J-GLOBAL         Last updated: Jun 12, 2019 at 02:41
Osaka University
Graduate School of Science Department of Biological Sciences
Job title
Associate Professor
Ph.D.(Osaka University), Ph. D.(Osaka University), Master of Science(Osaka University)
Research funding number

Research Areas


Academic & Professional Experience

 University of California San Diego (USA), Ludwig Institute for Cancer Research, Postdoctoral fellow
 Assistant Professor, Graduate School of Science, Osaka Unviersity
- Graduate School of Science Osaka University, Associate Professor


Physiology, Graduate School, Division of Natural Science, Osaka University
Department of Pysiology, Graduate School, Division of Natural Science, Osaka University
Department of Physiology, Graduate School, Division of Natural Science, Osaka University
Biology, Faculty of Science, Osaka University

Published Papers

Nakagawa T, Okita AK
Current genetics      Apr 2019   [Refereed]
Okita AK, Zafar F, Su J, Weerasekara D, Kajitani T, Takahashi TS, Kimura H, Murakami Y, Masukata H, Nakagawa T
Communications Biology   2 17   Jan 2019   [Refereed]
Heterochromatin, characterized by histone H3 lysine 9 (H3K9) methylation, assembles on repetitive regions including centromeres. Although centromeric heterochromatin is important for correct segregation of chromosomes, its exact role in maintainin...
Ogawa S, Kido S, Handa T, Ogawa H, Asakawa H, Takahashi TS, Nakagawa T, Hiraoka Y, Masukata H
The EMBO journal   37(15) e98997   Aug 2018   [Refereed]
DNA replication initiates at many discrete loci on eukaryotic chromosomes, and individual replication origins are regulated under a spatiotemporal program. However, the underlying mechanisms of this regulation remain largely unknown. In the fissio...
Terui R, Nagao K, Kawasoe Y, Taki K, Higashi TL, Tanaka S, Nakagawa T, Obuse C, Masukata H, Takahashi TS
Genes & development   32(11-12) 806-821   Jun 2018   [Refereed]
Post-replicative correction of replication errors by the mismatch repair (MMR) system is critical for suppression of mutations. Although the MMR system may need to handle nucleosomes at the site of chromatin replication, how MMR occurs in the chro...
Zafar F, Okita AK, Onaka AT, Su J, Katahira Y, Nakayama JI, Takahashi TS, Masukata H, Nakagawa T
Nucleic Acids Research   45(19) 11222-11235   Nov 2017   [Refereed]
Centromeres that are essential for faithful segregation of chromosomes consist of unique DNA repeats in many eukaryotes. Although recombination is under-represented around centromeres during meiosis, little is known about recombination between cen...
Onaka A.T, Toyofuku N, Inoue T, Okita A.K, Sagawa M, Su J, Shitanda T, Matsuyama R, Zafar F, Takahashi T.S, Masukata H, Nakagawa T.
Nucleic Acids Research   44(22) 10744-10757   Dec 2016   [Refereed]
Centromeres consist of DNA repeats in many eukaryotes. Non-allelic homologous recombination (HR) between them can result in gross chromosomal rearrangements (GCRs). In fission yeast, Rad51 suppresses isochromosome formation that occurs between inv...
Kawasoe Y, Tsurimoto T, Nakagawa T, Masukata H, Takahashi T.S.
eLife   5(2016JULY)    Jul 2016   [Refereed]
Blaikley E.J, Tinline-Purvis H, Kasparek T.R, Marguerat S, Sarkar S, Hulme L, Hussey S, Wee B.-Y, Deegan R.S, Walker C.A, Pai C.-C, B{ä}hler J, Nakagawa T, Humphrey T.C.
Nucleic Acids Research   42(9) 5644-5656   May 2014   [Refereed]
Tazumi A, Fukuura M, Nakato R, Kishimoto A, Takenaka T, Ogawa S, Song J.-H, Takahashi T.S, Nakagawa T, Shirahige K, Masukata H.
Genes and Development   26(18) 2050-2062   Sep 2012   [Refereed]
Handa T, Kanke M, Takahashi T.S, Nakagawa T, Masukata H.
Molecular biology of the cell   23(16) 3240-3253   Aug 2012   [Refereed]
Higashi T.L, Ikeda M, Tanaka H, Nakagawa T, Bando M, Shirahige K, Kubota Y, Takisawa H, Masukata H, Takahashi T.S.
Current Biology   22(11) 977-988   Jun 2012   [Refereed]
Kanke M, Kodama Y, Takahashi T.S, Nakagawa T, Masukata H.
EMBO Journal   31(9) 2182-2194   May 2012   [Refereed]
Maki K, Inoue T, Onaka A, Hashizume H, Somete N, Kobayashi Y, Murakami S, Shigaki C, Takahashi T.S, Masukata H, Nakagawa T.
Journal of Biological Chemistry   286(48) 41701-41710   Dec 2011   [Refereed]
Fukuura M, Nagao K, Obuse C, Takahashi T.S, Nakagawa T, Masukata H.
Molecular Biology of the Cell   22(14) 2620-2633   Jul 2011   [Refereed]
Mai Kanke, Kohei Nishimura, Kohei Nishimura, Masato Kanemaki, Masato Kanemaki, Tatsuo Kakimoto, Tatsuro S. Takahashi, Takuro Nakagawa, Hisao Masukata
BMC Cell Biology   12, 8, doi:10.1186/1471-2121-12-8    Feb 2011
Background: Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previ...
Makoto T. Hayashi, Tatsuro S. Takahashi, Takuro Nakagawa, Jun Ichi Nakayama, Hisao Masukata
Nature Cell Biology   11, 357-362 357-362   Feb 2009
Heterochromatin is a structurally compacted region of chromosomes in which transcription and recombination are inactivated. DNA replication is temporally regulated in heterochromatin, but the molecular mechanism for regulation has not been elucida...
Ken Ichi Nakamura, Ken Ichi Nakamura, Aya Okamoto, Yuki Katou, Chie Yadani, Takeshi Shitanda, Chitrada Kaweeteerawat, Tatsuro S. Takahashi, Takehiko Itoh, Katsuhiko Shirahige, Hisao Masukata, Hisao Masukata, Takuro Nakagawa, Takuro Nakagawa
