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1. Introduction

In this note, we study the stability of absolutely norm attaining property (AN -
property, for short) for the induced Aluthge transformation. Especially, we focus on 
the iteration of the mean transformation which is a special case of induced Aluthge 
transformation. We shall show that if an operator is a semi-hyponormal operator satis-
fying AN -property, then the limit of iteration of mean transformation of this operator 
satisfies AN -property, again.

1.1. Notations and terminologies

Throughout this note, we consider complex Hilbert spaces which will be denoted by 
H, H1, H2, etc. All the Hilbert spaces are assumed to be infinite dimensional. The inner 
product and the induced norm on H are denoted by 〈·, ·〉 and ‖ · ‖, respectively. The unit 
sphere of a subspace M of H is defined by SM := {x ∈ M : ‖x‖ = 1}. The orthogonal 
complement of M in H is denoted by M⊥.

We denote the space of all bounded linear operators from H1 into H2 by B(H1, H2)
and B(H, H) by B(H). We denote I by the identity operator on B(H). The null space 
and the range spaces of T are denoted by ker(T ) and R(T ), respectively. The adjoint of 
T ∈ B(H) is denoted by T ∗.

We say T ∈ B(H) to be normal if T ∗T = TT ∗, self-adjoint if T = T ∗. If 〈Tx, x〉 ≥ 0
for all x ∈ H, then T is called positive or positive semi definite. If A ⊆ B(H) is a 
nonempty subset, then the set of all positive elements in A is denoted by A+. Given 
T ∈ B(H)+, there exists a unique S ∈ B(H)+ such that S2 = T . This operator S is 
called the positive square root of T and it is denoted by T

1
2 .

If S, T ∈ B(H) are self-adjoint and S − T ≥ 0, then we write this by S ≥ T . If 
P ∈ B(H) is such that P 2 = P , then P is called a projection. In addition, if, ker(P ) and 
R(P ) are orthogonal to each other, then P is called an orthogonal projection.

A projection P is orthogonal if and only if it is self-adjoint if and only if it is normal. 
We say two orthogonal projections P and Q to be mutually orthogonal if R(P ) and 
R(Q) are orthogonal to each other. The orthogonal projection on a Hilbert space H
whose range is M is denoted by PM .

An operator V ∈ B(H) is said to be an isometry if ‖V x‖ = ‖x‖ for all x ∈ H and a 
partial isometry if V |ker(V )⊥ is an isometry. That is, ‖V x‖ = ‖x‖ for all x ∈ ker(V )⊥. 
We say V to be unitary if V ∈ B(H) is isometry and onto.

If T ∈ B(H), then T ∗T ∈ B(H) is positive and |T | := (T ∗T ) 1
2 is called the modulus

of T . In fact, for any T ∈ B(H), there exists a unique partial isometry V ∈ B(H) such 
that T = V |T | and ker(V ) = ker(T ). This factorization is called the polar decomposition
of T .

The space of all finite rank operators between H1 and H2 is denoted by F(H1, H2)
and we write F(H, H) = F(H). We denote the space of all compact operators between 
H1 and H2 by K(H1, H2). In case if H1 = H2 = H, then K(H1, H2) is denoted by K(H).
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An operator T ∈ B(H) is said to be

(i) quasinormal if T commutes with T ∗T , that is T (T ∗T ) = (T ∗T )T ,
(ii) hyponormal if T ∗T ≥ TT ∗, equivalently, ‖Tx‖ ≥ ‖T ∗x‖ holds for all x ∈ H,
(iii) semi-hyponormal if |T | ≥ |T ∗|.

It is to be mentioned that

Normal ⊂ Quasinormal ⊂ Hyponormal ⊂ Semi− hyponormal.

These inclusions are strict. We refer to [11] for more details about all these classes of 
operators.

For T ∈ B(H), the set

ρ(T ) := {λ ∈ C : There exists (T − λI)−1 ∈ B(H)}

is called the resolvent set and the complement σ(T ) = C \ ρ(T ) is called the spectrum of 
T . It is well-known that σ(T ) is a non-empty compact subset of C.

An operator T is Fredholm if and only if R(T ) is closed, dim ker(T ) < +∞ and 
codimR(T ) < +∞. The essential spectrum σess(T ) is defined as follows:

σess(T ) = {λ ∈ C : T − λI is not Fredholm}.

1.2. AN -operators

Next, we discuss norm attaining operators. An operator T : H1 → H2 is said to be a 
norm attaining or N -operator if there exists a unit vector x ∈ H1 such that ‖Tx‖ = ‖T‖
[6]. We denote the class of norm attaining operators between H1 and H2 by N (H1, H2)
and N (H, H) by N (H). It is known that N (H1, H2) is dense in B(H1, H2) with respect 
to the operator norm of B(H1, H2). We refer [10] for a simple proof of this fact.

Definition 1.1 ([22,23]). An operator T : H1 → H2 is said to be an absolutely norm 
attaining or an AN -operator if T |M , the restriction of T to M , is norm attaining for 
every non-zero closed subspace M of H1. If T is an AN -operator, we often say that T
has AN -property.

We denote the class of absolutely norm attaining operators between H1 and H2 by 
AN (H1, H2) and AN (H, H) by AN (H). We note that K(H) � AN (H) � N (H) [6].

This class was initiated by Carvajal and Neves in [6] and further studied in [4,12,
21,22,24]. This class includes the space of compact operators and the class of partial 
isometries with finite-dimensional null spaces. It is not closed under sum, while it closed 
with respect to the product of operators [12]. The sum of a compact operator and a 
partial isometry with finite-dimensional null space need not be an AN -operator, but 



R. Golla et al. / Linear Algebra and its Applications 678 (2023) 206–226 209
it is in the operator norm closure of AN -operators [25]. Characterizations of positive 
AN -operators are described in [21,22,24], while the study of self-adjoint, normal and 
paranormal AN -operators is done in [4,21,24]. The hyperinvariant subspace problem for 
this class is studied in [5]. The maps preserving AN -operators are discussed in [12]. The 
power of an AN -operator satisfies AN -property, too, but polynomials of an AN -operator 
need not be an AN -operator, as the sum need not be closed under product.

