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Abstract
We give a characterization of chaotic order via an arbitrary operator mean � as fol-
lows. For p, r > 0 , 

for all � ≥ 0 , where A and B are positive invertible operators, h is a normalized oper-
ator monotone function on (0,∞) satisfying h(ts) ≤ h(t)s for all t > 0 , s ≥ 1 and 
h�(1) =

r

p+r
 . It is a generalization of the well-known characterization of chaotic order 

using operator geometric mean. We also obtain Furuta type inequalities via operator 
means. As applications of the result, we generalize an asymmetric Kadison’s ine-
quality as follows: 

for all p, q, �,� ≥ 0 satisfying 2�(p� + q�) ≤ p + 2q� , q ≤ 2�(p� + q�) ≤ 2q , 
0 ≤ p ≤ q and unital positive linear map �.

logA ≥ logB if and only if A−r� �h B
p�

≤ I,

h�

(
|||
�(Ap)��(Aq)�

|||

2
)

≤ �(A2�(p�+q�))
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1 Introduction

Let H be a complex Hilbert space with inner product ⟨ ⋅ , ⋅ ⟩ and B(H) be the set of 
all bounded linear operators on H . An operator A is said to be positive if ⟨Ax, x⟩ ≥ 0 
for all x ∈ H , denoted by A ≥ 0 . For self-adjoint operators A and B, A ≥ B means 
that A − B ≥ 0 . An operator A is positive definite if ⟨Ax, x⟩ > 0 . Here, P and S repre-
sents the set of all positive definite operators and self-adjoint operators, respectively. A 
real valued function f defined on an interval I ⊆ ℝ is said to be operator monotone if 
A ≥ B implies f (A) ≥ f (B) for self-adjoint operators A, B whose spectra are contained 
in I  . A continuous function f defined on an interval I ⊂ ℝ is operator concave on I  
if f ((1 − �)A + �B) ≥ (1 − �)f (A) + �f (B) for all real number 0 ≤ � ≤ 1 and for self-
adjoint operators A, B whose spectra are contained in I  . It is well-known that a positive 
continuous function f on (0,∞) is operator monotone if and only if it is operator con-
cave [3, 14].

Kubo and Ando [12] obtain that for a given positive operator monotone function 
f on (0,∞) , one can define the binary operation �f  on positive operators A and B as 
follows:

We call �f  the operator connection associated with f. An operator monotone function 
f on (0,∞) is said to be normal if f (1) = 1 . In what follows, by O+ we indicate the 
set of positive normalized operator monotone functions on (0,∞) . If f ∈ O

+ then 
f �(1) = w ∈ [0, 1] , and �f  is called the (w-)weighted operator mean with a represent-
ing function f. The operator mean corresponding to the operator monotone function 
f (x) = 1 − w + wx , denoted by ∇w , is called the weighted arithmetic mean. The 
operator mean corresponding to the operator monotone function 
f (x) = [1 − w + wx−1]−1 , denoted by !w , is called the weighted harmonic mean. 
When f (x) = xw , the associated mean is denoted by ♯w and is called the weighted 
geometric mean. We write ∇, ♯ and ! for ∇ 1

2

, ♯ 1

2

 and ! 1

2

 , respectively.
Let A and B be positive definite operators. Fujii et al. [5] proved the following 

equivalence relation.

It is known as the essential part of the Furuta inequality [6].
In Sect.  2, we shall generalize the above characterization of the chaotic order 

(logB ≤ logA) as follows.

A�f B = A1∕2f (A−1∕2BA−1∕2)A1∕2.

logB ≤ logA ⟺ A−r ♯ r

p+r

Bp
≤ I for all p, r ≥ 0.

logB ≤ logA ⟺ A−r� �h B
p�

≤ I for all � ≥ 0,
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where h ∈ O
+ such that h(ts) ≤ h(t)s for all s ≥ 1 , t > 0 , h�(1) = r

p+r
 and the operator 

mean �h satisfies ! r

p+r

≤ �h ≤ ∇ r

p+r

.
Let H , K be complex Hilbert spaces. A map � ∶ B(H) → B(K) is called a positive 

unital linear map if and only if � is linear, �(IH) = IK and �(A) ≥ 0 for all A ≥ 0 , 
where IH and IK are identity operators on H and K , respectively. Bourin and Ricard 
[4] show an interesting asymmetric Kadison’s inequality for a positive operator A as 
follows.

