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The ultimate objectives reflection principles (2/23)

» The ultimate objectives of this research are to give better
mathematical answers to the questions like:

What is Ny 7

What is (or should be) the role of X1 among uncountable cardinals
?

What does (or should) it mean to be of size < 2%0 ?
How about “< 2%0” ?

> We consider these and other questions here in terms of reflection
properties around these cardinals.

> New results in this talk are obtained in a joint work with Hiroshi
Sakai and André Ottenbreit-Machio-Rodrigues.



Mathematical Framework reflection principles (3/23)

» Suppose that we have an uncountable (possibly higher order)
structure 2l with certain bad property P.

One of the natural questions:

>> Is there a substructure B of 2 of smaller cardinality but also with
the same bad property P 7

A similar but more general question:

» Suppose that C is a class of structures and « is a cardinal. For any
A € C, if A =P for some (bad) property P, is it true that there is
always substructures B of 2 in C of cardinality < x with B =P ?

> What is the minimal such x ?

— We shall call the minimal cardinal s (or oo if there is no such a
cardinal x at all) the reflection cardinal of the property P in the
class of structures C.



Example |: Non-metrizability of topological spaces reflection principls (4/23)

Fact 1. (A.Hajnal and |.Juhdsz, 1976) For any uncountable
cardinal k there is a non-metrizable space X of size k s.t. all
subspaces Y of X of cardinality < k are metrizable.

» Thus, the reflection cardinal of the non-metrizability in all
topological spaces is co.

Theorem 2. (A. Dow, 1988) For any compact Hausdorff space
X if all subspaces of X of cardinality < Wi are metrizable then X
is also metrizable.

» This means that the reflection cardinal of the non-metrizability in
compact Hausdorff spaces is < N».

> The compact space wi + 1 with the order topology witnesses that
the reflection cardinal is > N».



Example |: Non-metrizability of topological spaces (2/3) reflction prnciples (5/23)
» The reflection cardinal of non-metrizability in topological spaces = oo

» The reflection cardinal of non-metrizability in compact Hausdorff spaces = No

Fact 3. (Folklore ?) It is consistent that the reflection cardinal
of non-metrizability in locally compact Hausdorff spaces is co.

Theorem 4. ([F., Juhasz et al.,2010],
[F., Sakai, Soukup and Usuba])
The statement

“the reflection cardinal of non-metrizability in locally
compact Hausdorff spaces = Ny"

is consistent modulo a large large cardinal and is equivalent to
the Fodor-type Reflection Principle (FRP) over ZFC.



Example |: Non-metrizability of topological spaces (3/3)  reflction principles (6/23)
» The reflection cardinal of non-metrizability in topological spaces = co
» The reflection cardinal of non-metrizability in compact Hausdorff spaces = No

» The reflection cardinal of non-metrizability in locally compact Hausdorff spaces can
be Ny or 0o, actually can also be many other regular cardinals between them.

> The consistency of the statement “The reflection cardinal of
non-metrizability in first countable topological spaces is N;" is still
open (Hamburger's problem).

Theorem 5. ([Dow, Tall and Weiss, 1990]) (Assuming the con-
sistency of a supercompact cardinal) the statement

“The reflection cardinal of non-metrizability in first
countable topological spaces is < 280"

is consistent.

Sketch of a proof



Example Il: Reflection cardinals of graph coloring teflection principls (7/23)

Theorem 6. ([F., Juhasz et al.,2010],
[F., Sakai, Soukup and Usubal)
The statement

“the reflection cardinal of the property [of coloring number
> Vo] in the class of all graphs = Np"”

is also equivalent to FRP over ZFC.



Example |l: Reflection cardinals of graph coloring (2/3) reflection princiles (8/23)

» A graph G is called an interval graph if there is a linear ordering
(L, <) s.t. G consists of intervals in L and /, I’ € G are adjacent
iff 1 £ 1" and I N1 4 0.

Theorem 7. ([Todorcevic]) Let k be a regular cardinal.

The reflection cardinal of the property [of chromatic number> k|
in the class of interval graphs

= the reflection cardinal of the property [not rk-special |
in the class of trees

» We denote the reflection cardinal in Theorem 7 by Jiefl 5.

> Rado’s Conjecture (RC) is the assertion Refl i;oc = Ny.



