setminus \{0\}$, let $f(x) = [1 - \lambda + \lambda x^r]^{\frac{1}{r}}$. Then the polar decomposition of $\Delta_f^n(T)$ is given by

$$\Delta_f^n(T) = U\left[\sum_{k=0}^n \binom{n}{k} (1-\lambda)^k \lambda^{n-k} U^{*k} |T|^r U^k\right]^{\frac{1}{r}}$$

.

Ergodic theorem

Theorem 1.

Let $T \in \mathcal{B}(H)$ be a contraction, i.e., $||T|| \leq 1$ and $\lambda \in (0,1)$. Then, for every $v \in H$, the vector

$$L_n(\lambda)(v) = \sum_{k=0}^n \binom{n}{k} (1-\lambda)^k \lambda^{n-k} T^k v$$

converges to Pv as $n \to \infty$, where P is the orthogonal projection of H onto its subspace $\ker(T-I) = \{x \in H | Tx = x\}.$

 $\lambda = \frac{1}{2}$ case has been shown by Dykema, Schultz, TAMS **361** (2009), 6583–6593.

Theorem 2.

Let $T \in \mathcal{B}(H)$ be a contraction, i.e., $||T|| \leq 1$ and $\lambda \in (0,1)$. Then, for every $v \in H$, there exists $\lim_{n\to\infty} L_n(\lambda)(v)$, and it does not depend on λ .

Compact operators case.

Let $\mathcal{K}(H)$ and $\mathcal{F}(H)$ be the sets of all compact and finite rank operators in $\mathcal{B}(H)$, respectively.

Theorem 3. (Compact operators case)

For $\lambda \in (0,1)$ and $r \ge 0$, let $f_{r,\lambda}(x) = [1 - \lambda + \lambda x^r]^{1/r}$. Assume that $T = U|T| \in \mathcal{B}(H)$ is centered. If $T \in \mathcal{K}(H)$ or $T \in \mathcal{F}(H)$, then there exists $\lim_{n \to \infty} \Delta_{f_{r,\lambda}}^n(T)$. Moreover, the limit point does not depend on λ .

- If r = 1, the centered condition of T is not needed.
- $f_{r,\lambda}(x) = [1 \lambda + \lambda x^r]^{1/r}$ is a representing function of the power mean.
- $\lim_{r \to 0} f_{r,\lambda}(x) = x^{\lambda}$, a representing function of the geometric mean.

Sketch of the proof (finite rank operators case).

(1) Let $C_2(H)$ be the Schatten class with a inner product $\langle A, B \rangle = \text{Tr}B^*A$. Then $C_2(H)$ is a Hilbert spaces, and $\mathcal{F}(H) \subset C_2(H)$. Since the polar decomposition of $\Delta_f^n(T)$ is

$$\Delta_f^n(T) = U \left[\sum_{k=0}^n \binom{n}{k} (1-\lambda)^k \lambda^{n-k} U^{*k} |T|^r U^k \right]^{\frac{1}{r}},$$

we consider the positive part only. Especially, we consider $|\Delta_f^n(T)|^r$.

Let $\alpha(X) := U^*XU$ on $\mathcal{F}(H)$. Then $\alpha \in \mathcal{B}(\mathcal{F}(H))$ and $\alpha^n(X) := U^{*n}XU^n$. Then by Theorem 1,

$$L_n(\lambda)(|T|^r) = \sum_{k=0}^n \binom{n}{k} (1-\lambda)^k \lambda^{n-k} \alpha^k (|T|^r) = \sum_{k=0}^n \binom{n}{k} (1-\lambda)^k \lambda^{n-k} U^{*k} |T|^r U^k$$

converges.

Sketch of the proof (compact operators case).

Let $\mathcal{K}(H)_+$ (resp. $\mathcal{F}(H)_+$) be the set of all positive definite compact (resp. finite rank) operators, respectively.

Using the following fact and finite rank operators case, we can prove the compact operators case.

If $T \in \mathcal{K}(H)$, then $|T| \in \mathcal{K}(H)_+$ and there exists $\{P_m\} \subset \mathcal{F}(H)_+$ such that $||P_m - |T||| \to 0$ as $m \to \infty$. \Box

Question.