Furuta obtained a generalization of this inequality in [8], and then a further exten-
sion is given in [11, 19].

In Sect. 3, we shall improve the above Kadison’s inequalities for a positive opera-
tor A as follows:

For each � ∈ [0, 1] , let h� ∈ O
+ such that h(ts) ≤ h(t)s for all s ≥ 1 , t > 0 , and the 

operator mean �h satisfies ! ≤ �h ≤ ∇ . Then

for p, q, �,� ≥ 0 such that 0 ≤ p ≤ q , 2�(p� + q�) ≤ p + 2q� , q ≤ 2�(p� + q�) ≤ 2q 
and unital positive linear map �.

2  Characterizations of chaotic order via operator means

Recall that the famous Lie–Trotter formula is stating that

for A,B ∈ S . To prove our main results, we need the operator-mean variant of the 
Lie–Trotter formula in the following lemma.

Lemma 2.1 [9, page 16] Let h ∈ O
+ such that h�(1) = w ∈ [0, 1] and its associated 

operator mean �h satisfies !w ≤ �h ≤ ∇w. Let A,B ∈ S. Then

Wada [16] gave generalizations of the Ando–Hiai inequality [2]. They are charac-
terized by the power monotone increasing functions and power monotone decreas-
ing functions as in Lemmas 2.2 and 2.3.

Lemma 2.2 (Ando–Hiai type inequality 1, [16]) Let h ∈ O
+. Then the following 

statements are equivalent: 

(1)|�(Ap)�(Aq)| ≤ �(Ap+q) for 0 ≤ p ≤ q.

h�

(
|||
�(Ap)��(Aq)�

|||

2
)

≤ �(A2�(p�+q�))

eA+B = lim
p→0

(
e

pA

2 epBe
pA

2

) 1

p

e(1−w)A+wB = lim
p→0

(
(epA)�h(e

pB)
) 1

p .
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 (i) h(ts) ≤ h(t)s for all t > 0, s ≥ 1;

 (ii) A�hB ≤ I ⟹ As�hB
s ≤ I for all A,B ∈ P and s ≥ 1.

Lemma 2.3 (Ando–Hiai type inequality 2, [16]) Let g ∈ O
+. Then the following 

statements are equivalent: 

 (i) g(t)s ≤ g(ts) for all t > 0, s ≥ 1;

 (ii) A�gB ≥ I ⟹ As�gB
s ≥ I for all A,B ∈ P and s ≥ 1.

Recently, Wada and one of the author [17] (see also [15]) had proved a converse 
of Loewner–Heinz inequality in the view point of operator means as follows: Let 
f , h ∈ O

+ with h�(1) = w ∈ [0, 1] . For A,B ∈ S,

for all sufficiently small � ≥ 0 . The following Theorems 2.4 give more precise dis-
cussion of this relation.

Theorem 2.4 Let f , h ∈ O
+ with h�(1) = w ∈ [0, 1] such that h(ts) ≤ h(t)s for all 

s ≥ 1, t > 0 and the operator mean �h satisfies !w ≤ �h ≤ ∇w. Then for A,B ∈ S, the 
following statements are equivalent: 

 (i) wB ≤ (1 − w)A;

 (ii) f (−�A + I) �h f (�B + I) ≤ I for all sufficiently small � ≥ 0;

 (iii) e−rA�he
rB ≤ I for all r ≥ 0.