We recall the following characterizations of positive AN -operators which are very 
important in our study.

Theorem 1.2 ([22]). An operator T ∈ B(H)+ is an AN -operator if and only if there 
exists a non-negative number α, K ∈ K(H)+ and self-adjoint F ∈ F(H) such that

T = αI + K + F.

Theorem 1.3 ([23]). An operator T ∈ B(H)+ is an AN -operator if and only if there exists 
a non-negative number α, K ∈ K(H)+ and F ∈ F(H)+ such that FK = 0, 0 ≤ F ≤ αI

and

T = αI + K − F. (1)

Moreover, (α, K, F ) is uniquely determined.

Although, a representation in Theorem 1.2 is not determined uniquely, we shall often 
use these characterizations in suitable cases.

1.3. Operator mean

An operator mean is a binary operation on positive semi-definite operators. It was 
defined by Kubo-Ando as follows. Let B(H)++ be the set of positive invertible operators.

Definition 1.4 (Operator mean, [18]). Let m : B(H)+ × B(H)+ → B(H)+ be a binary 
operation. If m satisfies the following four conditions, then m is called an operator mean.

(i) If A ≤ C and B ≤ D, then m(A, B) ≤ m(C, D),
(ii) X∗ m(A, B)X ≤ m(X∗AX, X∗BX) for all X ∈ B(H),
(iii) An ↘ A and Bn ↘ B imply m(An, Bn) ↘ m(A, B) in the strong operator topology,
(iv) m(I, I) = I.

To get a concrete formula of an operator mean, the next theorem is very important. 
Let f be a real-valued function defined on an interval J ⊆ (0, ∞). Then f is said to be 
operator monotone if A ≤ B for self-adjoint operators A, B ∈ B(H) whose spectra are 
contained in J , then f(A) ≤ f(B), where f(A) and f(B) are defined by the functional 
calculus.



210 R. Golla et al. / Linear Algebra and its Applications 678 (2023) 206–226
Theorem 1.5. [18] Let m be an operator mean. Then there exists an operator monotone 
function f on (0, ∞) such that f(1) = 1 and

m(A,B) = A
1
2 f(A− 1

2BA− 1
2 )A 1

2

for all A ∈ B(H)++ and B ∈ B(H)+.

If A ∈ B(H)+, we can obtain m(A, B) = s − limε↘0 m(A + εI, B) because A + εI ∈
B(H)++ for ε > 0 and Definition 1.4 (iii). The function f is called a representing function
of an operator mean m. Throughout this paper, we denote mf by an operator mean with 
a representing function f .

1.4. Aluthge transformation

The well-known polar decomposition of any operator T = u|T | ∈ B(H), where u ∈
B(H) is a partial isometry satisfying ker(u) = ker(T ). From such a decomposition, the 
Aluthge transform of T is defined as follows:

Definition 1.6 (Aluthge transformation, [1]). Let T = u|T | ∈ B(H) be the polar decom-
position of T . The Aluthge transformation Δ(T ) of T is defined as follows:

Δ(T ) = |T | 12u|T | 12 .

Aluthge transform has nice properties. Especially, the following properties are well-
known: (i) σ(Δ(T )) = σ(T ) [16]. (ii) Δ(T ) has a non-trivial invariant subspace if and 
only if so does T [17]. (iii) If T is semi-hyponormal (i.e. |T ∗| ≤ |T |), then Δ(T ) is 
hyponormal [1]. More generally, for any scalar λ ∈ [0, 1], the λ-Aluthge transform of T is 
defined by Δλ(T ) := |T |λu|T |1−λ in [16]. Many authors are interested in the iteration of 
Aluthge transform. This theme has been firstly considered in [17], and then it has been 
shown that the norm of iteration of Aluthge transform of any operator converges to its 
spectral radius [28]. Lastly, the iteration of the Aluthge transform of any n–by–n matrix 
converges to a normal matrix [2,3,14]. This problem has been extended to von-Neumann 
algebra and Lie group [9,15].

In recent years, a similar mapping T̂ is discussed. For an operator T = u|T | ∈ B(H), 
T̂ := |T |u+u|T |

2 is called the mean transform of T [19]. There are a lot of papers on the 
mean transforms, especially, iteration of mean transforms is discussed in [7]. Exactly, it 
is known that

(i) if T is a n-by-n matrix, then the iteration of mean transform of T converges to a 
normal matrix in [29],

(ii) let T = u|T | be the polar decomposition such that ker(T ∗) ⊆ ker(T ). If there 
exists a limit u∗n|T |un as n → ∞ in the strong operator topology, then the mean 
transformation converges to a quasi-normal operator in [7] without proof.
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We notice that there is a counterexample of an operator T such that the iteration of 
mean transformation converges in [29].

Recently, one of the authors defined the induced Aluthge transform in the viewpoint 
of the axiom of operator means, which is defined by using double operator integrals in 
[29]. It interpolates means and Aluthge transformations when |T | is invertible.

Definition 1.7 (Induced Aluthge transformation, [29]). Let T = u|T | ∈ B(H) with the 
spectral decomposition |T | =

∫
σ(T ) sdEs. For an operator mean mf with a representing 

function f , the induced Aluthge transformation Δmf
(T ) of T with respect to mf is 

defined as follows.

(i) If |T | is invertible, then

Δmf
(T ) =

∫
σ(|T |)

∫
σ(|T |)

Pf (s, t)dEsudEt,

where Pf (s, t) = sf( t
s ) for s, t ∈ (0, ∞).

(ii) If |T | is not invertible, and if there exists an isometry V such that Tε = V (|T | +εIH)
is the polar decomposition for all ε > 0 and s − limε↓0 Tε = T , then

Δmf
(T ) = s− lim

ε↓0
Δmf

(Tε),

in the strong operator topology.

Example 1.8. [29, Example 2] Let T ∈ B(H) such that |T | is invertible with the polar 
decomposition T = u|T |.

(i) Let λ ∈ [0, 1] and fλ(t) = 1 − λ + λt for t ∈ [0, ∞), i.e., the corresponding operator 
mean mfλ is called the λ-weighted arithmetic mean. The induced Aluthge transform 
Δmfλ

is

Δmfλ
(T ) = (1 − λ)|T |u + λu|T |.