EMBO Journal   27 3036-3046   Nov 2008
Centromere that plays a pivotal role in chromosome segregation is composed of repetitive elements in many eukaryotes. Although chromosomal regions containing repeats are the hotspots of rearrangements, little is known about the stability of centro...
Naoki Nitani, Chie Yadani, Hayato Yabuuchi, Hisao Masukata, Takuro Nakagawa
Proceedings of the National Academy of Sciences of the United States of America   105 (35), 12973-12978 12973-12978   Sep 2008
The minichromosome maintenance (MCM) helicase, composed of subunits Mcm2-7, is essential for the initiation and elongation phases of DNA replication. Even when DNA synthesis is blocked, MCM continues DNA unwinding to some extent for activation of ...
Makoto Hayashi, Yuki Katou, Takehiko Itoh, Mitsutoshi Tazumi, Yoshiki Yamada, Yoshiki Yamada, Tatsuro Takahashi, Tatsuro Takahashi, Takuro Nakagawa, Katsuhiko Shirahige, Katsuhiko Shirahige, Hisao Masukata, Hisao Masukata
EMBO Journal   26, 1327-1339 1327-1339   Mar 2007
DNA replication of eukaryotic chromosomes initiates at a number of discrete loci, called replication origins. Distribution and regulation of origins are important for complete duplication of the genome. Here, we determined locations of Orc1 and Mc...
Hayato Yabuuchi, Yoshiki Yamada, Yoshiki Yamada, Tomonori Uchida, Tul Sunathvanichkul, Takuro Nakagawa, Hisao Masukata, Hisao Masukata
EMBO Journal   25, 4663-4674 4663-4674   Oct 2006
Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temp...
Naoki Nitani, Ken Ichi Nakamura, Ken Ichi Nakamura, Chie Nakagawa, Hisao Masukata, Hisao Masukata, Takuro Nakagawa, Takuro Nakagawa
Genetics   174 (1) 155-165 155-165   Sep 2006
Faithful replication of chromosomes is crucial to genome integrity. In yeast, the ORC binds replication origins throughout the cell cycle. However, Cdc45 binds these before S-phase, and, during replication, it moves along the DNA with MCM helicase...
Yoshiki Yamada, Takuro Nakagawa, Hisao Masukata
Molecular Biology of the Cell   15 3740-3750   Aug 2004
Assembly of initiation factors on individual replication origins at onset of S phase is crucial for regulation of replication timing and repression of initiation by S-phase checkpoint control. We dissected the process of preinitiation complex form...
Olga M. Mazina, Olga M. Mazina, Alexander V. Mazin, Alexander V. Mazin, Takuro Nakagawa, Takuro Nakagawa, Richard D. Kolodner, Stephen C. Kowalczykowski
Cell   117(1), 47-56/, 47-56   Apr 2004
Crossover and noncrossover recombinants can form by two different pathways during meiotic recombination in Saccharomyces cerevisiae. The MER3 gene is known to affect selectively crossover, but not noncrossover, recombination. The Mer3 protein is a...
Yuuki Ono, Kazunori Tomita, Akira Matsuura, Takuro Nakagawa, Hisao Masukata, Masahiro Uritani, Takashi Ishimaru, Masaru Ueno
Nucleic Acids Research   31(24) 7141-7149 7141-7149   Dec 2003
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In Saccharomyces cerevisiae, several mutants in the RFA1 gene encoding the large subunit of RPA have been is...
Ono Y, Tomita K, Matsuura A, Nakagawa T, Masukata H, Uritani M, Ushimaru T, Ueno M.
KURRI Progress Report   117   2003   [Refereed]
Takuro Nakagawa, Takuro Nakagawa, Richard D. Kolodner, Richard D. Kolodner
Journal of Biological Chemistry   277(31) 28019-28024   Aug 2002
The MER3 protein of Saccharomyces cerevisiae is required for crossover in meiosis and has been suggested to act at the initiation of homologous pairing and the resolution of Holliday junctions. The purified MER3 protein is a DNA helicase that tran...
Takuro Nakagawa, Richard D. Kolodner
Molecular and Cellular Biology   22(10) 3281-3291   May 2002
Crossing over is regulated to occur at least once per each pair of homologous chromosomes during meiotic prophase to ensure proper segregation of chromosomes at the first meiotic division. In a mer3 deletion mutant of Saccharomyces cerevisiae, cro...
Takuro Nakagawa, Hernan Flores-Rozas, Richard D. Kolodner
Journal of Biological Chemistry   276, 34, 31487-31493(34) 31487-31493   Aug 2001
The meiosis-specific MER3 protein of Saccharomyces cerevisiae is required for crossing over, which ensures faithful segregation of homologous chromosomes at the first meiotic division. The predicted sequence of the MER3 protein contains the seven ...
T. Nakagawa, A. Datta, R. D. Kolodner
Proceedings of the National Academy of Sciences of the United States of America   96, 25, 14186-14188(25) 14186-14188   Dec 1999
Takuro Nakagawa, Takuro Nakagawa, Hideyuki Ogawa, Hideyuki Ogawa
EMBO Journal   18(20) 5714-5723   Oct 1999
The MER3 gene is identified as a novel meiosis-specific gene, whose transcript is spliced in an MRE2/MER1-dependent manner. The predicted Mer3 protein contains the seven motifs characteristic of the DExH-box type of helicases as well as a putative...
Takuro Nakagawa, Hideyuki Ogawa
Genes to Cells   2(1) 65-79   Jan 1997
Background: The mre2 mutant of Saccharomyces cerevisiae is defective in meiotic recombination and produces inviable spores, but the sensitivities to DNA damaging agents, methyl methanesulphonate and ultraviolet light are not altered by the mutatio...

