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◮ The continuum is either ℵ1 or ℵ2 or very large.

⊲ Provided that a sufficiently strong and reasonable reflection
principle should hold.

◮ The continuum is either ℵ1 or ℵ2 or very large.

⊲ Provided that a Laver-generically supercompact cardinal should
exist. Under a Laver-generically supercompact cardinal, in each of
the three scenarios, the respective reflection principle in the sense of
above also holds.
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are going to appear in joint papers with André Ottenbereit Maschio
Rodriques and Hiroshi Sakai:

[1] Sakaé Fuchino, André Ottenbereit Maschio Rodriques and
Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for
stationary logics, I, submitted.
http://fuchino.ddo.jp/papers/SDLS-x.pdf

[2] Sakaé Fuchino, André Ottenbereit Maschio Rodriques and
Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for
stationary logics, II — reflection down to the continuum,
pre-preprint. http://fuchino.ddo.jp/papers/SDLS-II-x.pdf

[3] Sakaé Fuchino, André Ottenbereit Maschio Rodriques and
Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for
stationary logics, III — more on Laver-generically large cardinals, in
preparation.

http://fuchino.ddo.jp/papers/SDLS-x.pdf
http://fuchino.ddo.jp/papers/SDLS-II-x.pdf
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◮ The size of the continuum is either ℵ1 or ℵ2 or very large.

⊲ provided that a "reasonable" and sufficiently strong reflection
principle should hold.
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◮ The size of the continuum is either ℵ1 or ℵ2 or very large.

⊲ provided that a "reasonable" and sufficiently strong reflection
principle should hold.

Theorem 1.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

SDLS(Lℵ0
stat , <ℵ2) implies CH. Proof

Actually SDLS(Lℵ0
stat , <ℵ2) is equivalent with Sean Cox’s

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Diagonal Reflection Principle for internal clubness + CH.

Theorem 2. (a)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

SDLS−(Lℵ0
stat , < 2ℵ0) implies 2ℵ0 = ℵ2. Proof

(b)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

SDLS−(Lℵ0
stat , <ℵ2) is equivalent to Diagonal Reflection

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Principle for internal clubness (c) SDLS−(Lℵ0
stat , < 2ℵ0) is

equivalent to SDLS−(Lℵ0
stat , <ℵ2) + ¬CH. Proof

Theorem 3.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

SDLSint
+ (LPKL

stat , < 2ℵ0) implies 2ℵ0 is very large
(e.g. weakly Mahlo, weakly hyper Mahlo, etc.) Proof
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◮ The size of the continuum is either ℵ1 or ℵ2 or very large!

⊲ provided that a strong variant of generic large cardinal exists.
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◮ The size of the continuum is either ℵ1 or ℵ2 or very large!

⊲ provided that a strong variant of generic large cardinal exists.

Theorem 1. If there exists a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Laver-generically supercompact

✿✿✿✿✿✿✿✿

cardinal κ for σ-closed p.o.s, then κ = ℵ2 and CH holds. More-

over MA+ℵ1(σ-closed) holds. Thus SDLS(Lℵ0
stat , <ℵ2) also holds.

Theorem 2. If there exists a Laver-generically supercompact car-
dinal κ for proper p.o.s, then κ = ℵ2 = 2ℵ0 . Moreover PFA+ℵ1

holds. Thus SDLS−(Lℵ0
stat , < 2ℵ0) also holds.

Theorem 3. If there exists a Laver generically supercompact car-
dinal κ for c.c.c. p.o.s, then κ ≤ 2ℵ0 and κ is very large (for all
regular λ ≥ κ, there is a σ-saturated normal ideal over Pκ(λ)).
Moreover MA+µ(ccc , < κ) for all µ < κ and SDLSint

+ (LPKL
stat , < κ)

hold.



Consistency of Laver-generically supercompact cardinals gen. suparcomapct card. (7/11)

Theorem 1. (1) Suppose that ZFC + “there exists a supercom-
pact cardinal” is consistent. Then ZFC + “there exists a Laver-
generically supercompact cardinal for σ-closed p.o.s” is consistent
as well.

