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The ultimate objectives reflection principles (2/23)

◮ The ultimate objectives of this research are to give better
mathematical answers to the questions like:

What is ℵ1 ?
What is (or should be) the role of ℵ1 among uncountable cardinals

?

What does (or should) it mean to be of size < 2ℵ0 ?
How about “≤ 2ℵ0” ?

⊲ We consider these and other questions here in terms of reflection
properties around these cardinals.

⊲ New results in this talk are obtained in a joint work with Hiroshi
Sakai and André Ottenbreit-Machio-Rodrigues.



Mathematical Framework reflection principles (3/23)

◮ Suppose that we have an uncountable (possibly higher order)
structure A with certain bad property P.

One of the natural questions:

⊲ Is there a substructure B of A of smaller cardinality but also with
the same bad property P ?

A similar but more general question:

◮ Suppose that C is a class of structures and κ is a cardinal. For any
A ∈ C, if A |= P for some (bad) property P, is it true that there is
always substructures B of A in C of cardinality < κ with B |= P ?

⊲ What is the minimal such κ ?

— We shall call the minimal cardinal κ (or ∞ if there is no such a
cardinal κ at all) the reflection cardinal of the property P in the
class of structures C.
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Fact 1. (A. Hajnal and I. Juhász, 1976) For any uncountable
cardinal κ there is a non-metrizable space X of size κ s.t. all
subspaces Y of X of cardinality < κ are metrizable.

Proof

◮ Thus, the reflection cardinal of the non-metrizability in all
topological spaces is ∞.

Theorem 2. (A. Dow, 1988) For any compact Hausdorff space
X if all subspaces of X of cardinality ≤ ℵ1 are metrizable then X
is also metrizable.

◮ This means that the reflection cardinal of the non-metrizability in
compact Hausdorff spaces is ≤ ℵ2.

⊲ The compact space ω1 + 1 with the order topology witnesses that
the reflection cardinal is ≥ ℵ2.



Example I: Non-metrizability of topological spaces (2/3) reflection principles (5/23)

◮ The reflection cardinal of non-metrizability in topological spaces = ∞

◮ The reflection cardinal of non-metrizability in compact Hausdorff spaces = ℵ2

Fact 3. (Folklore ?) It is consistent that the reflection cardinal
of non-metrizability in locally compact Hausdorff spaces is ∞.

Proof

Theorem 4. ([F., Juhász et al.,2010],
[F., Sakai, Soukup and Usuba])

The statement

“the reflection cardinal of non-metrizability in locally
compact Hausdorff spaces = ℵ2”

is consistent modulo a large large cardinal and is equivalent to

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

the Fodor-type Reflection Principle (FRP) over ZFC.



Example I: Non-metrizability of topological spaces (3/3) reflection principles (6/23)

◮ The reflection cardinal of non-metrizability in topological spaces = ∞

◮ The reflection cardinal of non-metrizability in compact Hausdorff spaces = ℵ2

◮ The reflection cardinal of non-metrizability in locally compact Hausdorff spaces can
be ℵ2 or ∞, actually can also be many other regular cardinals between them.

⊲ The consistency of the statement “The reflection cardinal of
non-metrizability in first countable topological spaces is ℵ1” is still
open (Hamburger’s problem).

Theorem 5. ([Dow, Tall and Weiss, 1990]) (Assuming the con-
sistency of a supercompact cardinal) the statement

“The reflection cardinal of non-metrizability in first
countable topological spaces is ≤ 2ℵ0”

is consistent.

Sketch of a proof



Example II: Reflection cardinals of graph coloring reflection principles (7/23)

Theorem 6. ([F., Juhász et al.,2010],
[F., Sakai, Soukup and Usuba])

The statement

“the reflection cardinal of the property [of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

coloring number

> ℵ0] in the class of all graphs = ℵ2”

is also equivalent to FRP over ZFC.



Example II: Reflection cardinals of graph coloring (2/3) reflection principles (8/23)

◮ A graph G is called an interval graph if there is a linear ordering
〈L, <L〉 s.t. G consists of intervals in L and I , I ′ ∈ G are adjacent
iff I 6= I ′ and I ∩ I ′ 6= ∅.

Theorem 7. ([Todorcevic]) Let κ be a regular cardinal.

The reflection cardinal of the property [ of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

chromatic number> κ]
in the class of interval graphs

= the reflection cardinal of the property [not
✿✿✿✿✿✿✿✿✿

κ-special ]
in the class of trees

◮ We denote the reflection cardinal in Theorem 7 by Refl κ
RC

.

⊲ Rado’s Conjecture (RC) is the assertion Refl ℵ0

RC
= ℵ2.



Example II: Reflection cardinals of graph coloring (3/3) reflection principles (9/23)

Theorem 8. ([F., Sakai, Torres and Usuba])
The reflection cardinal of the property [of coloring number > ℵ0]
in the class of all graphs ≤ Refl ℵ0

RC

Corollary 9.
The reflection cardinal of the property [of coloring number > ℵ0]
in the class of all graphs
≤ the reflection cardinal of the property

[of chromatic number > ℵ0] in the class of all graphs

Proof. By Theorem 8 and Theorem 7. �

Corollary 10. RC implies FRP.