Proof (i) ⟹ (ii) : Let us assume that wB ≤ (1 − w)A . For sufficiently small 𝜆 > 0 , 
we have −�A + I, �B + I ∈ P and

Consequently, we have

where the second inequality follows from concavity of f and the last inequality fol-
lows from f ∈ O

+.
(ii) ⟹ (iii) : Let 0 < 𝜆 ≤ p . By Lemma 2.2,

Letting � → 0 , we get lim�→0 f (�A + I)1∕� = ef
�(1)A. Hence, we have

as � → 0 . By putting r = f �(1)p ≥ 0 , we have (iii).

wB ≤ (1 − w)A ⟺ f (−�A + I)�hf (�B + I) ≤ I

(1 − w)(−�A + I) + w(�B + I) ≤ I.

f (−�A + I) �h f (�B + I) ≤ f (−�A + I) ∇w f (�B + I)

= (1 − w)f (−�A + I) + wf (�B + I)

≤ f ((1 − w)(−�A + I) + w(�B + I)) ≤ I,

f (−�A + I)
p

� �h f (�B + I)
p

� ≤ I.

f (−�A + I)
p

� �h f (�B + I)
p

� → e−f
�(1)pA �h e

f �(1)pB
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(iii) ⟹ (i):
We get

By the assumption !w ≤ �h ≤ ∇w and Lemma 2.1, we have

Therefore, we conclude wB ≤ (1 − w)A .   ◻

As a consequence of Theorem 2.4, we generalize a characterization of chaotic order.

Theorem  2.5 Let g, h ∈ O
+ such that h(ts) ≤ h(t)s and g(t)s ≤ g(ts) for all s ≥ 1, 

p, r, t > 0, h�(1) = g�(1) =
r

p+r
 and the operator means �g and �h satisfy 

! r

p+r

≤ �h ≤ ∇ r

p+r

 and ! r

p+r

≤ �g ≤ ∇ r

p+r

, respectively. Then for any A,B ∈ P, the fol-
lowing statements are equivalent: 

 (i) logB ≤ logA;

 (ii) A−r��hB
p� ≤ I for all � ≥ 0;

 (iii) Ar��gB
−p� ≥ I for all � ≥ 0.

Proof Proof of (i) ⟹ (ii) . The assumption logB ≤ logA is equivalent to

so we have

for all � ≥ 0 by applying Theorem 2.4.
Proof of (ii) ⟹ (i) . It is immediate from Theorem 2.4.
Proof of (i) ⟺ (iii) . Let g1(t) ∶= g(t−1)−1 . Then g1 ∈ O

+ , g�
1
(1) =

r

p+r
 and 

g1(t
s) ≤ g1(t)

s holds for all s ≥ 1 and t > 0 . By using (i) ⟺ (ii) , we have

Here we notice that

(
e−rA𝜎he

rB
) 1

r ≤ I for all r > 0.

exp [−(1 − w)A + wB] = lim
r→0

(
e−rA�he

rB
) 1

r ≤ I.

r

p + r
logBp

≤
p

p + r
logAr,

A−r��hB
p�

≤ I

logB ≤ logA ⟺ A−r��g1B
p�

≤ I for all � ≥ 0.

A−r��g1B
p� = A

−
r�

2 g1(A
r�

2 Bp�A
r�

2 )A
−

r�

2

= A
−

r�

2 g(A
−

r�

2 B−p�A
−

r�

2 )−1A
−

r�

2

=

[
A

r�

2 g(A
−

r�

2 B−p�A
−

r�

2 )A
r�

2

]−1

=
[
Ar��gB

−p�
]−1

.
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Therefore, we obtain

The proof is completed.   ◻

The following corollary is well known characterization of chaotic order which 
is obtained by putting h(t) = t

r

p+r in Theorem 2.5.

Corollary 2.6 [1, 5, 7] Let A, B ∈ P. Then the following are equivalent. 

 (i) logB ≤ logA;

 (ii) A−r ♯ r

p+r

Bp ≤ I for all p, r > 0.

Proof Put h(t) = t
r

p+r in Theorem 2.5.   ◻

Using Theorem 2.5, we have Furuta type inequalities. Before introducing the 
results, we shall introduce the Furuta inequality [6] for the readers convenience.