(2) Suppose that ZFC + “there exists a superhuge cardinal” is
consistent. Then ZFC + “there exists a Laver-generically super-
compact cardinal for proper p.o.s” is consistent as well.

(3) Suppose that ZFC + “there exists a supercompact cardinal” is
consistent. Then ZFC + “there exists a strongly Laver-generically
supercompact cardinal for c.c.c. p.o.s” is consistent as well.

Proof. Starting from a model of ZFC with a supercompact cardinal
κ (a superhuge cardinal in case of (2)), we can obtain models of
respective assertions by iterating (in countable support in case of
(1), (2) and in finite support in case of (3)) with respective p.o.s κ

times along a Laver function (for (1) and (2) Laver function for
supercompactness; for (2), Laver function for super-
almost-hugeness). �



Some more background and open problems gen. suparcomapct card. (8/11)

◮ By a slight modification of a proof by B. König, the implication of
SDLS(Lℵ0

stat , <ℵ2) from the existence of Laver-generically
supercompact cardinal for σ-closed p.o.s can be interpolated by a
Game Reflection Principle which by itself characterizes the usual
version of generic supercompactness of ℵ2 by σ-closed p.o.s.

Problem 1. Does there exist some sort of Game Reflection Principle
which plays similar role in the other two scenarios in the trichotomy?

Problem 2. Does (some variation of) Laver-generic supercompactness
of κ for c.c.c. p.o.s imply κ = 2ℵ0?

Problem 3. Is there any characterization of MA++(...) which would
fit our context?

Problem 4. What is about Laver-generic supercompactness for Cohen
reals? What is about Laver-generic supercompactness for stationary
preserving p.o.s?
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Lemma 1. Suppose that P is a class of p.o.s containing a p.o.
P which adds a new real. If κ is a Laver-generically supercompact
for P , then κ ≤ 2ℵ0 .

Proof. Let P ∈ P be s.t. any generic filter over P codes a new real.
Suppose that µ < κ. We show that 2ℵ0 > µ. Let ~a = 〈aξ : ξ < µ〉
be a sequence of subsets of ω. It is enough to show that ~a does not
enumerate P(ω).

◮ By Laver-generic supercompactness of κ for P , there are Q ∈ P
with P ≤◦ Q, (V,Q)-generic H, transitive M ⊆ V[H] and j ⊆ M[H]

with j : V
≺
→ M, crit(j) = κ and P,H ∈ M. Since µ < κ, we have

j(~a) = ~a.

◮ Since H ∈ M where G = H ∩ P and G codes a new real not in V,
we have

M |= “ j(~a) does not enumerate 2ℵ0”.

◮ By elementarity, it follows that

V |= “ ~a does not enumerate 2ℵ0”. �
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Theorem 2. If κ is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

tightly Laver-generically superhuge for ccc
p.o.s, then κ = 2ℵ0 .

Proof. Suppose that κ is tightly Laver-generically superhuge for ccc
p.o.s. By Lemma 1 on the previous slide, we have 2ℵ0 ≥ κ.

To prove 2ℵ0 ≤ κ, let λ ≥ κ, 2ℵ0 be large enough and let Q be a

ccc p.o. s.t. there are (V,Q)-generic H and j : V
≺
→ M ⊆ V[H] with

crit(j) = κ, |Q | ≤ j(κ) > λ, H ∈ M and j ′′j(κ) ∈ M.

◮ Since M |= “ j(κ) is regular” by elementarity, j(κ) is also regular in
V by the closedness of M. Thus, we have V |= “ j(κ)ℵ0 = j(κ)” by
SCH above max{κ, 2ℵ0} (available under the assumption on κ).

◮ Since Q has the ccc and |Q | ≤ j(κ), it follows that
V[H] |= “ 2ℵ0 ≤ j(κ)” . Now we have (j(κ)+)M = (j(κ)+)V[H] by
j ′′j(κ) ∈ M. Thus M |= “ 2ℵ0 ≤ j(κ)” .