Let $T \in \mathcal{K}(H)$. For any operator mean \mathfrak{m} , does $\{\Delta^n_{\mathfrak{m}}(T)\}$ converge as $n \to \infty$?

Contents

1 Introduction

2 Compact operators

$\textbf{3} \hspace{0.1 cm} \mathcal{A} \mathcal{N} \hspace{0.1 cm} \text{and} \hspace{0.1 cm} \mathcal{A} \mathcal{M} \hspace{0.1 cm} \text{operators}$

4 An example in finite von Neumann algebra

$\mathcal{A}\mathcal{N}$ and $\mathcal{A}\mathcal{M}$ operators

AN operators (Carvajal, Neves, IEOT 72 (2012), 179–195).

T: absolutely norm attaining operator or $T \in \mathcal{AN}(H)$. \iff There exists a unit vector $x \in M$ such that $||T|_M|| = ||T|_M x||$ for all closed subspace $M \subseteq H$.

\mathcal{AM} operators ([1,2]).

T: absolutely minimal attaining operator or $T \in \mathcal{AM}(H)$. \Leftrightarrow There exists a unit vector $x \in M$ such that $m(T|_M) = ||T|_M x||$, where $m(T) = \inf\{||Tx|| \mid x \in S_{H_1}\}$ for all closed subspace $M \subseteq H$.

Bala, Ramesh, Banach J. Math. Anal. **14** (2020), 630–649.
Carvajal, Neves, Bull. Braz. Math. Soc. (N.S.) **45** (2014), 293–312.

$\mathcal{A}\mathcal{N}$ and $\mathcal{A}\mathcal{M}$ operators

- Class of AN operators contains compact operators. (Carvajal, Neves, IEOT 72 (2012), 179–195.)
- **2** If T is isometry then $T \in \mathcal{AN}(H) \cap \mathcal{AM}(H)$.
- **3** If T is an orthogonal projection with a finite dimensional kernel, then $T \in \mathcal{AN}(H)$. (Carvajal, Neves, IEOT 72 (2012), 179–195.)
- **4** If T is a partial isometry with a finite dimensional kernel, then $T \in \mathcal{AN}(H)$. (Bala, Ramesh, Banach J. Math. Anal. 14 (2020), 630–649.)

Theorem 4.

For $\lambda \in (0,1)$ and $r \in [-1,1] \setminus \{0\}$, let $f_{r,\lambda}(x) = [1 - \lambda + \lambda x^r]^{1/r}$. Let $T = U|T| \in \mathcal{B}(H)$ be invertible and centered. If $T \in \mathcal{AN}(H)$ (resp. $T \in \mathcal{AM}(H)$). Then, there exists $\lim_{n \to \infty} \Delta_{f_{r,\lambda}}^n(T) \in \mathcal{AN}(H)$ (resp. $\mathcal{AM}(H)$). Moreover, the limit point does not depend on λ .

- If r = 1, the centered condition of T is not needed.
- $f_{r,\lambda}(x) = [1 \lambda + \lambda x^r]^{1/r}$ is a representing function of the power mean.
- $\lim_{r \to 0} f_{r,\lambda}(x) = x^{\lambda}$, a representing function of the geometric mean.

Sketch of the proof (AN operators case).

Let $T \in \mathcal{AN}(H)$ with the polar decomposition T = U|T|. Then $|T| \in \mathcal{AN}(H)_+$. Moreover $|T|^r \in \mathcal{AN}(H)_+$ for $r \ge 0$ ($|T|^r \in \mathcal{AM}(H)_+$ for r < 0), and there exist $\alpha \ge 0$, $K \in \mathcal{K}(H)_+$ and $F \in \mathcal{F}(H)_+$ such that

$$|T|^r = \alpha I + K - F,$$

KF = O and $0 \le F \le \alpha I$. (Naidu, Ramesh, Proc. Indian Acad. Sci. (Math. Sci.) 129 (2019) 54.)