Theorem 2.7 (Furuta inequality, [6]) If 0 ≤ B ≤ A, then for each r ≥ 0,

hold for p ≥ 0 and q ≥ 1 with p + r ≤ (1 + r)q.

We obtain the following Furuta type inequalities.

Theorem  2.8 (Furuta type inequality 1) Let A,B ∈ P and {h𝛼}𝛼∈[0,1] ⊂ O
+ 

such that for each � ∈ [0, 1], h�(ts) ≤ h�(t)
s for all s ≥ 1, t > 0 and h�

�
(1) = � 

and the operator mean �h satisfies !� ≤ �h� ≤ ∇� . Assume that h�� = h�◦h� and 
th�(t

−1) = h1−�(t) hold for all �, � ∈ [0, 1] and all t > 0.

If logB ≤ logA, then

holds for all p, r ≥ 0 and q ≥ 1 such that rq ≤ p + r.

Moreover, if 0 ≤ B ≤ A, then

holds for all p, r ≥ 0 and q ≥ 1 such that p + r ≤ (1 + r)q.

Theorem  2.9 (Furuta type inequality 2) Let A,B ∈ P and {g𝛼}𝛼∈[0,1] ⊂ O
+ 

such that for each � ∈ [0, 1], g�(t)s ≤ g�(t
s) for all s ≥ 1, t > 0 and g�

�
(1) = � 

logB ≤ logA ⟺ A−r��g1B
p�

≤ I for all � ≥ 0

⟺ Ar��gB
−p�

≥ I for all � ≥ 0.

B
p+r

q ≤ (B
r

2ApB
r

2 )
1

q and (A
r

2BpA
r

2 )
1

q ≤ A
p+r

q

h 1

q

(A
r

2BpA
r

2 ) ≤ A
r

2 h p+r−rq

pq

(Bp)A
r

2

h 1

q

(A
r

2BpA
r

2 ) ≤ A
p+r

q
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and the operator mean �g satisfies !� ≤ �g� ≤ ∇� . Assume that g�� = g�◦g� and 
tg�(t

−1) = g1−�(t) hold for all �, � ∈ [0, 1] and all t > 0.

If logB ≤ logA, then

holds for all p, r ≥ 0 and q ≥ 1 such that rq ≤ p + r.

Moreover, if 0 ≤ B ≤ A, then

holds for all p, r ≥ 0 and q ≥ 1 such that p + r ≤ (1 + r)q.

Generalizations of Furuta inequality have been considered in [13, 16]. How-
ever, the above theorems are new type of generalizations. It can be seemed as 
“mean theoretic generalization of Furuta inequality” [10] .

To prove Theorem 2.8, we prepare the following lemmas.

Lemma 2.10 [18] Let h be a positive differential function defined on (0,∞) such 
that h(1) = 1. Then the following hold: 

 (i) if h(ts) ≤ h(t)s holds for all t > 0 and s ≥ 1, then h(t) ≤ th
�(1);

 (ii) if h(t)s ≤ h(ts) holds for all t > 0 and s ≥ 1, then th�(1) ≤ h(t).

Proof Proof of (i). By the assumption h(ts) ≤ h(t)s , we have h(t) ≤ h(t
1

s )s for all s ≥ 1 
and t > 0 . Since h(1) = 1 , we have

(ii) can be proven by the same way.   ◻

Lemma 2.11 Let h ∈ O
+ such that h�(1) = � ∈ [0, 1]. Then for any A,B ∈ P,

where h̃(t) ∶= th(t−1) is the transpose of h.

We remark that if h�(1) = � ∈ [0, 1] , then h̃�(1) = 1 − 𝛼.