◮ By elementarity, it follows that V |= “ 2ℵ0 ≤ κ” . �



A partial solution of Problem 2 (2/2) gen. suparcomapct card. (10/11)

Theorem 2. If κ is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

tightly Laver-generically superhuge for ccc
p.o.s, then κ = 2ℵ0 .

Proof. Suppose that κ is tightly Laver-generically superhuge for ccc
p.o.s. By Lemma 1 on the previous slide, we have 2ℵ0 ≥ κ.

To prove 2ℵ0 ≤ κ, let λ ≥ κ, 2ℵ0 be large enough and let Q be a

ccc p.o. s.t. there are (V,Q)-generic H and j : V
≺
→ M ⊆ V[H] with

crit(j) = κ, |Q | ≤ j(κ) > λ, H ∈ M and j ′′j(κ) ∈ M.

◮ Since M |= “ j(κ) is regular” by elementarity, j(κ) is also regular in
V by the closedness of M. Thus, we have V |= “ j(κ)ℵ0 = j(κ)” by
SCH above max{κ, 2ℵ0} (available under the assumption on κ).

◮ Since Q has the ccc and |Q | ≤ j(κ), it follows that
V[H] |= “ 2ℵ0 ≤ j(κ)” . Now we have (j(κ)+)M = (j(κ)+)V[H] by
j ′′j(κ) ∈ M. Thus M |= “ 2ℵ0 ≤ j(κ)” .

◮ By elementarity, it follows that V |= “ 2ℵ0 ≤ κ” . �



A partial solution of Problem 2 (2/2) gen. suparcomapct card. (10/11)

Theorem 2. If κ is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

tightly Laver-generically superhuge for ccc
p.o.s, then κ = 2ℵ0 .

Proof. Suppose that κ is tightly Laver-generically superhuge for ccc
p.o.s. By Lemma 1 on the previous slide, we have 2ℵ0 ≥ κ.

To prove 2ℵ0 ≤ κ, let λ ≥ κ, 2ℵ0 be large enough and let Q be a

ccc p.o. s.t. there are (V,Q)-generic H and j : V
≺
→ M ⊆ V[H] with

crit(j) = κ, |Q | ≤ j(κ) > λ, H ∈ M and j ′′j(κ) ∈ M.

◮ Since M |= “ j(κ) is regular” by elementarity, j(κ) is also regular in
V by the closedness of M. Thus, we have V |= “ j(κ)ℵ0 = j(κ)” by
SCH above max{κ, 2ℵ0} (available under the assumption on κ).

◮ Since Q has the ccc and |Q | ≤ j(κ), it follows that
V[H] |= “ 2ℵ0 ≤ j(κ)” . Now we have (j(κ)+)M = (j(κ)+)V[H] by
j ′′j(κ) ∈ M. Thus M |= “ 2ℵ0 ≤ j(κ)” .

◮ By elementarity, it follows that V |= “ 2ℵ0 ≤ κ” . �



Thank you for your attention.



A Proof of: SDLS
int

+ (LPKL
stat

, < 2ℵ0) implies 2ℵ0 is very large.
◮ For a regular cardinal κ and a cardinal λ ≥ κ, S ⊆ Pκ(λ) is said to

be 2-stationary if, for any stationary T ⊆ Pκ(λ), there is an a ∈ S
s.t. |κ ∩ a | is a regular uncountable cardinal and T ∩ Pκ∩a(a) is
stationary in Pκ∩a(a). A regular cardinal κ has the 2-stationarity
property if Pκ(λ) is 2-stationary (as a subset of itself) for all λ ≥ κ.

Lemma 1. For a regular uncountable κ, SDLSint
+ (LPKL

stat , < κ)
implies that κ is 2-stationary.

Lemma 2. Suppose that κ is a regular uncountable cardinal.
(1) If κ is 2-stationary then κ is a limit cardinal.

(2) For any λ ≥ κ, 2-stationary S ⊆ Pκ(λ), and any stationary
T ⊆ Pκ(λ), there are stationarily many r ∈ S s.t. T ∩ Pκ∩r (r) is
stationary.

