Nakasuji Maki

J-GLOBAL         Last updated: Dec 21, 2019 at 02:40
 
Avatar
Name
Nakasuji Maki
Affiliation
Sophia University
Section
Faculty of Science and Technology, Department of Information and Communication Sciences
Job title
Associate Professor
Research funding number
30609871

Research Areas

 
 

Published Papers

 
Schur type poly-Bernoulli numbers
Naoki Nakamura, Maki Nakasuji
   2019   [Refereed]
On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions
Maki Nakasuji, Ouamporn Phuksuwan, Yoshinori Yamasaki
Advances in Mathematics   333 570-619   2018   [Refereed]
Casselman’s Basis of Iwahori vectors and Kazhdan-Luztig polynomials
Daniel Bump, Maki Nakasuji
Canadian Journal of Mathematics      2018   [Refereed]
Schur type multiple zeta functions and its determinant formulae
Maki Nakasuji   122-132   2017
Yang-Baxter basis of Hecke algebra and Casselman's problem (extended abstract)
Maki Nakasuji, Hiroshi Naruse
Discrete Mathematics and Theoretical Computer Science   935-946   2016   [Refereed]

Conference Activities & Talks

 
Casselman's basis of Iwahori vectors and Kazhdan-Lusztig polynomials [Invited]
Maki Nakasuji
Automorphic forms on reductive groups and their covers: A conference in honour of Solomon Friedberg   25 Jun 2018   
Schur multiple zeta functions [Invited]
Maki Nakasuji
Number Theory and Combinatorics Seminar, Stanford   29 Aug 2017   
Schur type multiple zeta functions and its determinant formulae
Maki Nakasuji
Algebraic Lie Theory and Representation Theory 2017   12 Jun 2017   
Schur multiple zeta functions
Maki Nakasuji
French-Japanese Zeta Functions   13 Mar 2017   
Casselman's basis , Yang-Baxter basis, and Kostant Kumar's twisted group algebra
Maki Nakasuji
Whittaker Functions: Number Theory, Geometry, and Physics   28 Jul 2016   

Research Grants & Projects

 
Combinational representation theory multiple Dirichlet series and moments of L-functions
Math department of Stanford university: Mathematics Research Center
Project Year: Jan 2010 - Jun 2010    Investigator(s): Daniel Bump
Combinational representation theory multiple Dirichlet series and moments of L-functions
A National Fundation grant: 
Project Year: Jan 2010 - Jun 2010    Investigator(s): Daniel Bump