Especially, if T is invertible, then Δmf1/2
(T ) = T̂ , the mean transformation of T .

(ii) Let λ ∈ [0, 1] and gλ(t) = tλ for t ∈ [0, ∞), i.e., the corresponding operator mean 
mgλ is called the λ-weighted geometric mean. The induced Aluthge transform Δmgλ

is

Δmgλ
= |T |1−λu|T |λ.

When λ = 1 , we know that Δmg
= Δ, the Aluthge transform.
2 1/2
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The following example is the induced Aluthge transformations with respect to the 
power mean: Let fr(t) = (1+tr

2 ) 1
r . If r ∈ [−1, 1], then fr is a representing function of 

the operator power mean. For a natural number n and invertible T ∈ B(H), the induced 
Aluthge transformation with respect to the power mean with the parameter r = 1

n is 
given as follows.

Δmf
(T ) := Δmf1/n

(T ) =
∫

σ(|T |)

∫
σ(|T |)

Pf1/n(s, t)dEsudEt

=
∫

σ(|T |)

∫
σ(|T |)

(
s

1
n + t

1
n

2

)n

dEsudEt (2)

=
∫

σ(|T |)

∫
σ(|T |)

1
2n

(
n∑

i=0

(
n

i

)
s

n−i
n t

i
n

)
dEsudEt

= 1
2n

(
n∑

i=0

(
n

i

)
|T |n−i

n u|T | i
n

)
,

where we used Example 1.8 at the last equality.
In this paper, we shall discuss the stability of AN -property under the induced Aluthge 

transforms. Moreover, we shall consider the iteration of the mean transform (i.e., induced 
Aluthge transform with respect to the arithmetic mean) of semi-hyponormal operators. 
We give a concrete limit point of the sequence, and we shall show that AN -property is 
stable under the limit operation.

This paper is organized as follows: In Section 2, we shall show the stability of AN -
property under the induced Aluthge transforms with respect to the arithmetic and 
geometric means. Then we shall discuss the iteration of mean transforms of a semi-
hyponormal operator in Section 3. In Section 4, we shall show some operator inequalities 
related to semi-hyponormal operators.

2. Stability of AN -property under the induced Aluthge transform

In this section, we shall discuss the following question, and give partial answers.

Question 1. Let T ∈ AN (H) and f be an operator monotone function on (0, ∞) with 
f(1) = 1. Does Δmf

(T ) ∈ AN (H) hold?

Firstly, we shall consider the general case.

Theorem 2.1. Let f be a non-negative positive operator monotone function on [0, ∞). 
Suppose that T ∈ AN (H) with invertible |T |. Then, Δmf

(T ) ∈ AN (H), where M
means the closure of a subset M ⊆ B(H) in the operator norm.
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Proof. Let π : B(H) → B(H)/K(H) be the canonical quotient map. Suppose that T ∈
AN (H) with invertible |T |. From [29, Theorem 4.1]

Δmf
(T ) =

1∫
0

⎛
⎝ ∞∫

0

e−x(1−λ)|T |−1
ue−xλ|T |−1

dx

⎞
⎠ dμ(λ),

where T = u|T | is the polar decomposition and μ is a probability measure. Since T ∈
AN (H), π(|T |) = αI for some positive number by Theorems 1.2 and 1.3, and π(u) is 
isometry.

If α = 0, then T ∈ K(H), and hence Δmf
(T ) ∈ K(H) ⊂ AN (H). If α = 0, then

π(Δmf
(T )) =

1∫
0

⎛
⎝ ∞∫

0

e−
1
αxπ(u)dx

⎞
⎠ dμ(λ) = απ(u).

Since π(u) is isometry, we conclude that Δmf
(T ) ∈ AN (H) by [26, Proposition 2.6]. �

It is known that AN (H) � AN (H) [25]. Next, we shall introduce some special cases 
of operator monotone functions for which Δmf

(T ) ∈ AN (H) if T ∈ AN (H), i.e., more 
precise results than Theorem 2.1.

The following is useful to analyze the stability of AN -property.

Lemma 2.2 ([26]). Let f be a continuous, strictly increasing function from [0, ∞) into 
[0, ∞). Then, for any T ∈ AN (H)+, f(T ) ∈ AN (H).

Fortunately, AN (H) is stable under the generalized Aluthge transform Δmgλ
.

Theorem 2.3. For λ ∈ [0, 1], let gλ(t) = tλ. If T ∈ AN (H), then Δmgλ
(T ) ∈ AN (H). 

Especially, if T ∈ AN (H), then Δ(T ) ∈ AN (H).

Proof. Since T ∈ AN (H), then |T | ∈ AN (H) by [22, Lemma 6.2]. Hence, by Theo-
rem 1.2, there exist a non-negative number α, K ∈ K(H)+ and a self-adjoint operator 
F ∈ F such that |T | = αI + K + F .

If α = 0, |T | is a compact, and so is Δmgλ
(T ). Hence Δmgλ

(T ) ∈ K(H) ⊂ AN (H).
If α = 0, then ker(T ) is finite dimensional by [21, Proposition 2.8 (2)] (It is eas-

ily obtained by Theorem 1.3 and ker(T ) = ker(|T |)). Since ker(u) = ker(T ) is finite 
dimensional, Pker(u) is finite rank and

u∗u = Pker(u)⊥ = I − Pker(u).

Again, by Theorem 1.2, we have u ∈ AN (H) by [22, Lemm 6.2].
Since |T |1−λ, |T |λ ∈ AN (H) by Lemma 2.2 and by [12, Corollary 2.3] we conclude 

that Δmg
(T ) = |T |1−λu|T |λ ∈ AN (H).
λ
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Therefore, we get the conclusion. �
Next, we shall discuss the induced Aluthge transform with respect to the arithmetic 

mean case.

Theorem 2.4. For λ ∈ [0, 1], let fλ(t) = 1 − λ + λt, and let T ∈ AN (H) with the polar 
decomposition T = u|T |. Then Δmfλ

(T ) = (1 − λ)|T |u + λu|T | ∈ AN (H).