(3) If κ is 2-stationary then
κ is a weakly Mahlo cardinal.

もどる



SDLS
−(Lℵ0

stat , < 2ℵ0) ⇔ SDLS
−(Lℵ0

stat , <ℵ2) + ¬CH.

◮ If SDLS−(Lℵ0
stat , < 2ℵ0) holds then 2ℵ0 = ℵ2 by (a). Thus, it follows

that SDLS−(Lℵ0
stat , <ℵ2) + ¬CH holds.

◮ Suppose SDLS−(Lℵ0
stat , <ℵ2) holds. Then we have 2ℵ0 ≤ ℵ2 by a

theorem of Todorčević already mentioned. Thus, if 2ℵ0 > ℵ1 in
addition, we have 2ℵ0 = ℵ2. Thus SDLS−(Lℵ0

stat , < 2ℵ0) follows.
�

もどる



Baumgartner’s Theorem

⊲ κ > |M | ≥ |λ ∩M | ≥ ℵ2

⊲ there is a club C ⊆ [M]ℵ0 with C ⊆ M

Theorem 1 (J.E. Baumgartner). Let ω < κ < λ and κ be
regular. Then any club subset of [λ]<κ has cardinality ≥ λℵ0 .

◮ κ > |M | ≥ |C | ≥ 2ℵ0 .
もどる



SDLS
−(Lℵ0

stat , < κ) for κ > ℵ2 implies κ > 2ℵ0.

◮ SDLS−(Lℵ0
stat , <ℵ2) implies 2ℵ0 ≤ ℵ2: it is easy to see that

SDLS−(Lℵ0
stat , <ℵ2) implies the reflection principle RP(ω2) in Jech’s

[millennium-book]. RP(ω2) implies 2ℵ0 ≤ ℵ2 (Todorčević).
⊲ It follows that κ > ℵ2 ≥ 2ℵ0 .

◮ Thus, we may assume that SDLS−(Lℵ0
stat , <ℵ2) does not hold.

Hence there is a structure A s.t., for any B ≺−

(L
ℵ0
stat)

A, we have

‖B‖ ≥ ℵ2. Let λ = ‖A‖ . W.l.o.g., we may assume that the
underlying set of A is λ. Let A∗ = 〈H(λ+), λ, ...

︸︷︷︸

=A

,∈〉.

◮ By SDLS−(Lℵ0
stat , < κ), there is M ∈ [H(λ+)]<κ s.t.

A
∗ ↾ M ≺−

calL
ℵ0
stat

A
∗. It follows that A ↾ (λ ∩M) ≺−

(L
ℵ0
stat)

A.

By the choice of A, we have |M | ≥ |λ ∩M | ≥ ℵ2.

◮ By elementarity, there is C ⊆ [M]ℵ0 ∩M which is a club in [M]ℵ0 .
By

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

a theorem of Baumgartner , it follows that

κ > |M | ≥ |C | ≥ 2ℵ0 . �

もどる



SDLS
−(Lℵ0

stat , < 2ℵ0) implies 2ℵ0 = ℵ2.

Proposition 1. SDLS−(Lℵ0
stat , < κ) for κ > ℵ2 implies κ > 2ℵ0 .

Proof

◮ Suppose that SDLS−(Lℵ0
stat , < 2ℵ0) holds. Then 2ℵ0 ≤ ℵ2 by the

Proposition 1.

◮ SDLS−(Lℵ0
stat , <ℵ1) does not hold since

“there are uncountably many x s.t. ...”

is expressible in Lℵ0
stat . [ e.g. by stat X (∃x (· · · ∧ x 6ε X )) ]

Thus, 2ℵ0 > ℵ1. �

Corollary 2. SDLS(Lℵ0
stat , < 2ℵ0) is inconsistent.

Proof. Assume SDLS(Lℵ0
stat , < 2ℵ0). Then SDLS−(Lℵ0

stat , < 2ℵ0)
holds. Thus 2ℵ0 = ℵ2 by the proof above. But then
SDLS(Lℵ0

stat , <ℵ2) holds. By Proposition 1. This implies 2ℵ0 = ℵ0.
This is a contradiction. �

もどる



SDLS(Lℵ0
stat , <ℵ2) implies CH.