Example |l: Reflection cardinals of graph coloring (3/3) reflection prnciles (9/23)

Theorem 8. ([F., Sakai, Torres and Usubal)
The reflection cardinal of the property [of coloring number > Y|
in the class of all graphs < %eﬂﬁ%
Corollary 9.
The reflection cardinal of the property [of coloring number > N
in the class of all graphs
< the reflection cardinal of the property
[of chromatic number > Y] in the class of all graphs

Proof. By Theorem 8 and Theorem 7. O

Corollary 10. RC implies FRP.
Proof. By Theorem 8 and Theorem 6. U



Stationary subsets of [X]NO teflection principles (10/23)

» For a cardinal kK and a set X,

[X]® ={x C X : xis of cardinality x}.

» C C [X]M is club in [X]R if (1) for every u € [X]™°, thereis v € C
with u C v; and (2) for any countable increasing chain F in C we
have | JF € C.

» S C [X]M is stationary in [X]¥ if SN C # 0 for all club
C C [X]Ro.

» M c P(H()N)) is internally unbounded if M N [M]X° is cofinal in
[M]®0 (w.r.t. C)

» M c P(H(N)) is internally club if M N [M]® contains a club in
M.



Stationary subsets of [X]NO (2/2) reflection principles (11/23)
» The following are variations of the “Reflection Principle” in
[Jech, Millennium Book].

RP|c For any uncountable cardinal ), stationary S C [H(\)] and
any countable expansion 21 of the structure (H(\), €), there is
an internally club M € [H(A)]® s.t. (1) 2 | M < 2; and (2)
S N [M]* is stationary in [M]™.

RP)y For any uncountable cardinal A, stationary S C [H(\)]™ and
any countable expansion 2( of the structure (#(\), €), there is
an internally unbounded M € [H(A)] s.t. (1) 24 | M < 2;
and (2) S N[M]™ is stationary in [M]%.

Since every internally club M is internally unbounded, we have:

Lemma 11. RP|C imp/ies RP|U.

RPy is also called Axiom R in the literature.

Theorem 12. ([F., Juhdsz et al.,2010]) RPy implies FRP.



reflection principles (12/23)

MM

/

MA™ (o-closed)

Rado Conjecture (RC) /

RPic
/
Axiom R = RP|U

—

Fodor-type Reflection Principle (FRP)



Lowenheim-Skolem Theorems on stationary logics reflection princpls (13/23)

» The logics:

LY.l denotes second order logic extending the usual first order logic
with the interpretation of the second order variables such that
they run over countable subsets of the underlining set of the
considered structure. The logic permits quantification 39X, VX
over second order variables and the logical predicate x ¢ X
where x is a first order variable and X a second order variable.

L0 is the logic as above but without the quantification over
second order variables.

/J?t‘)é;t” is the logic £%/ with the new quantifier stat X where
2 = stat X (X, ...) is defined to be
LU e [AR - A= p(U,...)} is stationary in [A]No".

E?toat is the logic E?f‘.;t” without second order quantifiers 94X, VX.



Lowenheim-Skolem Theorems on stationary logics (2/4) reflction principles (14/2)

» Let £ be one of the logics defined in the previous slide.

> For a structure 2 and its substructure B, we write 25 <, 2L if, for
any L-formula ¢ = ¢©(x0, ..., Xm—1, X0, ---, Xn—1), 40, ..., am—1 € B
and Uy, ..., Uy_1 € [B]R® we have A = ¢(ao, ..., am—1, U, ..., Un_1)
< B ’: gp(ao, vy dm—1, Uo, cey Un—l)-

> B <, 2 is defined similarly except we only consider £-formulas
without any free second order variables.

» We define the following strong Downward Lowenheim-Skolem
property for L:

SDLS™ (L, < k) : For any structure 2 of countable signature, there is a
substructure ‘B of of 2 of cardinality < x s.t. B <, 2L

SDLS(L, < k) : For any structure 2( of countable signature, there is a
substructure B of of 2( of cardinality < k s.t. B <, 2L



Lowenheim-Skolem Theorems on stationary logics (3/4) reflction princples (15/2)

» In connection with “the reflection down to < N," we obtain the
following principles:

SDLS™ (LM, < Rp), SDLS™ (LR < Ry), SDLS™ (LY, < Rp),
SDLS™ (L%, < Ny), SDLS(LX0, < Ry), SDLS(LR/ | < Ry),
SDLS(LX,, < Ny), SDLS(LE:! | < Ny).
Lemma 13. SDLS™ (LY, < X,) follows from the usual Downward
Léwenheim Skolem Theorem and hence it holds in ZFC.

Observation 14. ([Magidor, 2016]) SDLS™(LL2,, < Ry) implies
the Fodor-type Reflection Principle. Actually it implies RPc.