Before proving Theorem 2.4, we shall prepare the following lemma.

Lemma 2.5. Let T ∈ AN (H) with the polar decomposition T = u|T | and let α be a 
non-negative number, K ∈ K(H)+ and F ∈ F(H)+ such that |T | = αI + K − F and 
KF = 0. Then, u∗uK = Ku∗u = K.

Proof. Since, |T | = αI + K − F and KF = 0 (i.e., R(F ) ⊆ ker(K)), we can represent 
|T | as follows:

|T | =
(
αIker(K) − F1 0

0 K1 + αIker(K)⊥

)
, (3)

where K = 0 ⊕K1 and F = F1 ⊕ 0 on H = ker(K) ⊕ ker(K)⊥ by [21, Proposition 2.16]. 
Since K ≥ 0 and K1 + αIker(K)⊥ is positive invertible, (3) implies ker(T ) ⊂ ker(K). 
Hence there exists a projection P such that

u∗u =
(
P 0
0 Iker(K)⊥

)
.

Then

u∗uK =
(
P 0
0 Iker(K)⊥

)(
0 0
0 K1

)
=

(
0 0
0 K1

)
= K

and Ku∗u = K holds. Therefore u∗uK = Ku∗u = K ≥ 0. �
Proof of Theorem 2.4. Since T ∈ AN (H), |T | ∈ AN (H) and there exist a non-negative 
number α, K ∈ K(H)+ and F ∈ F(H)+ such that |T | = αI + K − F and KF = 0 by 
Theorem 1.3.

(i) If α = 0, then |T | is a compact operator. Hence Δmfλ
(T ) is a compact operator. 

Therefore Δmfλ
(T ) ∈ K(H) ⊂ AN (H).

(ii) We shall consider α = 0. In this case, dim ker(T ) < +∞ holds. Then

Δmfλ
(T ) = λu|T | + (1 − λ)|T |u

= λu(αI + K − F ) + (1 − λ)(αI + K − F )u

= αu + (λuK + (1 − λ)Ku) − (λuF + (1 − λ)Fu).
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Then we have

|Δmfλ
(T )|2

= {αu + (λuK + (1 − λ)Ku) − (λuF + (1 − λ)Fu)}∗

×{αu + (λuK + (1 − λ)Ku) − (λuF + (1 − λ)Fu)}
= α2u∗u + K ′ + F ′,

where

K ′ = α(λu∗uK + λKu∗u + 2(1 − λ)u∗Ku) + |λuK + (1 − λ)Ku|2

and

F ′ = −(α(λu∗uF + λFu∗u + 2(1 − λ)u∗Fu)

− (λuK + (1 − λ)Ku)∗ (λuF + (1 − λFu)

− (λuF + (1 − λ)Fu)∗ (λuK + (1 − λ)Ku)

+|λuF + (1 − λ)Fu|2.

We note that K ′ is a compact operator, and F ′ is a finite rank self-adjoint operator.
From Lemma 2.5 we have uu∗K = Kuu∗ = K. Hence, K ′ is positive.
Note that since |T | ∈ AN (H), I − u∗u = Pker(u) is finite rank (see the proof of the 

Theorem 2.3). Then we have

|Δmfλ
(T )|2 = α2u∗u + K ′ + F ′

= α2I + K ′ + (F ′ − α2(I − u∗u)) ∈ AN (H).

Hence, |Δmfλ
(T )| ∈ AN (H) by Theorem 1.2, Lemma 2.2. Therefore Δmfλ

(T ) ∈ AN (H)
by [22, Lemma 6.2]. �

In this section, we showed the stability of AN -property of induced Aluthge transfor-
mations with respect to arithmetic and geometric mean cases. The following question 
arises.

Question 2. Let f be an operator monotone function with f(1) = 1 such that tλ ≤ f ≤
(1 −λ) +λt for λ ∈ [0, 1]. Is there an example T ∈ AN (H) such that Δmf

(T ) /∈ AN (H)?

3. Iteration

In this section, we shall give a partial answer of the following question in the case of 
mean transformations of semi-hyponormal operators.
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Question 3. Let T ∈ AN (H) and f be an operator monotone function on (0, ∞) with 
f(1) = 1. Does lim

n→∞
Δn

mf
(T ) exist?

It is known that the iteration of Aluthge and mean transformations of any n–by–n
matrix T converge to a normal matrix [3,29]. However, if T is a bounded linear operator, 
then the iteration of Aluthge transform does not converge, in general [8,29]. In [7], the 
authors pointed out that if there exists a limit of u∗n|T |un as n → ∞ in the strong 
operator topology, then the iteration of mean transform converges to the same limit 
point without proof.

In this section, we shall show that the iteration of mean transformations of semi-
hyponormal operators converges, and show the stability of AN -property for its limit 
point. At the beginning of this section, we shall introduce basic properties of the polar 
decomposition.

Lemma 3.1. Let T ∈ B(H) with the polar decomposition T = u|T |. Suppose that uu∗|T | =
|T |. Then

(i) |T | ≤ |T ∗| ⇔ u∗|T |u ≤ |T |,
(ii) |T ∗| ≤ |T | ⇔ |T | ≤ u∗|T |u.

Proof. Proof of (i).

|T | ≤ |T ∗| =⇒ uu∗|T |uu∗ ≤ u|T |u∗

=⇒ u∗(uu∗|T |uu∗)u ≤ u∗(u|T |u∗)u

=⇒ u∗|T |u ≤ |T |.

Conversely,

u∗|T |u ≤ |T | =⇒ uu∗|T |uu∗ ≤ u|T |u∗ = |T ∗| =⇒ |T | ≤ |T ∗|.

(ii) can be proven by the same way. �
Remark 3.2.

(i) In Lemma 3.1, if we drop the condition uu∗|T | = |T |, then only (=⇒) holds. Indeed, 

let T =
(

0 0
I 0

)
on H ⊕H. Then the polar decomposition of T is

T = u|T | =
(

0 0
I 0

)(
I 0
0 0

)
.

It is easy to see that uu∗|T | = 0 = |T | and u∗|T |u = 0 ≤ |T |, but
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|T | =
(
I 0
0 0

)
�

(
0 0
0 I

)
= |T ∗|.