◮ Suppose that A = 〈H(ω1),∈〉 and Let B ∈ [H(ω1)]
<ℵ2 be s.t.

A ↾ B ≺
L
ℵ0
stat

A. Then for any U ∈ [B]ℵ0 we have

A |= “∃x ∀y (y ∈ x ↔ y ε U)”.

◮ By elementarity we also have B |= “∃x ∀y (y ∈ x ↔ y ε U)”.

⊲ It follows that U ∈ B . Thus [B]ℵ0 ⊆ B and 2ℵ0 ≤ |B | ≤ ℵ1. �

もどる



Strong Downward Löwneheim-Skolem Theorem for stationary logic

⊲ Lℵ0
stat is a weak second order logic with monadic second-order

variables X , Y etc. which run over the countable subsets of the
underlying set of a structure. The logic has only the weak second
order quantifier “stat” and its dual “aa” (but not the second-order
existential (or universal) quantifiers) with the interpretation:

A |= stat X ϕ(..., X ) :⇔
{U ∈ [A]ℵ0 : A |= ϕ(..., U)} is a stationary subset of [A]ℵ0 .

⊲ For B = 〈B , ...〉 ⊆ A, B ≺
L
ℵ0
stat

A :⇔

B |= ϕ(a0, ...,U0, ...) ⇔ A |= ϕ(a0, ...,U0, ...) for all Lℵ0
stat-formula

ϕ = ϕ(x0, ...,X0, ...) and for all a0, ... ∈ B and for all
U0, ... ∈ [B]ℵ0 .

◮ SDLS(Lℵ0
stat , < κ) :⇔

For any structure A = 〈A, ...〉 of countable signature, there is a
structure B of size < κ s.t. B ≺

L
ℵ0
stat

A. もどる



A weakening of the Strong Downward Löwneheim-Skolem Theorem

⊲ For B = 〈B , ...〉 ⊆ A, B ≺−

L
ℵ0
stat

A :⇔

B |= ϕ(a0, ...) ⇔ A |= ϕ(a0, ...) for all Lℵ0
stat-formula ϕ = ϕ(x0, ...)

without free seond-order variables and for all a0, ... ∈ B .

◮ SDLS−(Lℵ0
stat , < κ) :⇔

For any structure A = 〈A, ...〉 of countable signature, there is a
structure B of size < κ s.t. B ≺−

L
ℵ0
stat

A.

もどる



Strong Downward Löwneheim-Skolem Theorem for PKL logic

⊲ LPKL
stat is the weak second-order logic with monadic second order

variables X , Y , etc. with built-in unary predicate symbol K . The
monadic seond order variables run over elements of P

K
A(A) for a

structure A = 〈A, K A, ...〉 where we denote
PS(T ) = P| S |(T ) = {u ⊆ T : | u | < | S |}. The logic has the
unique second order quantifier “stat” (and its dual).

⊲ The internal interpretation of the quantifier is defined by:

A |=int stat X ϕ(a0, ...,U0, ...,X ) :⇔
{U ∈ P

K
A(A) ∩ A : A |=int ϕ(a0, ...,U0, ...,U)} is a stationary

subset of P
K

A(A) for a0, ...A and U0, ... ∈ P
K

A(A) ∩ A.

⊲ For B = 〈B ,K ∩ B , ...〉 ⊆ A = 〈A,K , ...〉, B ≺int

LPKL
stat

A :⇔

B |=int ϕ(a0, ...,U0, ...) ⇔ A |=int ϕ(a0, ...,U0, ...) for all
Lℵ0
stat-formula ϕ = ϕ(x0, ...) a0, ... ∈ B and U0, ... ∈ PK∩B(B) ∩ B .