Hence by Theorem 3,

$$\begin{split} |\Delta_f^n(T)|^r &= \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right) (1-\lambda)^k \lambda^{n-k} U^{*k} |T|^r U^k \\ &= \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right) (1-\lambda)^k \lambda^{n-k} U^{*k} (\alpha I + K - F) U^k \\ &= \alpha I + \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right) (1-\lambda)^k \lambda^{n-k} U^{*k} K U^k - \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right) (1-\lambda)^k \lambda^{n-k} U^{*k} F U^k \end{split}$$

converges.

T. Yamazaki (2023 ICMTA-China-Korea-Japan)

Sketch of the proof (\mathcal{AM} operators case).

Let $T \in \mathcal{AM}(H)$ with the polar decomposition T = U|T|. Then $|T| \in \mathcal{AM}(H)_+$. Moreover $|T|^r \in \mathcal{AM}(H)_+$ for $r \ge 0$ ($|T|^r \in \mathcal{AN}(H)_+$ for r < 0), and there exist $\alpha \ge 0$, $K \in \mathcal{K}(H)_+$ and $F \in \mathcal{F}(H)_+$ such that

$$|T|^r = \alpha I - K + F,$$

KF = O and $0 \le K \le \alpha I$. (Ganesh, Ramesh, Sukumar, JMAA 428 (2015) 457–470.)

By the same way to the \mathcal{AN} operators case, we can prove Theorem 4.

Contents

Introduction

- 2 Compact operators
- $\textcircled{\textbf{3}}~\mathcal{AN}~\text{and}~\mathcal{AM}~\text{operators}$
- 4 An example in finite von Neumann algebra

An example in finite von Neumann algebra

Let (X, μ) be a probability space, ϕ be an invertible, measure preserving transformation of X.

Consider the crossed product algebra $M = L^{\infty}(X, \mu) \rtimes_{\alpha_{\phi}} \mathbb{Z}.$

- There is a unitary U such that $\alpha_{\phi}(f) = U f U^* = f \circ \phi$ for all $f \in L^{\infty}(X, \mu)$.
- Linear span $\{U^k f \mid k \in \mathbb{Z}, f \in L^{\infty}(X, \mu)\}$ is strongly dense in M.
- Any element in $\{U^k f \mid k \in \mathbb{Z}, f \in L^{\infty}(X, \mu)\}$ is centered.

Theorem 5.

Let $T = U|T| \in M$ such that $|T| \in L^{\infty}(X, \mu)$. For $r \in [-1, 1] \setminus \{0\}$, $\lambda \in (0, 1)$ and $f_{r,\lambda}(x) = [1 - \lambda + \lambda x^r]^{1/r}$, $\Delta_{f_{r,\lambda}}^n(T) \to UH \ (n \to \infty)$

in the strongly operator topology, where $H=(E^{\phi}(|T|^r))^{1/r}.$

The proofs are similar to Dykema, Schultz, TAMS **361** (2009), 6583–6593.

Conclusion.

Question.

For any $T \in \mathcal{B}(H)$ and an positive operator monotone function f on $(0,\infty)$ such that f(1) = 1, does $\{\Delta_f^n(T)\}$ converge?

	No condition	Semi-hypo	Matrices	Compact	${\cal AN}$ and ${\cal AM}$
Arithmetic mean	$\times [5]$	$\bigcirc [3]$	$\bigcirc [5]$	0	0
Geometric mean	$\times [2]$	$\triangle[4]$	$\bigcirc [1]$	\bigtriangleup	\bigtriangleup
Power mean	$\times [5]$	$\triangle[4]$	$\triangle[4]$	\bigtriangleup	\bigtriangleup
General case	$\times [5]$	$\triangle[4]$	$\triangle[4]$	not yet	not yet

[1] Antezana, Pujals, Stojanoff, Adv. Math. **226** (2011), 1591–1620.

- [2] Chō, Jung, Lee, IEOT 53 (2005), 321-329.
- [3] Golla, Osaka, Udagawa, Y. Linear Algebra Appl. 678 (2023) 206–226.
- [4] Osaka, Y., preprint.
- [5] Y., LAA, **628** (2021), 1–28.

Thanks!

Thank you very much for your attention!