Lowenheim-Skolem Theorems on stationary logics (4/4) refection principles (16/2)
» The situation is not so chaotic as it looks:

Theorem 15. The following are equivalent: (a) CH;
(b) SDLS(LR, < Np); () SDLS™ (LYo < Ry);
(d) SDLS(LYo/ < y).

Theorem 16. The following are equivalent: (a) Diagonal Reflec-
tion Principle for internally clubness (in the sense of [Cox, 2012]),
(b) SDLS™ (L3, < Ra).

Theorem 17.The following are equivalent: (a) Diagonal Reflec-
tion Principle for internally clubness (in the sense of [Cox, 2012])
+ CH,

(b) CH and SDLS™(L,, < Ry);

(c) SDLS™ (L3’ < Ra);

(d) SDLS(Lfy, < R2);

(e) SDLS(Lg', < Na).



Game Reflection Principle reflection principles (17/23)

» The Game Reflection Principle (GRP) of Bernhard Konig (Strong
Game Reflection Principle in his terminology in [Kdnig, 2004]) is
defined using the following notion of infinite games:

For any uncountable set A and A C “1>A, GV "A(A) is the game of
length w; for Players | and Il. A match in G**7A(A) looks like the
following:

|‘30 ai an 36
| bo by by - [ (§ <wi)

where a¢, be € A for § < wy.

Il 'wins this match if (a¢, be : £ < wi) € [A] where

(ae, be 1 £ < wi) is the sequence f € “1A s.t. f(2£) = a¢ and
f(26 +1) = be for all £ < w; and

[Al={fe“tA: flae Aforall a < wi}.



Game Reflection Principle (2/2) reflection principles (18/23)

GRP: For all uncountable set A and wj-club C C [A]™, if the player
Il has no winning strategy in Qw1>A(.A), there is B € C s.t. Il
has no winning strategy in G B(A N“1>B).

Theorem 18. ([Konig, 2004]) (a) GRP implies CH.
(b) GRP implies Rado’s Conjecture.
(c) GRP is forced by starting from a supercompact  and collap-

sing it to Ny by the standard o-closed collapsing poset.

Theorem 19. GRP implies the Diagonal Reflection Principle for
internally closedness.



reflection principles (19/23)

(Strong) Game Reflection Principle (GRP) MM*e1

™~ YR

No.IT
SDLS (L5, < N) MA ! (g-closed) MM

/

MA™ (o-closed)

SDLS™ (L3, < Ry)
Rado Conjecture (RC) \ /

/\

Fodor-type Reflection Principle (FRP) Semi-stationary Reflection (SSR)
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CH follows.

(Strong) Game Reflection Principle (GRP)

.

SDLS (LY < R,)

MM+UJ1

\QNO = N, follows.

MA™! (g-closed)N\_ MM

MA™ (o-closed)

SDLS™ (L3, < Ry)
Rado Conjecture (RC) \ /
s

RPic 2N < N,

Axiom R = RPy
/ h \
Fodor-type Reflection Principle (FRP Semi-stationary Reflection (SSR)

The continuum can be “arbitrary” large.



Further Results and open problems reflection princpls (21,/23)

» If we replace the reflection down to < Ny by reflection down to
< 2% and/or down to < 2% most of the principles are consistent
under very large (e.g. weakly inaccessible and much more)
continuum.

> Strong reflection properties seem to support CH and large
continuum but not 280 = N5,

» Our reflection priniples are connected to stationarity of subsets of
[A]¥o. Some of the reflection principles can be generalized to the
corresponding principles connected to stationarity of subsets of [A]*
with certain cardinal arithmetical assumptions.

» The results in connection with what is mentioned above are still
not in the final form and there seems to be many open questions.

» Hamburger's Problem and Galvin Conjecture are still open!
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Fodor-type Reflection Principle (FRP)

(FRP) For any regular x > wi, any stationary E C E/ and any
mapping g : £ — [k]™ with g(a) C a for all o € E, there is
v € E] st
(*) for any I € [y]™ closed w.r.t. g and club in 7, if
(I © o < wi) is a filtration of / then sup(/,) € E and
g(sup(ly)) C I, hold for stationarily many a < w;.

> F = (l, : a <) is a filtration of | if F is a continuously
increasing C-sequence of subsets of / of cardinality < | /] s.t.

I: UO&<)\ Ia.

» FRP follows from Martin’s Maximum or Rado’s Conjecture.
MA™ (o-closed) already implies FRP but PFA does not imply FRP
since PFA does not imply stationary reflection of subsets of E*?2
(Magidor, Beaudoin) which is a consequence of FRP.

