Set-theoretic principles which imply that the continuum is fairly large

Sakaé Fuchino (渕野 昌)

fuchino@diamond.kobe-u.ac.jp

2019年11月10日 (於 3. PPICTA, 成都)

2020年06月30日(00:46 JST)版

These slides are (going to be) downloadable as: http://fuchino.ddo.jp/slides/chengdu2019-11-slides-pf.pdf The results connected to the following slides ...

are to be found in the joint papers with André Ottenbereit Maschio Rodriques and Hiroshi Sakai:

[1] Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, I, submitted. http://fuchino.ddo.jp/papers/SDLS-x.pdf

[2] Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, II — reflection down to the continuum, pre-preprint. http://fuchino.ddo.jp/papers/SDLS-II-x.pdf

[3],[4] Sakaé Fuchino, André Ottenbereit Maschio Rodriques and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, III, IV, in preparation.

Are there reasonable axioms ...

which imply that the size of the continuum is very large ?

▷ "reasonable" possibly in line with Gödel's program: see e.g.

[4] Joan Bagaria, Natural axioms of set theory and the continuum problem, In: Proceedings of the 12-th International Congress of Logic, Methodology, and Philosophy of Science, King's College London (2005), 43-64.

A diagonal reflection principle ...

on the stationarity of subsets of $\mathcal{P}_{\kappa}(\lambda)$

- \triangleright The Diagonal Reflection Principles on the stationarity of $[\lambda]^{\aleph_0}$ were introduced by Sean Cox. We consider the following $\mathcal{P}_{\kappa}(\lambda)$ version of the principle:
- ▶ For sets *X*, *Y* with $X \subseteq Y$, we denote

$$\mathcal{P}_X(Y) = \mathcal{P}_{|X|}(Y) = [Y]^{<|X|}.$$

 Let κ be a regular cardinal and λ ≥ κ.
 (*)^{int+PKL}: For any countable expansion 𝔅 of the structure ⟨H(λ), κ, ∈⟩ and any family ⟨S_a : a ∈ H(λ)⟩ s.t. S_a is a stationary subset of P_κ(H(λ)) for all a ∈ H(λ), there are stationarily many M ∈ P_κ(H(λ)) s.t. |κ ∩ M| is regular, 𝔅 ↾ M ≺ 𝔅 and S_a ∩ P_{κ∩M}(M) ∩ M is stationary in P_{κ∩M}(M) for all a ∈ M.

A diagonal reflection principle ...

on the stationarity of subsets of $\mathcal{P}_{\kappa}(\lambda)$

- \triangleright The Diagonal Reflection Principles on the stationarity of $[\lambda]^{\aleph_0}$ were introduced by Sean Cox. We consider the following $\mathcal{P}_{\kappa}(\lambda)$ version of the principle:
- ▶ For sets *X*, *Y* with $X \subseteq Y$, we denote

$$\mathcal{P}_X(Y) = \mathcal{P}_{|X|}(Y) = [Y]^{<|X|}.$$

 Let κ be a regular cardinal and λ ≥ κ.
 (*)^{int+PKL}: For any countable expansion 𝔄 of the structure ⟨H(λ), κ, ∈⟩ and any family ⟨S_a : a ∈ H(λ)⟩ s.t. S_a is a stationary subset of P_κ(H(λ)) for all a ∈ H(λ), there are stationarily many M ∈ P_κ(H(λ)) s.t. |κ ∩ M| is regular, 𝔄 ↾ M ≺ 𝔅 and S_a ∩ P_{κ∩M}(M)∩M is stationary in P_{κ∩M}(M) for all a ∈ M.

$(*)^{int+PKL}_{<\kappa,\lambda}$ implies that κ is large

Proposition 1. For a regular cardinal κ , $(*)_{<\kappa,\lambda}^{int+PKL}$ implies that κ is weakly Mahlo, weakly hyper-Mahlo, etc.

Though the original definition of (*)^{int+PKL} looks rather technical an arbitrary, it can be characterized in terms of a strong downward Löwenheim-Skolem theorem for a generalized logic.

$(*)_{<\kappa,\lambda}^{int+PKL}$ as a downward Löwenheim-Skolem Theorem

Laver-gen. large cardinals (6/14)

- ▷ A structure \mathfrak{A} with a designated unary predicate <u>K</u> is a <u>*PKL*-structure</u> if | <u>K</u>^{\mathfrak{A}} | is regular uncountable.
- $\triangleright A \text{ logic } \mathcal{L}_{stat}^{PKL} \text{ is a monadic second-order logic with built-in unary predicate } \underbrace{K}(\cdot) \text{ and with the unique second-order quantifier stat.} \\ \text{The second-order variables run over the elements of } \mathcal{P}_{\underline{K}}^{\mathfrak{A}}(A) \text{ for a } PKL\text{-structure } \mathfrak{A} = \langle A, ... \rangle.$
- ▶ the internal interpretation of a \mathcal{L}_{stat}^{PKL} -formula $\varphi = \varphi(x_0, ..., X_0, ...)$ in a *PKL*-structure \mathfrak{A} with $a_0, ... \in A$ and $U_0, ... \in \mathcal{P}_{\underline{K}}^{\mathfrak{A}}(A)$ is defined similarly to the usual second order logic with the crucial step in the recursive definition:

$$\mathfrak{A}\models^{int} stat X \varphi(a_{0},...,U_{0},...,X) \Leftrightarrow \\ \{U \in \mathcal{P}_{\underline{K}}^{\mathfrak{A}}(A) \cap A : \mathfrak{A}\models^{int} \varphi(a_{0},...,U_{0},...,U)\} \text{ is stationary in } \mathcal{P}_{\underline{K}}^{\mathfrak{A}}(A)$$