Proof We can prove Lemma 2.11, immediately. By the definition of the transpose, 
we have

i.e.,

B
r

2 g p+r−rq

pq

(Ap)B
r

2 ≤ g 1

q

(B
r

2ApB
r

2 )

B
p+r

q ≤ g 1

q

(B
r

2ApB
r

2 )

h(t) ≤ lim
s→∞

h(t
1

s )s = th
�(1).

h(A
1

2BA
1

2 ) = A
1

2B
1

2 h̃(B
−1

2 A−1B
−1

2 )B
1

2A
1

2 ,

A−1𝜎hB = B𝜎h̃A
−1,
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It is equivalent to the desired formula.   ◻

Proof of Theorem 2.8 logB ≤ logA ensures logA−1 ≤ logB−1 , and by Theorem 2.5,

for all p, r ≥ 0 . Then we have

Therefore, we can obtain the first inequality in Theorem 2.8.
Next we shall prove the second inequality. Assume 0 ≤ B ≤ A . Since 

h�(t
s) ≤ h�(t)

s holds for all s ≥ 1 and t > 0 , by Lemma 2.10(i), we have

where the last inequality follows from B ≤ A and rq ≤ p + r ≤ (1 + r)q.
Let q′ ≥ q . Then q

q�
∈ [0, 1] . By (3) and Lemma 2.10(i), we have

for rq ≤ p + r ≤ (1 + r)q and q′ ≥ q ≥ 1 . We notice that the condition 
rq ≤ p + r ≤ (1 + r)q is equivalent to

Hence, we have

for p+r
1+r

≤ q� and q′ ≥ 1 ., i.e., p + r ≤ (1 + r)q� and q′ ≥ 1 .   ◻

Remark 2.12 By Theorem 2.8, if B ≤ A , then

holds for all p, r ≥ 0 and q ≥ 1 such that p + r ≤ (1 + r)q . It looks like a gener-
alization of the Furuta inequality. However, (4) follows from the Furuta inequality 

A
−

1

2 h(A
1

2BA
1

2 )A
−

1

2 = B
1

2 h̃(B
−

1

2A−1B
−

1

2 )B
1

2 .

(2)h p

p+r

(B
−p

2 A−rB
−p

2 ) ≤ B−p

h 1

q

(A
r

2BpA
r

2 ) = A
r

2B
p

2 h q−1

q

(B
−p

2 A−rB
−p

2 )B
p

2A
r

2 (Lemma 2.11)

= A
r

2B
p

2 h (q−1)(p+r)

pq

◦h p

p+r

(B
−p

2 A−rB
−p

2 )B
p

2A
r

2

≤ A
r

2B
p

2 h (q−1)(p+r)

pq

(B−p)B
p

2A
r

2 (h (q−1)(p+r)

pq

∈ O
+ and (2.1))

= A
r

2 h p+r−rq

pq

(Bp)A
r

2 (Lemma 2.11).

(3)h 1

q

(A
r

2BpA
r

2 ) ≤ A
r

2 h p+r−rq

pq

(Bp)A
r

2 ≤ A
r

2B
p+r−rq

q A
r

2 ≤ A
p+r

q ,

h 1

q�

(
A

r

2BpA
r

2

)
= h q

q�
◦h 1

q

(
A

r

2BpA
r

2

)
≤ h q

q�

(
A

p+r

q

)
≤ A

p+r

q�

p + r

1 + r
≤ q ≤

p + r

r
.

h 1

q�
(A

r

2BpA
r

2 ) ≤ A
p+r

q�

(4)h 1

q

(A
r

2BpA
r

2 ) ≤ A
p+r

q
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very easy as follows. Because h�(ts) ≤ h�(t)
s holds for all s ≥ 1 and t > 0 , we have 

h�(t) ≤ t� by Lemma 2.10(i). Then using Furuta inequality [6],

Proof of Theorem 2.9 Using Theorem 2.5, logB ≤ logA ensures

for all p, r ≥ 0 . The rest of proof is similar to the proof of Theorem 2.8.   ◻

Corollary 2.13 (Furuta type inequality for power means I) Let A,B ∈ P. If 
logB ≤ logA, then for each � ∈ [−1, 0),

holds for all p, r ≥ 0 and q ≥ 1 such that such that rq ≤ p + r.

Moreover, if B ≤ A, then we have

for all p, r ≥ 0 and q ≥ 1 such that p + r ≤ (1 + r)q.