Awards & Honors

A Postdontoral Fellowship of Human Frontier Science Program


Rad51 and Rad54 promote noncrossover recombination between centromere repeats to prevent isochromosome formation
Nakagawa Takuro, Onaka Atsushi, Takahashi Tatsuro S., Masukata Hisao
GENES & GENETIC SYSTEMS   91(6) 372   Dec 2016   [Refereed]
Fission yeast CENP-T nucleosomes promote the isochromosome formation in centromere
Su Jie, Okita Akiko, Takahashi Tatsuro, Masukata Hisao, Nakagawa Takuro
GENES & GENETIC SYSTEMS   90(6) 377   Dec 2015   [Refereed]
Molecular mechanism of gross chromosomal rearrangements in centromere
Nakagawa Takuro
GENES & GENETIC SYSTEMS   89(6) 283   Dec 2014   [Refereed]
The centromere integrity is maintained through the function of kinetochore proteins CENP-SX
Nakagawa Takuro
GENES & GENETIC SYSTEMS   88(6) 340   Dec 2013   [Refereed]
Recombination between the centromere repeats in fission yeast.
Shitanda T, Asai R, Zafar F, Inoue T, Katahira Y, Takahashi TS, Masukata H & Nakagawa T.
   Jun 2011   [Refereed][Invited]

Books etc

Fundamental Aspects of DNA Replication
Zafar F., Nakagawa T. (Part:Joint Work)
InTech, Rijeka, Croatia   Sep 2011   ISBN:978-953-307-259-3