(ii) It is well-known that uu∗|T | = |T | ⇔ ker(T ∗) ⊆ ker(T ).

Let T = u|T | be the polar decomposition. Since u∗u|T | = |T |u∗u = |T |, a semi-
hyponormal operator T satisfies

|T ∗| = u|T |u∗ ≤ |T | ≤ u∗|T |u ≤ u∗2|T |u2 ≤ · · · ≤ u∗n|T |un ≤ · · · ≤ ‖T‖I. (4)

Hence there exists L := limn→∞ u∗n|T |un in the strong operator topology. The operator 
L is called the polar symbol ([27]).

Theorem 3.3. Let T be a semi-hyponormal operator with the polar decomposition T =
u|T |, and let T̂ = u|T |+|T |u

2 (mean transform). Then

|T̂ ∗| ≤ |T | ≤ |T̂ |

holds. Hence T̂ is semi-hyponormal.

Theorem 3.3 with the kernel condition ker(T ∗) = ker(T ) was shown in [7, Theorem 
2.17]. Theorem 3.3 does not require any kernel condition.

Proof. Since T̂ = u|T |+|T |u
2 =

(
u|T |u∗+|T |

2

)
u, (4) and Hansen’s inequality [13], we have

|T̂ | =
[
u∗

(
u|T |u∗ + |T |

2

)2

u

] 1
2

≥ u∗
(
u|T |u∗ + |T |

2

)
u (by Hansen’s inequality [13])

= |T | + u∗|T |u
2

≥ |T | (by u∗|T |u ≥ |T |)

≥ u|T |u∗ + |T |
2 (by |T | ≥ |T ∗| = u|T |u∗)

≥
[(

u|T |u∗ + |T |
2

)
uu∗

(
u|T |u∗ + |T |

2

)] 1
2

= |T̂ ∗|.

The proof is completed. �
For a non-negative integer n, let T̂ (n) := ˆ̂T (n−1) and T̂ (0) := T . By Theorem 3.3

and the fact ‖T̂‖ ≤ ‖T‖, we obtain that if T is semi-hyponormal, then T̂ (n) is also 
semi-hyponormal for all n = 1, 2, ..., and
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|T | ≤ |T̂ | ≤ |T̂ (2)| ≤ · · · |T̂ (n)| ≤ · · · ≤ ‖T‖I.

Hence, there exists s − limn→∞ |T̂ (n)|. We notice that if ker(T ) = ker(T ∗), for f1/2(t) =
1+t
2 , the induced Aluthge transformation Δmf1/2

(T ) can be defined, and T̂ = Δmf1/2
(T )

holds [29]. So we shall use the symbol Δmf1/2
(T ) instead of T̂ for future discussions. 

The next result gives us a concrete form of the limit point of {Δn
mf1/2

(T )} for a semi-
hyponormal operator T .

Theorem 3.4. Let f1/2(t) = 1+t
2 and T ∈ B(H) be a semi-hyponormal operator with the 

polar decomposition T = u|T |. If ker(T ∗) = ker(T ), then

s− lim
n→∞

Δn
mf

(T ) = uL

in the strong topology, where

L = s− lim
n→∞

u∗n|T |un.

Moreover, uL is a normal operator and σ(T ) = σ(uL).

Proof. The polar decomposition of Δn
mf1/2

(T ) is shown in [7, Theorem 2.15]. Exactly, 
the polar decomposition of Δn

mf1/2
(T ) is

Δn
mf1/2

(T ) = u

[
1
2n

n∑
k=0

(
n

k

)
u∗k|T |uk

]
.

By (4), we have

|Δn
mf1/2

(T )| = 1
2n

n∑
k=0

(
n

k

)
u∗k|T |uk ≤ u∗n|T |un.

Here, we shall prove that |Δn
mf

(T )| converges to L as n → ∞. For a natural number n, 
define Sn := u∗n|T |un and S0 := |T |. For any positive real number ε > 0, there exists a 
natural number n0 such that

‖(Sn − L)x‖ < ε and n0n
n0−1

2n < ε

hold for all unit vectors x and all natural numbers n ≥ n0. Let

M = max{‖S0 − L‖, ..., ‖Sn0−1 − L‖}.

Then for any unit vector x ∈ H and n ≥ 2n0, we have
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‖(|Δn
mf1/2

(T )| − L)x‖ ≤ 1
2n

n∑
k=0

(
n

k

)
‖(Sk − L)x‖

<
1
2n

n0−1∑
k=0

(
n

k

)
M + 1

2n
n∑

k=n0

(
n

k

)
ε

≤ n0

2n

(
n

n0 − 1

)
M + 1

2n
n∑

k=n0

(
n

k

)
ε

= n0

2n
n(n− 1) · · · (n− n0 + 2)

(n0 − 1)! M + ε

≤ n0n
n0−1

2n M + ε < ε(M + 1).

Hence |Δmf1/2
(T )| converges to L in the strong operator topology. The normality of uL

is shown as follows. Since ker(T ) = ker(T ∗), we have u∗u = uu∗. For any natural number 
n, we have

u (un∗|T |un) = u∗uun−1∗|T |un−1u =
(
un−1∗|T |un−1

)
u, and

u (un∗|T |un)u∗ = u∗uun−1∗|T |un−1u∗u = un−1∗|T |un−1.

Hence uL = Lu and uLu∗ = L hold, i.e., uL is quasinormal. Moreover, since uL is the 
polar decomposition,

|uL| = L = uLu∗ = |(uL)∗|,

and uL is normal. Lastly,

σ(uu∗n|T |un) \ {0} = σ(u|T |) \ {0} = σ(T ) \ {0}

holds. By (4), we have ker(T ) = ker(u∗n|T |un) = ker(uu∗n|T |un). Then σ(uu∗n|T |un) =
σ(T ), and hence σ(T ) = σ(uL). �

If T ∈ AN (H), then Δmf1/2
(T ) ∈ AN (H) by Theorem 2.4. Hence if ker(T ) = ker(T ∗), 

then, we have s − limn→∞ Δn
mf1/2

(T ) ∈ AN (H). The following theorem shows a more 
exact consequence.