 $(*)_{<\kappa,\lambda}^{int+PKL}$ as a downward Löwenheim-Skolem Theorem (2/2) Lavergen. large cardinals (7/14)

\triangleright For *PKL*-structures \mathfrak{A} , \mathfrak{B} with $\mathfrak{B} \subseteq \mathfrak{A}$, $\mathfrak{B} = \langle B, ... \rangle$,

$$\mathfrak{B} \prec_{\mathcal{L}_{stat}}^{int} \mathfrak{A} \Leftrightarrow \mathfrak{B} \models^{int} \varphi(b_0, ..., U_0, ...) \text{ if and only if} \\ \mathfrak{A} \models^{int} \varphi(b_0, ..., U_0, ...) \text{ for all } \mathcal{L}_{stat}^{PKL} \text{-formulas } \varphi \text{ in the} \\ \text{language of the structures with } \varphi = \varphi(x_0, ..., X_0, ...), \\ b_0, ... \in B \text{ and } U_0, ... \in \mathcal{P}_{K_{\cdot}^{\mathfrak{B}}}(B) \cap B.$$

▷ The following Strong Downward Löwenheim-Skolem Theorem characterizes the principle $(*)^{int+PKL}_{<\kappa,\lambda}$:

 $\begin{aligned} \mathsf{SDLS}^{int}_+(\mathcal{L}^{\mathsf{PKL}}_{\mathsf{stat}},<\kappa): \ \textit{For any PKL-structure } \mathfrak{A} &= \langle \mathsf{A}, \underline{\mathsf{K}}^{\mathfrak{A}}, \ldots \rangle \ \textit{of} \\ \textit{countable signature with } |\mathsf{A}| \geq \kappa \ \textit{and} \ | \underline{\mathsf{K}}^{\mathfrak{A}}| = \kappa, \ \textit{there are} \\ \textit{stationarily many } M \in [\mathsf{A}]^{<\kappa} \ \textit{s.t.} \ \mathfrak{A} \upharpoonright M \ \textit{is a PKL-structure} \\ \textit{and } \mathfrak{A} \upharpoonright M \prec_{\mathcal{L}^{\mathsf{PKL}}_{\mathsf{stat}}}^{\mathit{int}} \mathfrak{A}. \end{aligned}$

Theorem 2. For a regular cardinal $\kappa > \aleph_1$, t.f.a.e. (a) $(*)_{<\kappa,\lambda}^{int+PKL}$ for all regular $\lambda \ge \kappa$. (b) $SDLS^{int}_+(\mathcal{L}^{PKL}_{stat}, <\kappa)$. Generic supercompactness and ${
m SDLS}^{int}_+({\cal L}^{PKL}_{stat},<\kappa)$ Lavergen, large cardinals (8/14)

▷ For a class \mathcal{P} of forcing p.o.s, a cardinal κ is said to be generically supercompact by \mathcal{P} , if for any regular $\lambda \geq \kappa$, there is $\mathbb{P} \in \mathcal{P}$ s.t., for a (V, \mathbb{P}) -generic \mathbb{G} , there are transitive $M \subseteq V[\mathbb{G}]$ and $j \subseteq V[\mathbb{G}]$ s.t. $j : V \stackrel{\prec}{\to} M$, $crit(j) = \kappa$, $j(\kappa) > \lambda$, $j''\lambda \in M$.

Proposition 3. Suppose that κ is a supercompact cardinal and \mathbb{P} is a ccc p.o. which can be seen as a finite support iteration of length κ of ccc p.o.s of size $< \kappa$. Then

 $\Vdash_{\mathbb{P}}$ " κ is ccc-generically supercompact".

Theorem 4. Suppose that κ is generically supercompact by μ -cc p.o.s for some $\mu < \kappa$. Then $(*)_{<\kappa,\lambda}^{int+PKL}$ holds for all regular $\lambda \ge \kappa$. (By Theorem 2, this is equivalent to $SDLS^{int}_+(\mathcal{L}^{PKL}_{stat}, <\kappa))$).

Consistency of $SDLS^{int}_+(\mathcal{L}^{PKL}_{stat}, < 2^{\aleph_0})$

Proposition 3. Suppose that κ is a supercompact cardinal and \mathbb{P} is a ccc p.o. which can be seen as a finite support iteration of length κ of ccc p.o.s of size $< \kappa$. Then

 $\Vdash_{\mathbb{P}}$ " κ is ccc-generically supercompact".