» FRP is a large cardinal property: By Fact 3. and Theorem 4., FRP
implies the total failure of the square principle.



Proof of Fact 1

Fact 1. (A. Hajnal and I. Juhasz, 1976) For any uncountable cardi-
nal k there is a non-metrizable space X of size k s.t. all subspaces
Y of X of cardinality < k are metrizable.

Proof.
» Let v’ > K be of cofinality > &, ws.
> The topological space (k' + 1, 0) with
O =P(K)U{(K\x)U{K'} : x C K, xis bounded in '}
is non-metrizable since the point ' has character = cf(x') > No.

> Any subspace of k' + 1 of size < k is discrete and hence metrizable.
O



Proof of Fact 3

It is enough to prove the following:

Lemma. (Folklore 7, see [F., Juhdsz et al.,2010]) For a regular
cardinal k > Ry if, there is a _non-reflectingly stationary S C E[,
then there is a non meta-lindeléf (and hence non metrizable) lo-
cally compact and locally countable topological space X of cardi-
nality k s.t. all subspace Y of X of cardinality <  are metrizable.

Proof.

Let /={a+1:a<k}land X=SUI

Let (3, : @ € S) best. a, € [ Na]®, a, is of order-type w and
cofinal in . Let O be the topology on X introduced by letting

(1) elements of / are isolated; and
(2) {ao U{a}\ B : B < a} aneighborhood base of each o € S.

Then (X, O) is not meta-lindelsf (by Fodor's Lemma) but each
a < K as subspace of X is metrizable (by induction on «). [J



Sketch of a Proof of Theorem 5

Theorem 5. ([Dow, Tall and Weiss, 1990]) (Assuming the con-
sistency of a supercompact cardinal) the statement
“The reflection cardinal of non-metrizability in first
countable topological spaces is < 280"

is consistent.

Proof.

» The standard models of real-valued measurability, real-valued
Cohenness etc. (i.e. starting from a model with a supercompact
cardinal and add that many random (or Cohen) reals etc.
(side-by-side)). establish the inequality. O

» The consistency of “The reflection cardinal = 2%" can be also
obtained if we start from a model which satisfies the square
principles at cofinally many cardinals below the supercompact x.



Coloring number and chromatic number of a graph

For a cardinal k € Card, a graph G = (G, K) has coloring number
< k if there is a well-ordering C on G s.t. for all p € G the set

{ge G :gEpand gK p}

has cardinality < k.

The coloring number col(G) of a graph G is the minimal cardinal
among such x as above.

The chromatic number chr(G) of a graph G = (G, K) is the
minimal cardinal k s.t. G can be partitioned into « pieces
G = U,<p Ga s.t. each G, is pairwise non adjacent (independent).

For all graph G we have chr(G) < col(G).



k-special trees
» For a cardinal %, a tree T is said to be x-special if T can be
represented as a union of k subsets T,, a < k s.t. each T, is an
antichain (i.e. pairwise incomparable set).



Stationary subset of £/
For a cardinal &,

El={y <k :cf(y) =w}

A subset C C ¢ of an ordinal £ of uncountable cofinality, C is
closed unbounded (club) in & if (1): C is cofinal in  (w.r.t. the
canonical ordering of ordinals) and (2): for all n < &, if CNnis
cofinal in 1 then n € C.

S C ¢ is stationary if SN C # () for all club C C &.

A stationary S C ¢ if reflectingly stationary if there is some 1 < &
of uncountable cofinality s.t.5S N7 is stationary in 7. Thus:

A stationary S C £ if non reflectingly stationary if S M7 is non
stationary for all n < & of uncountable cofinality.



Meta-Lindelof spaces
» A topological space X is meta-lindelof if every open cover I/ of X
has a point countable open refinemet, ie. such an open cover Uy

that (0) If u € Uy then u C v for some v € U; (1) for any x € X,
the set {u € Uy : x € u} is countable.

Theorem (A.H. Stone). Every metrizable space is meta-lindeldf.



Proof of Theorem 15.
CH = SDLS(L£"/1 < ¥,): For a structure 2 with a countable
signature L and underlying set A, let 6 be Iarge enough and
A = (H(0),2, €). where A = A%, Let’B%leest|B| = Ny for
the underlying set B of B and [B]* C B. B = 2 [A% is then as
desired.
SDLS(LM, < Ny) = CH: Suppose A = {w> U [wy]¥, €}. Consider
the L£Y-formula IxVy (y € x < y £ X).

The rest is easy.