Strong Downward Löwneheim-Skolem Theorem for PKL logic (2/2)

◮ SDLSint(LPKL
stat , < κ) :⇔

for any regular λ ≥ κ and a structuer A = 〈A,K , ...〉 of countable
signature with |A | = λ and |K | = κ. 〈H(λ), κ,∈〉, there is a
structure B of size < κ s.t. B ≺int

LPKL
stat

A.

◮ SDLSint
+ (LPKL

stat , < κ) :⇔
for any regular λ ≥ κ and a structuer A = 〈A,K , ...〉 of countable
signature with |A | = λ and |K | = κ. 〈H(λ), κ,∈〉, there are
stationarily many structures B of size < κ s.t. B ≺int

LPKL
stat

A.

もどる



Laver generically supercompact cardinals

◮ For a class P of p.o.s, a cardinal κ is a Laver-generically
supercomact for P if, for all regular λ ≥ κ and P ∈ P there is
Q ∈ P with P ≤◦ Q, s.t., for any (V,Q)-generic H, there are a inner
model M ⊆ V[H], and an elementary embedding j : V → M s.t.

(1) crit(j) = κ, j(κ) > λ.

(2) P,H ∈ M,

(3) j ′′λ ∈ M.
もどる



tightly Laver generically superhuge cardinals

◮ For a class P of p.o.s, a cardinal κ is a tightly Laver-generically
superhuge for P if, for all regular λ ≥ κ and P ∈ P there is Q ∈ P
with P ≤◦ Q, s.t., for any (V,Q)-generic H, there are a inner model
M ⊆ V[H], and an elementary embedding j : V → M s.t.

(1) crit(j) = κ, j(κ) > λ.

(2) P,H ∈ M,

(3) j ′′j(κ) ∈ M, and

(4) |Q | ≤ j(κ).
もどる



Diagonal Reflection Principle
◮ (S. Cox) For a regular cardinal θ > ℵ1:

DRP(θ, IC): There are stationarily many M ∈ [H((θℵ0)+)]ℵ1 s.t.

(1) M ∩H(θ) is
✿✿✿✿✿✿✿✿✿✿✿✿

internally club ;

(2) for all R ∈ M s.t. R is a stationary subset of [θ]ℵ0 ,

R ∩ [θ ∩M]ℵ0 is stationary in [θ ∩M]ℵ0 .

◮ For a regular cardinal λ > ℵ1

(∗)λ: For any countable expansion Ã of 〈H(λ),∈〉, if
〈Sa : a ∈ H(λ)〉, is a family of stationary subsets of [H(λ)]ℵ0 ,
then there is an internally club M ∈ [H(λ)]ℵ1 s.t. Ã ↾ M ≺ Ã

and Sa ∩ [M]ℵ0 is stationary in [M]ℵ0 , for all a ∈ M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(θ, IC) for
all regular θ > ℵ1) holds.

(b) (∗)λ for all regular λ > ℵ1 holds.
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Diagonal Reflection Principle
◮ (S. Cox) For a regular cardinal θ > ℵ1:

DRP(θ, IC): There are stationarily many M ∈ [H((θℵ0)+)]ℵ1 s.t.
(1) M ∩H(θ) is

✿✿✿✿✿✿✿✿✿✿✿✿

internally club ;

(2) for all R ∈ M s.t. R is a stationary subset of [θ]ℵ0 ,

R ∩ [θ ∩M]ℵ0 is stationary in [θ ∩M]ℵ0 .

◮ For a regular cardinal λ > ℵ1

(∗)λ: For any countable expansion Ã of 〈H(λ),∈〉, if
〈Sa : a ∈ H(λ)〉, is a family of stationary subsets of [H(λ)]ℵ0 ,
then there is an internally club M ∈ [H(λ)]ℵ1 s.t. Ã ↾ M ≺ Ã

and Sa ∩ [M]ℵ0 is stationary in [M]ℵ0 , for all a ∈ M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(θ, IC) for
all regular θ > ℵ1) holds.

(b) (∗)λ for all regular λ > ℵ1 holds.

(c) SDLS−(Lℵ0
stat , <ℵ2) holds.
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Reflection Principles RP??

