HITOSHI ISHII

J-GLOBAL         Last updated: Nov 11, 2018 at 21:14
 
Avatar
Name
HITOSHI ISHII
E-mail
hitoshi.ishiiwaseda.jp
URL
http://www.f.waseda.jp/hitoshi.ishii/
Affiliation
Tsuda University
Section
Institute of Mathematics and Computer Science
Job title
Research Fellow
Degree
Dr. Science(Waseda University), Ms. Science(Waseda University)
Other affiliation
Waseda UniversitySapienza-University of Rome
Research funding number
70102887

Research Areas

 
 

Academic & Professional Experience

 
Apr 2018
 - 
Today
Tsuda University, Research Fellow
 
Apr 2018
 - 
Today
Waseda University, Professor Emeritus
 
May 2018
 - 
May 2018
Sapienza-University of Rome, Visiting Professor
 
Apr 2001
 - 
Mar 2018
Waseda University, Professor
 
Aug 2011
 - 
Jun 2014
King Abdulaziz University, Adjunct Professor
 

Education

 
 
 - 
1970
Faculty of Science and Engineering, Waseda University
 
 
 - 
1975
Graduate School, Division of Science and Engineering, Waseda University
 

Awards & Honors

 
Nov 2017
Founding of the viscous solution theory of nonlinear partial differential equations and its application, Okuma Memorial Academic Commemorative Prize, Waseda University
 
Jan 2012
Fellow, American Mathematical Society
 
Sep 1994
Autumn Prize, Mathematical Society of Japan
 
2002
Highly cited researcher, Thompson ISI
 

Published Papers

 
Isabeau Birindelli, Giulio Galise, Hitoshi Ishii
Ann. Inst. H. Poincaré Anal. Non Linéaire   35(2) 417-441   2018   [Refereed]
On the Langevin equation with variable friction
Hitoshi Ishii, Panagiotis E. Souganidis, Hung V. Tran
Calc. Var. Partial Differential Equations   56(6)    2017   [Refereed]
Hitoshi Ishii, Hiroyoshi Mitake, Hung V. Tran
J. Math. Pures Appl. (9)   108(2) 125-249   2017   [Refereed]
Hitoshi Ishii, Hiroyoshi Mitake, Hung V. Tran
J. Math. Pures Appl. (9)   108(3) 261-305   2017   [Refereed]
Metastability for parabolic equations with drift: Part II. The quasilinear case
Indiana Univ. Math. J.   66(1) 315-367   2017   [Refereed]

Research Grants & Projects

 
Discount rate and international environmental agreement in climate changeOngoing
New developments of the theory of viscosity solutions and its applications
Advanced Analysis on Evolving Patterns in Nonlinear Phenomena Driven by Singular Structure
Deepening of the theory of viscosity solutions and its applications
Fundamental theory for viscosity solutions of fully nonlinear equations and its applications