Theorem 4. Suppose that κ is generically supercompact by μ -cc p.o.s for some $\mu < \kappa$. Then $(*)_{<\kappa,\lambda}^{int+PKL}$ holds for all regular $\lambda \ge \kappa$. (By Theorem 2, this is equivalent to $SDLS_{+}^{int}(\mathcal{L}_{stat}^{PKL}, < \kappa))$.

Corollary 5. SDLS^{*int*}₊(\mathcal{L}_{stat}^{PKL} , $< 2^{\aleph_0}$) is consistent, assuming the consistency of "ZFC + existence of a supercompact cardinal".

Laver-generically supercompact cardinal

For a class *P* of p.o.s, a cardinal κ is a Laver-generically supercompact for *P* if, for all regular λ ≥ κ and ℙ ∈ *P* there is ℚ ∈ *P* with ℙ ⊴ ℚ, s.t., for any (V, ℚ)-generic 𝔅, there are a inner model *M* ⊆ V[𝔅], and an elementary embedding *j* : V → *M* s.t. *crit*(*j*) = κ, *j*(κ) > λ, ℙ, 𝔅 ∈ *M*, *j*″λ ∈ *M*.

Trichotomy Theorem 6. Suppose that κ is Laver-generically supercompact cardinal for a class \mathcal{P} of p.o.s.

(A) If elements of \mathcal{P} are ω_1 -preserving and do not add any reals, and $\operatorname{Col}(\omega_1, \{\omega_2\}) \in \mathcal{P}$, then $\kappa = \aleph_2$ and CH holds.

(B) If elements of \mathcal{P} are ω_1 -preserving and contain all proper p.o.s, then PFA^{+ ω_1} holds and $\kappa = 2^{\aleph_0} = \aleph_2$.

(C) If elements of \mathcal{P} are μ -cc for some $\mu < \kappa$ and \mathbb{P} contains a p.o. which adds a reals then κ is fairly large and $\kappa \leq 2^{\aleph_0}$.

Laver-generically supercompact cardinal (2/2) Lavergen. large cardinals (11/14)

Theorem 7. Suppose that κ is Laver-generically supercompact for \mathcal{P} s.t. all $\mathbb{P} \in \mathcal{P}$ are ccc and at least one of $\mathbb{P} \in \mathcal{P}$ adds a real. Then

- (1) $\kappa \leq 2^{\aleph_0}$,
- (2) SCH holds above $2^{<\kappa}$,

(3) For all regular $\lambda \geq \kappa$, there is an $\langle \aleph_1$ -saturated normal filter over $\mathcal{P}_{\kappa}(\lambda)$, and

(4) $\mathsf{MA}^{+\mu}$ holds for all $\mu < \kappa$.

Theorem 8. If κ is tightly Laver-generically superhuge for ccc *p.o.s, then* $\kappa = 2^{\aleph_0}$.

Theorem 9. (1) Suppose that ZFC + "there exists a supercompact cardinal" is consistent. Then ZFC + "there exists a Lavergenerically supercompact cardinal for σ -closed p.o.s" is consistent as well.

(2) Suppose that ZFC + "there exists a superhuge cardinal" is consistent. Then ZFC + "there exists a Laver-generically super almost-huge cardinal for proper p.o.s" is consistent as well.

(3) Suppose that ZFC + "there exists a supercompact cardinal" is consistent. Then ZFC + "there exists a strongly Laver-generically supercompact cardinal for c.c.c. p.o.s" is consistent as well.

Idea of the proof: Iteration of length κ with appropriate support along with a Laver function enumerating the corresponding p.o.s.

Some open problems

Laver-gen. large cardinals (13/14)

Problem 1. If κ is Laver-generically supercompact for (all) ccc p.o.s, does it follow that $\kappa = 2^{\aleph_0}$?

Let $C = {\operatorname{Fn}(\mu, 2) : \mu \in \operatorname{On}}.$

Theorem 10.(A.Dow, F.Tall, and W.Weiss) If κ is generic supercompact for C, then for any non metrizable space with $\chi(X) < \kappa$, there is a subspace Y of X of cardinality $< \kappa$.

Problem 2. Does Laver-generic supercompactness of κ imply the reflection of non-metrizability as in Theorem 9?

Thank you for your attention.

tightly Laver generically superhuge cardinals

▶ For a class \mathcal{P} of p.o.s, a cardinal κ is a tightly Laver-generically superhuge for \mathcal{P} if, for all regular $\lambda \ge \kappa$ and $\mathbb{P} \in \mathcal{P}$ there is $\mathbb{Q} \in \mathcal{P}$ with $\mathbb{P} \le \mathbb{Q}$, s.t., for any (V, \mathbb{Q}) -generic \mathbb{H} , there are a inner model $M \subseteq \mathsf{V}[\mathbb{H}]$, and an elementary embedding $j : \mathsf{V} \to M$ s.t.

(1)
$$\operatorname{crit}(j) = \kappa, \ j(\kappa) > \lambda.$$

(2) $\mathbb{P}, \mathbb{H} \in M,$
(3) $j''j(\kappa) \in M,$ and
(4) $|\mathbb{Q}| \leq j(\kappa).$

戻る