Theorem 3.5. If T ∈ AN (H) is a semi-hyponormal operator such that ker(T ) = ker(T ∗), 
then limn→∞ Δn

mf1/2
(T ) ∈ AN (H).

Proof. By Theorem 3.4, |Δn
mf

(T )| → L = limn→∞ u∗n|T |un in the strong operator 
topology, where u is the polar part of the polar decomposition of T .
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Since T ∈ AN (H), |T | = αI + K − F for some positive number α, K ∈ K(H)+, and 
F ∈ F(H)+ such that 0 ≤ K ≤ αI and KF = 0 by Theorem 1.3.

If α = 0, then |T | ∈ K(H), and hence Δmf1/2
(T ) ∈ K(H). Therefore s −

limn→∞ Δmf1/2
(T ) ∈ K(H) ⊂ AN (H). So we have to discuss only α = 0 case. In 

this case dim ker(T ) < +∞ holds, and I − u∗u is a finite rank operator. Therefore

u∗|T |u = αu∗u + u∗Ku− u∗Fu = αI + u∗Ku− {α(I − u∗u) + u∗Fu} ∈ AN (H)

by Theorem 1.2. If ker(T ) = ker(T ∗), then u∗u = Pker(T )⊥ = Pker(T∗)⊥ = uu∗. Hence 
u2∗u2 = u∗uu∗u = u∗u holds, and

u∗2|T |u2 = αu∗u + u∗2Ku2 − u∗{α(I − u∗u) + u∗Fu}u

= αI + u∗2Ku2 − {α(I − u2∗u2) + u∗2Fu2}

= αI + u∗2Ku2 − {α(I − u∗u) + u∗2Fu2}.

Therefore u∗2|T |u2 ∈ AN (H) by Theorem 1.2, again. By the same calculation, we can 
obtain that for each natural number n,

u∗n|T |un = αI + u∗nKun − {α(I − u∗u) + u∗nFun}, (5)

and u∗nKun ∈ K(H)+, α(I − u∗u) + u∗nFun ∈ F(H)+ such that

dimR(α(I − u∗u) + u∗nFun) ≤ dimR(α(I − u∗u)) + dimR(u∗nFun)

≤ dimR(I − u∗u) + dimR(F ) < +∞.

Hence u∗n|T |un ∈ AN (H) for all natural number n by Theorem 1.2.
Next, we shall prove existence of limits of the sequences {u∗nKun} and {α(I−u∗u) +

u∗nFun} as n → ∞. By (5), we have

u∗n|T |un = αu∗u + u∗n(K − F )un.

Then there exists D := L −αu∗u = s −limn→∞ u∗n(K−F )un. Let Dn := u∗n(K−F )un. 
By KF = 0, Lemma 2.5 and ker(T ) = ker(T ∗), we have

|Dn|2 = u∗n(K − F )unu∗n(K − F )un

= u∗n(K − F )u∗u(K − F )un

= u∗n(K2 + Fu∗uF )un.

Moreover, by using KF = 0, again, we have u∗n(K + F )un ≥ 0 and
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{u∗n(K + F )un}2 = u∗n(K + F )unu∗n(K + F )un

= u∗n(K + F )u∗u(K + F )un

= u∗n(K2 + Fu∗uF )un = |Dn|2.

Hence |Dn| = u∗n(K + F )un. Let

Kn := u∗nKun = 1
2(|Dn| + Dn) ∈ K(H)+

and

Fn := α(I − u∗u) + u∗nFun = α(I − u∗u) + 1
2(|Dn| −Dn) ∈ F(H)+.

Moreover, there exists K∞ := s − limn→∞ Kn ∈ K(H)+ and F∞ := s − limn→∞ Fn ∈
K(H)+. We notice that for each natural number n,

dimR(Fn) ≤ dimR(I − u∗u) + dimR(F ) < +∞

and hence F∞ ∈ F(H)+. Therefore by Theorem 1.2,

lim
n→∞

|Δn
mf

(T )| = αI + K∞ − F∞ ∈ AN (H), (6)

and thus limn→∞ Δn
mf

(T ) ∈ AN (H) by [22, Lemma 6.2].
We notice that K∞F∞ = 0 and 0 ≤ F∞ ≤ αI as follows:
By Lemma 2.5,

KnFn = u∗nKun {α(I − u∗u) + u∗nFun}
= αu∗nKun(I − u∗u) + u∗nKunu∗nFun

= u∗nKu∗uFun

= u∗nKFun = 0.

Moreover, since 0 ≤ F ≤ αI, we have

0 ≤ α(I − u∗u) + u∗nFun

≤ α(I − u∗u) + αu∗nun = αI.

Therefore, (6) is uniquely determined by Theorem 1.3. �
4. Inequalities

In the last section, we shall show some related operator inequalities.
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Theorem 4.1. Let T ∈ B(H) with the polar decomposition T = u|T |. Then

Δ(T )∗Δ(T ) ≤ T ∗T ⇔ u∗|T |u ≤ |T |.

Proof. Note that

Δ(T )∗Δ(T ) ≤ T ∗T ⇔ |T | 12u∗|T |u|T | 12 ≤ |T |2.

Hence, we only have to show the implication (⇒). For any y ∈ H and z ∈ ker(T ) =
(|T |H)⊥, we have

〈u∗|T |u(|T |y + z), |T |y + z〉 = 〈u∗|T |u(|T |y), |T |y〉
= 〈|T | 12u∗|T |u|T | 12 (|T | 12 y), |T | 12 y〉
≤ 〈|T |2(|T | 12 y), |T | 12 y〉
= 〈|T |(|T |y), |T |y〉
= 〈|T |(|T |y + z), |T |y + z〉,

we have u∗|T |u ≤ |T |. �
Corollary 4.2. Let T ∈ B(H) with the polar decomposition T = u|T |. Suppose that 
uu∗|T | = |T |. If |T | ≤ |T ∗|, then Δ(T )∗Δ(T ) ≤ T ∗T .

Proof. By Lemma 3.1 and Theorem 4.1, we can prove it. �
The following theorem is similar inequality for the induced Aluthge transformation 

with respect to the power mean.