◮ The following are variations of the “Reflection Principle” in
[Jech, Millennium Book].

RPIC For any uncountable cardinal λ, stationary S ⊆ [H(λ)]ℵ0 and
any countable expansion A of the structure 〈H(λ),∈〉, there is
an

✿✿✿✿✿✿✿✿✿✿✿✿✿

internally club M ∈ [H(λ)]ℵ1 s.t. (1) A ↾ M ≺ A; and (2)
S ∩ [M]ℵ0 is stationary in [M]ℵ0 .

RPIU For any uncountable cardinal λ, stationary S ⊆ [H(λ)]ℵ0 and
any countable expansion A of the structure 〈H(λ),∈〉, there is
an

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

internally unbounded M ∈ [H(λ)]ℵ1 s.t. (1) A ↾ M ≺ A;
and (2) S ∩ [M]ℵ0 is stationary in [M]ℵ0 .

Since every internally club M is internally unbounded, we have:

Lemma 1. RPIC implies RPIU.

RPIU is also called Axiom R in Set-Theoretic Topology.

Theorem 2. ([Fuchino, Juhasz etal. 2010]) RPIU implies FRP.
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Stationary subsets of [X ]ℵ0

◮ C ⊆ [X ]ℵ0 is club in [X ]ℵ0 if (1) for every u ∈ [X ]ℵ0 , there is v ∈ C

with u ⊆ v ; and (2) for any countable increasing chain F in C we
have

⋃
F ∈ C .

⊲ S ⊆ [X ]ℵ0 is stationary in [X ]ℵ0 if S ∩C 6= ∅ for all club C ⊆ [X ]ℵ0 .

◮ A set M is internally unbounded if M ∩ [M]ℵ0 is cofinal in [M]ℵ0

(w.r.t. ⊆)

⊲ A set M is internally stationary if M ∩ [M]ℵ0 is stationary in [M]ℵ0

⊲ A set M is internally club if M ∩ [M]ℵ0 contains a club in [M]ℵ0 .

“Diagonal Reflection Principle” にもどる “RP??” にもどる



Fodor-type Reflection Principle (FRP)
(FRP) For any regular κ > ω1, any stationary E ⊆ Eκ

ω and any
mapping g : E → [κ]ℵ0 with g(α) ⊆ α for all α ∈ E , there is
γ ∈ Eκ

ω1
s.t.

(*) for any I ∈ [γ]ℵ1 closed w.r.t. g and club in γ, if
〈Iα : α < ω1〉 is a filtration of I then sup(Iα) ∈ E and
g(sup(Iα)) ⊆ Iα hold for stationarily many α < ω1.

⊲ F = 〈Iα : α < λ〉 is a filtration of I if F is a continuously increasing
⊆-sequence of subsets of I of cardinality < | I | s.t. I =

⋃

α<λ Iα.

◮ FRP follows from Martin’s Maximum or Rado’s Conjecture.
MA+(σ-closed) already implies FRP but PFA does not imply FRP
since PFA does not imply stationary reflection of subsets of Eω2

ω

(Magidor, Beaudoin) which is a consequence of FRP.

◮ FRP is a large cardinal property: FRP implies the total failure of the
square principle.

⊲ FRP is known to be equivalent to the reflection of uncountable
coloring number of graphs down to cardinality < ℵ2. もどる



Proof of Fact 1

Fact 1. (A. Hajnal and I. Juhász, 1976) For any uncountable cardi-
nal κ there is a non-metrizable space X of size κ s.t. all subspaces
Y of X of cardinality < κ are metrizable.

Proof.
◮ Let κ′ ≥ κ be of cofinality ≥ κ, ω1.

⊲ The topological space (κ′ + 1,O) with

O = P(κ′) ∪ {(κ′ \ x) ∪ {κ′} : x ⊆ κ′, x is bounded in κ′}

is non-metrizable since the point κ′ has character = cf(κ′) > ℵ0.
⊲ Any subspace of κ′ + 1 of size < κ is discrete and hence metrizable.