Proof Let h�(t) ∶= [1 − � + �t�]
1

� . Then for any � ∈ [−1, 0) , h�(t) satisfies all condi-
tions in Theorem 2.8.   ◻

Corollary 2.14 (Furuta type inequality for power means II) Let A,B ∈ P. If 
logB ≤ logA, then for each � ∈ (0, 1],

holds for all p, r ≥ 0 and q ≥ 1 such that rq ≤ p + r.

Moreover, if B ≤ A, then we have

for all p, r ≥ 0 and q ≥ 1 such that p + r ≤ (1 + r)q.

Remark In Theorem  2.5, we proved a characterization of chaotic order. Here we 
have a question. Under the assumption of Theorem 2.5, is it true that

h 1

q

(A
r

2BpA
r

2 ) ≤ (A
r

2BpA
r

2 )
1

q ≤ A
p+r

q .

g r

p+r

(A
−r

2 B−pA
−r

2 ) ≥ A−r

[
q − 1

q
+

1

q
(A

r

2BpA
r

2 )�
] 1

�

≤ A
r

2

[
(p + r)(q − 1)

pq
+

p + r − rq

pq
Bp�

] 1

�

A
r

2

[
q − 1

q
I +

1

q
(A

r

2BpA
r

2 )�
] 1

�

≤ A
p+r

q

[
q − 1

q
+

1

q
(B

r

2ApB
r

2 )�
] 1

�

≥ B
r

2

[
(p + r)(q − 1)

pq
+

p + r − rq

pq
Ap�

] 1

�

B
r

2

[
q − 1

q
I +

1

q
(B

r

2ApB
r

2 )�
] 1

�

≥ B
p+r

q
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and

It is not true as the following example.

Let A =

(
3 1

1 2

)2

=

(
10 5

5 5

)

 and B =

(
2 0

0 1

)2

=

(
4 0

0 1

)

 . Then since 

A
1

2 − B
1

2 =

(
1 1

1 1

)

≥ 0 , we have logB ≤ logA.

Let h(t) =
[
1+t−1

2

]−1
 . Then h(ts) ≤ h(t)s holds for all s ≥ 1 , t > 0 and h�(1) = 1

2
 . 

By Theorem 2.5, we have

On the other hand,

Since A𝜎hB−1 − I =
1

73

(
−38 5

5 32

)

≱ 0 , we have A𝜎hB−1 ≱ I.

Let g(t) = 1+t

2
 . Then g(t)s ≤ g(ts) holds for all s ≥ 1 , t > 0 and g�(1) = 1

2
 . By 

Theorem 2.5, we have

On the other hand,

Since I − A−1𝜎gB =
1

10

(
−11 1

1 3

)

≱ 0 , we have A−1𝜎gB ≰ I.

Let f (t) = t
1

2 . Then f (ts) = f (t)s for all s ≥ 1 . Then by Theorem 2.8, we have

hold.

3  Inequalities relating to the Choi–Davis inequality

In this section, we will use the chaotic inequality proved in Sect. 2 to prove ine-
qualities related to Choi–Davis inequality as applications to Theorem 2.8.

logB ≤ logA ⟺ Ar��hB
−p�

≥ I for all � ≥ 0

logB ≤ logA ⟺ A−r��gB
p�

≤ I for all � ≥ 0?

A−�p�hB
�p

≤ I for all � ≥ 0.

A�hB
−1 =

[
A−1 + (B−1)−1

2

]−1
=

5

73

(
7 1

1 21

)

.

A�p�gB
−�p

≥ I for all � ≥ 0.

A−1�gB =
A−1 + B

2
=

1

10

(
21 − 1

−1 7

)

.

A�f B
−1

≥ I and A−1�f B ≤ I
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A linear map � is positive if �(A) ≥ 0 whenever A ≥ 0 and is said to be uni-
tal if �(I) = I . The inequality mentioned in the following lemma is called the 
Choi–Davis–Jensen inequality.