Theorem 4.3. For a natural number n, let f(t) = (1+t1/n

2 ), and T = u|T | ∈ B(H) be the 
polar decomposition. If |T |2 ≤ |T ∗|2. Then

Δmf
(T )∗Δmf

(T ) ≤ T ∗T.

To prove Theorem 4.3, we shall prepare a lemma.

Lemma 4.4. Let A, B ∈ B(H)+. If B ≤ A, then

BλAμ + AμBλ ≤ 2Aλ+μ

holds for 0 ≤ μ ≤ λ ≤ 1 − μ.

Proof. By the conditions of λ and μ, we have 0 ≤ λ − μ ≤ λ + μ ≤ 1. For any x ∈ H, 
we have
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〈(BλAμ + AμBλ)x, x〉 ≤
∣∣〈(BλAμ + AμBλ)x, x〉

∣∣
≤

∣∣〈BλAμx, x〉
∣∣ +

∣∣〈AμBλx, x〉
∣∣

=
∣∣∣〈B λ−μ

2 Aμx,B
λ+μ

2 x〉
∣∣∣ +

∣∣∣〈B λ+μ
2 x,B

λ−μ
2 Aμx〉

∣∣∣
≤ 2

∥∥∥B λ−μ
2 Aμx

∥∥∥∥∥∥B λ+μ
2 x

∥∥∥ (by Cauchy-Schwarz inequality)

= 2〈AμBλ−μAμx, x〉 1
2 〈Bλ+μx, x〉 1

2

≤ 2〈Aλ+μx, x〉 1
2 〈Aλ+μx, x〉 1

2 (by Loewner-Heinz inequality [20])

= 2〈Aλ+μx, x〉.

Hence we get the desired inequality. �
The converse assertion in Lemma 4.4 does not hold as in the following example.

Example 4.5. Let A =
(

1 0
0 0

)
and B =

(
0 0
0 1

)
. Then for any λ, μ > 0, 0 = BλAμ +

AμBλ ≤ 2Aλ+μ. However A −B � 0.

Proof of Theorem 4.3. First of all, u∗|T |αu ≤ |T |α holds for all α ∈ [0, 1], since |T |α ≤
|T ∗|α = u|T |αu∗ by Loewner-Heinz inequality [20].

Recall that by (2), we have

Δmf
(T ) = 1

2n

(
n∑

i=0

(
n

i

)
|T |n−i

n u|T | i
n

)
.

Hence

Δmf
(T )∗Δmf

(T )

= 1
22n

n∑
i=0

n∑
j=0

(
n

i

)(
n

j

)
|T | i

nu∗|T |
2n−(i+j)

n u|T | j
n

= 1
22n

[ ∑
0≤i<j≤n

(
n

i

)(
n

j

)
(|T | i

nu∗|T |
2n−(i+j)

n u|T | j
n + |T | j

nu∗|T |
2n−(i+j)

n u|T | i
n )

+
n∑

i=0

(
n

j

)2

|T | i
nu∗|T | 2n−2i

n u|T | i
n

]

= 1
22n

[ ∑
0≤i<j≤n

(
n

i

)(
n

j

)
|T | i

n (u∗|T |
2n−(i+j)

n u|T | j−i
n + |T | j−i

n u∗|T |
2n−(i+j)

n u)|T | i
n

+
n∑(

n

j

)2

|T | i
nu∗|T | 2n−2i

n u|T | i
n

]

i=0
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≤ 1
22n

⎡
⎣ ∑

0≤i<j≤n

(
n

i

)(
n

j

)
|T | i

n (2|T | 2n−2i
n )|T | i

n +
n∑

i=0

(
n

j

)2

|T |2
⎤
⎦

(by 0 ≤ j−i
2n ≤ 2n−(i+j)

2n ≤ 1 − j−i
2n , Lemma 4.4 and u∗|T | 2n−2i

n u ≤ |T | 2n−2i
n )

= 1
22n

n∑
i,j=0

(
n

i

)(
n

j

)
|T |2 = T ∗T. �

5. Questions

In this section, we list some questions for future discussions.
Let f be an operator monotone function such that f(1) = 1 and T ∈ B(H).

Question 4. If |T ∗|2 ≤ |T |2, then does |T |2 ≤ Δmf
(T )∗Δmf

(T ) hold for any induced 
Aluthge transformation?

Question 5. If T is hyponormal, then is Δmf
(T ) a hyponormal operator for any induced 

Aluthge transformation?

The above questions are true for the Aluthge transformation [1]. We know that if T
is quasi-normal, then Δmf

(T ) = T [29].

Question 6. Is it true that Δmf
(T ) = T implies quasi-normality of T?

Question 7. Let f be an operator monotone function such that f(1) = 1. Then, 
Δmf

(AN (H)) ⊆ AN (H)?

Question 8. If T ∈ AN (H). Then, does s − lim Δn
mf

(T ) exist? Moreover, does the limit 
point belong to AN (H)?

Question 9. Determine a concrete form of L = s − limn→∞ u∗n|T |un without using “lim” 
if T is semi-hyponormal?

Question 10. Let T ∈ B(H) with the polar decomposition T = u|T | and f an operator 
monotone function such that f(1) = 1. Suppose that uu∗|T | = |T |. Is it true that

Δmf
(T )∗Δmf

(T ) ≤ Δmf
(T ∗T ) = T ∗T?
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[8] M. Chō, I.B. Jung, W.Y. Lee, On Aluthge transforms of p-hyponormal operators, Integral Equ. 
Oper. Theory 53 (2005) 321–329.

[9] K. Dykema, H. Schultz, Brown measure and iterates of the Aluthge transform for some operators 
arising from measurable actions, Trans. Am. Math. Soc. 361 (2009) 6583–6593.

[10] P. Enflo, J. Kover, L. Smithies, Denseness for norm attaining operator–valued functions, Linear 
Algebra Appl. 338 (2001) 139–144.

[11] T. Furuta, Invitation to Linear Operators. From Matrices to Bounded Linear Operators on a Hilbert 
Space, Taylor & Francis Group, London, 2001, x+255 pp.

[12] R. Golla, H. Osaka, Linear maps preserving AN -operators, Bull. Korean Math. Soc. 57 (2020) 
831–838.