�
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Proof of Fact 3
◮ It is enough to prove the following:

Lemma 1. (Folklore ?, see [Fuchino, Juhasz etal.
2010]) For a regular cardinal κ ≥ ℵ2 if, there is
a

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

non-reflectingly stationary S ⊆ Eκ
ω , then there is a non

✿✿✿✿✿✿✿✿✿✿✿✿

meta-lindelöf (and hence non metrizable) locally compact and
locally countable topological space X of cardinality κ s.t. all sub-
space Y of X of cardinality < κ are metrizable.

Proof.
◮ Let I = {α+ 1 : α < κ} and X = S ∪ I .
⊲ Let 〈aα : α ∈ S〉 be s.t. aα ∈ [I ∩ α]ℵ0 , aα is of order-type ω and

cofinal in α. Let O be the topology on X introduced by letting

(1) elements of I are isolated; and

(2) {aα ∪ {α} \ β : β < α} a neighborhood base of each α ∈ S .

◮ Then (X ,O) is not meta-lindelöf (by Fodor’s Lemma) but each
α < κ as subspace of X is metrizable (by induction on α).� もどる



Coloring number and chromatic number of a graph

◮ For a cardinal κ ∈ Card, a graph G = 〈G ,K 〉 has coloring number
≤ κ if there is a well-ordering ⊑ on G s.t. for all p ∈ G the set

{q ∈ G : q ⊑ p and q K p}

has cardinality < κ. もどる

⊲ The coloring number col(G ) of a graph G is the minimal cardinal
among such κ as above.

◮ The chromatic number chr(G ) of a graph G = 〈G ,K 〉 is the
minimal cardinal κ s.t. G can be partitioned into κ pieces
G =

⋃

α<κ Gα s.t. each Gα is pairwise non adjacent (independent).

⊲ For all graph G we have chr(G ) ≤ col(G ).
もどる



κ-special trees
◮ For a cardinal κ, a tree T is said to be κ-special if T can be

represented as a union of κ subsets Tα, α < κ s.t. each Tα is an
antichain (i.e. pairwise incomparable set).
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Stationary subset of E
κ
ω

◮ For a cardinal κ,

Eκ
ω = {γ < κ : cf(γ) = ω}.

◮ A subset C ⊆ ξ of an ordinal ξ of uncountable cofinality, C is closed
unbounded (club) in ξ if (1): C is cofinal in ξ (w.r.t. the canonical
ordering of ordinals) and (2): for all η < ξ, if C ∩ η is cofinal in η

then η ∈ C .

◮ S ⊆ ξ is stationary if S ∩ C 6= ∅ for all club C ⊆ ξ.

◮ A stationary S ⊆ ξ if reflectingly stationary if there is some η < ξ of
uncountable cofinality s.t.S ∩ η is stationary in η. Thus:

◮ A stationary S ⊆ ξ if non reflectingly stationary if S ∩ η is non
stationary for all η < ξ of uncountable cofinality.
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Proof of Theorem 1.
CH ⇒ SDLS(Lℵ0,II , < ℵ2): For a structure A with a countable
signature L and underlying set A, let θ be large enough and

Ã = 〈H(θ),A,A,∈〉. where A = A Ã for a unary predicate symbol

A and A = A
Ã for a constant symbol A. Let B̃ ≺ Ã be

s.t.|B | = ℵ1 for the underlying set B of B and [B]ℵ0 ⊆ B .

B = A ↾ AB̃ is then as desired.

SDLS(Lℵ0 , < ℵ2) ⇒ CH: Suppose A = {ω2 ∪ [ω2]
ℵ0 ,∈}. Consider

the Lℵ0-formula ϕ(X ) = ∃x∀y (y ∈ x ↔ y ε X ).
If B = 〈B , ...〉 is s.t. |B | ≤ ℵ1 and B ≺Lℵ0 , then for C ∈ [B]ℵ0 ,
since A |= ϕ(C ), we have B |= ϕ(C ). It dollows that [B]ℵ0 ⊆ B

and 2ℵ0 ≤ (|B |)ℵ0 ≤ |B | = ℵ1.
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