Lemma 3.1 [3] Let Φ be a unital positive linear map and A ≥ 0. Then

Theorem  3.2 Let {h𝛼}𝛼∈[0,1] ⊂ O
+ such that for each � ∈ [0, 1], h�(ts) ≤ h�(t)

s 
for all s ≥ 1, t > 0 and h�

�
(1) = � and the operator mean �h satisfies !� ≤ �h� ≤ ∇� . 

Assume that h�� = h�◦h� and th�(t−1) = h1−�(t) hold for all �, � ∈ [0, 1] and all 
t > 0. Let A ∈ P and � be a unital positive linear map. Then

holds for all p, q, �,� ≥ 0 such that 2�(p� + q�) ≤ p + 2q�, q ≤ 2�(p� + q�) ≤ 2q 
and 0 < p ≤ q.

Proof Let 0 < p ≤ q . Then by Lemma 3.1, �(Ap) ≤ �(Aq)
p

q . Applying Theorem 2.8, 
we find that

holds for s, t ≥ 0 and � ∈ (0, 1] such that �(s + t) ≤ 1 + t.
Put s = 2� ≥ 0 and t = 2q

p
� ≥ 0 . Then

holds for p, q, �,� ≥ 0 , � ∈ (0, 1] such that 2�(p� + q�) ≤ p + 2q�.
Moreover, if q ≤ 2�(p� + q�) ≤ 2q , then

The proof is completed.   ◻

By putting h�(t) = t� , � =
1

2
 and � = � = 1 , we have (1). Moreover, we have the 

following variations of asymmetric Kadison’s type inequalities.

Corollary 3.3 Let A ∈ P and � be a unital positive linear map. Then

holds for q ∈ [1, 2] and 0 < p ≤ q.

Proof Put h(t) = t� , � =
1

2
 � =

1

p
 and � =

1

q
 in Theorem 3.2.   ◻

�(Ap) ≤ �(A)p for 0 ≤ p ≤ 1 and

�(Ap) ≥ �(A)p for 1 ≤ p ≤ 2.

h�
(
|�(Ap)��(Aq)�|2

)
≤ �(A2�(p�+q�))

h�(�(A
q)

pt

2q�(Ap)s�(Aq)
pt

2q ) ≤ �(Aq)
p�(s+t)

q

h�
(
�(Aq)��(Ap)2��(Aq)�

)
≤ �(Aq)

2�(p�+q�)

q

�(Aq)
2�(p�+q�)

q ≤ �(A2�(p�+q�)).

|||
|
�(Ap)

1

p�(Aq)
1

q

|||
|
≤ �(A2).
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Corollary 3.4 Let A ∈ P and � be a unital positive linear map. Then

holds for p ∈ [
1

2
, 1] and 0 < p ≤ q.

Proof Put h(t) = t� , � =
1

2
 , � = q and � = p in Theorem 3.2.   ◻

The above corollaries are obtained by the main results in [19]. The following 
corollaries are Choi–Davis type inequalities induced by power mean. We notice 
that if A ∈ P is invertible, then there exists a positive real number 𝜀 > 0 such that 
0 ≤ �I ≤ A . Therefore, for any unital positive linear map � , 0 ≤ �I ≤ �(A) holds, 
and hence �(A) is invertible, too.

Corollary 3.5 Let A ∈ P be invertible and � be a unital positive linear map. Then 
for � ∈ [0, 1] and −1 ≤ r ≤ 0,

holds for all p, q, �,� ≥ 0 such that 2�(p� + q�) ≤ p + 2q�, q ≤ 2�(p� + q�) ≤ 2q 
and 0 < p ≤ q.

Proof Put h�(t) = [1 − � + �tr]
1

r in Theorem 3.2   ◻

Corollary 3.6 Let A ∈ P be invertible and � be a unital positive linear map. Then

holds for all p, q, �,� ≥ 0 such that p� ≤ p + q�, q ≤ p� + q� ≤ 2q and 0 < p ≤ q.

Proof Put � =
1

2
 and r = −

1

2
 in Corollary 3.5.   ◻
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