[13] F. Hansen, An operator inequality, Math. Ann. 246 (1980) 249–250.
[14] H. Huang, T.-Y. Tam, On the convergence of Aluthge sequence, Oper. Matrices 1 (2007) 121–141.
[15] H. Huang, T.-Y. Tam, Aluthge iteration in semisimple Lie group, Linear Algebra Appl. 432 (2010) 

3250–3257.
[16] T. Huruya, A note on p-hyponormal operators, Proc. Am. Math. Soc. 125 (1997) 3617–3624.
[17] I.B. Jung, E. Ko, C. Pearcy, Aluthge transforms of operators, Integral Equ. Oper. Theory 37 (2000) 

437–448.
[18] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 246 (1979/80) 205–224.
[19] S.H. Lee, W.Y. Lee, J. Yoon, The mean transform of bounded linear operators, J. Math. Anal. 

Appl. 410 (2014) 70–81.
[20] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934) 177–216.
[21] D.V. Naidu, G. Ramesh, On absolutely norm attaining operators, Proc. Indian Acad. Sci. Math. 

Sci. 129 (2019) 54.
[22] S.K. Pandey, V.I. Paulsen, A spectral characterization of AN operators, J. Aust. Math. Soc. 102 

(2017) 369–391.
[23] G. Ramesh, Structure theorem for AN-operators, J. Aust. Math. Soc. 96 (2014) 386–395.
[24] G. Ramesh, Absolutely norm attaining paranormal operators, J. Math. Anal. Appl. 465 (2018) 

547–556.

http://refhub.elsevier.com/S0024-3795(23)00321-X/bib31D8950C5317C12163EFEED8B173BA8As1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib31D8950C5317C12163EFEED8B173BA8As1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib371B38105E0E5676D1F85F62E0E3919Cs1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib371B38105E0E5676D1F85F62E0E3919Cs1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib8232D025E80B7CF06B48DBA4C95C1178s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib8232D025E80B7CF06B48DBA4C95C1178s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibD1657EA017299CF36BA6BE58F920B14Ds1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibD1657EA017299CF36BA6BE58F920B14Ds1
https://arxiv.org/abs/2002.09167
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibABB3899FCAA2A7058C70AFAACD61EB1Es1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibABB3899FCAA2A7058C70AFAACD61EB1Es1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib7D3564D894DC27A6EBF18F1E5B4EB9D5s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib7D3564D894DC27A6EBF18F1E5B4EB9D5s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib49B824F284E0502D55A9CD90A55BDB1Ds1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib49B824F284E0502D55A9CD90A55BDB1Ds1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib10D84E0630DB97D47BF50D7C3BA041E2s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib10D84E0630DB97D47BF50D7C3BA041E2s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibCC58FC0CF0866FB5ED54B3C5DF7323ECs1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibCC58FC0CF0866FB5ED54B3C5DF7323ECs1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibC23D0ABEAEC2C0ACC70E8639D0B61CC2s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibC23D0ABEAEC2C0ACC70E8639D0B61CC2s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibAFF00615746F31F166DFEF400A08691As1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibAFF00615746F31F166DFEF400A08691As1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib3917850F0480C9321A91B61DECE2DDF0s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibCC68D2DC8C8AB3D08FB0BE109BA0E041s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib461FFA56E5EFB7B9D91F46725E2564D2s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib461FFA56E5EFB7B9D91F46725E2564D2s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibB2E781FB89BB132C77021DE6ED40DC30s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib7ADB771714B4CDC234053D54C972276Es1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib7ADB771714B4CDC234053D54C972276Es1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibFBEC6D048DAB4D420674AA2C729F8BEDs1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibFBEC6D048DAB4D420674AA2C729F8BEDs1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib9D133A066ED23887215D146D612BB544s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib1CB6E30B8B70CF8C598AFB6EF6A74D3Ds1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib1CB6E30B8B70CF8C598AFB6EF6A74D3Ds1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib2B5AF99ACAA2A5D25DFB71A7490744FCs1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib2B5AF99ACAA2A5D25DFB71A7490744FCs1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib502F6D4AAB2BDFDA960C385916FD7D29s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibE412DFFF14D85524327EA9A4ECACC511s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibE412DFFF14D85524327EA9A4ECACC511s1


226 R. Golla et al. / Linear Algebra and its Applications 678 (2023) 206–226
[25] G. Ramesh, S.S. Sequeira, On the closure of absolutely norm attaining operators, Linear Multilinear 
Algebra (2023), in press, https://doi .org /10 .1080 /03081087 .2022 .2126426.

[26] G. Ramesh, H. Osaka, Y. Udagawa, T. Yamazaki, Functional calculus for AN -operators, Anal. 
Math. (2023), in press.

[27] D. Xia, Spectral Theory of Hyponormal Operators, Operator Theory: Advances and Applications, 
vol. 10, Birkhäuser Verlag, Basel, 1983, xiv+241 pp.

[28] T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Am. Math. Soc. 
130 (2002) 1131–1137.

[29] T. Yamazaki, The induced Aluthge transformations, Linear Algebra Appl. 628 (2021) 1–28.

https://doi.org/10.1080/03081087.2022.2126426
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibA68BFFC8033D3C46ABBD98944D0C449Ds1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bibA68BFFC8033D3C46ABBD98944D0C449Ds1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib23E725D0A454661B4B85FC5C114E3A83s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib23E725D0A454661B4B85FC5C114E3A83s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib40CB6EC3A1EED92E8396610E9A5C9872s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib40CB6EC3A1EED92E8396610E9A5C9872s1
http://refhub.elsevier.com/S0024-3795(23)00321-X/bib87D12DB07DBA90D42C7443A04C067525s1

	Stability of AN-property for the induced Aluthge transformations
	1 Introduction
	1.1 Notations and terminologies
	1.2 AN-operators
	1.3 Operator mean
	1.4 Aluthge transformation

	2 Stability of AN-property under the induced Aluthge transform
	3 Iteration
	4 Inequalities
	5 Questions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