Proof. By Theorem 8 and Theorem 6. �



Stationary subsets of [X ]ℵ0 reflection principles (10/23)

◮ For a cardinal κ and a set X ,

[X ]κ = {x ⊆ X : x is of cardinality κ}.

◮ C ⊆ [X ]ℵ0 is club in [X ]ℵ0 if (1) for every u ∈ [X ]ℵ0 , there is v ∈ C
with u ⊆ v ; and (2) for any countable increasing chain F in C we
have

⋃
F ∈ C .

◮ S ⊆ [X ]ℵ0 is stationary in [X ]ℵ0 if S ∩ C 6= ∅ for all club
C ⊆ [X ]ℵ0 .

◮ M ∈ P(H(λ)) is internally unbounded if M ∩ [M]ℵ0 is cofinal in
[M]ℵ0 (w.r.t. ⊆)

◮ M ∈ P(H(λ)) is internally club if M ∩ [M]ℵ0 contains a club in
[M]ℵ0 .



Stationary subsets of [X ]ℵ0 (2/2) reflection principles (11/23)

◮ The following are variations of the “Reflection Principle” in
[Jech, Millennium Book].

RPIC For any uncountable cardinal λ, stationary S ⊆ [H(λ)]ℵ0 and
any countable expansion A of the structure 〈H(λ),∈〉, there is
an internally club M ∈ [H(λ)]ℵ1 s.t. (1) A ↾ M ≺ A; and (2)

S ∩ [M]ℵ0 is stationary in [M]ℵ0 .

RPIU For any uncountable cardinal λ, stationary S ⊆ [H(λ)]ℵ0 and
any countable expansion A of the structure 〈H(λ),∈〉, there is
an internally unbounded M ∈ [H(λ)]ℵ1 s.t. (1) A ↾ M ≺ A;

and (2) S ∩ [M]ℵ0 is stationary in [M]ℵ0 .

Since every internally club M is internally unbounded, we have:

Lemma 11. RPIC implies RPIU.

RPIU is also called Axiom R in the literature.

Theorem 12. ([F., Juhász et al.,2010]) RPIU implies FRP.
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Fodor-type Reflection Principle (FRP) Semi-stationary Reflection (SSR)

Axiom R = RPIU

Rado Conjecture (RC)

RPIC

MA+(σ-closed)
SDLS−(Lℵ0stat, <ℵ2)

MA+ω1(σ-closed) MM

MM+ω1

SDLS (Lℵ0,IIstat , <ℵ2)

(Strong) Game Reflection Principle (GRP)



Löwenheim-Skolem Theorems on stationary logics reflection principles (13/23)

◮ The logics:

Lℵ0,II denotes second order logic extending the usual first order logic
with the interpretation of the second order variables such that
they run over countable subsets of the underlining set of the
considered structure. The logic permits quantification ∃X , ∀X
over second order variables and the logical predicate x ε X
where x is a first order variable and X a second order variable.

Lℵ0 is the logic as above but without the quantification over
second order variables.

Lℵ0,II
stat is the logic Lℵ0,II with the new quantifier stat X where

A |= stat X ϕ(X , ...) is defined to be
“{U ∈ [A]ℵ0 : A |= ϕ(U, ...)} is stationary in [A]ℵ0”.

Lℵ0
stat is the logic Lℵ0,II

stat without second order quantifiers ∃X , ∀X .



Löwenheim-Skolem Theorems on stationary logics (2/4) reflection principles (14/23)

◮ Let L be one of the logics defined in the previous slide.

⊲ For a structure A and its substructure B, we write B ≺L A if, for
any L-formula ϕ = ϕ(x0, ..., xm−1,X0, ...,Xn−1), a0, ..., am−1 ∈ B
and U0, ...,Un−1 ∈ [B]ℵ0 we have A |= ϕ(a0, ..., am−1,U0, ...,Un−1)
⇔ B |= ϕ(a0, ..., am−1,U0, ...,Un−1).

⊲ B ≺L− A is defined similarly except we only consider L-formulas
without any free second order variables.

◮ We define the following strong Downward Löwenheim-Skolem
property for L:

SDLS−(L, < κ) : For any structure A of countable signature, there is a
substructure B of of A of cardinality < κ s.t. B ≺L− A.

SDLS(L, < κ) : For any structure A of countable signature, there is a
substructure B of of A of cardinality < κ s.t. B ≺L A.



Löwenheim-Skolem Theorems on stationary logics (3/4) reflection principles (15/23)

◮ In connection with “the reflection down to < ℵ2” we obtain the
following principles:

SDLS−(Lℵ0 , < ℵ2), SDLS
−(Lℵ0,II , < ℵ2), SDLS

−(Lℵ0
stat , < ℵ2),

SDLS−(Lℵ0,II
stat , < ℵ2), SDLS(L

ℵ0 , < ℵ2), SDLS(L
ℵ0,II , < ℵ2),

SDLS(Lℵ0
stat , < ℵ2), SDLS(L

ℵ0,II
stat , < ℵ2).

Lemma 13. SDLS−(Lℵ0 , < ℵ2) follows from the usual Downward
Löwenheim Skolem Theorem and hence it holds in ZFC.

Observation 14. ([Magidor, 2016]) SDLS−(Lℵ0
stat , < ℵ2) implies

the Fodor-type Reflection Principle. Actually it implies RPIC.



Löwenheim-Skolem Theorems on stationary logics (4/4) reflection principles (16/23)

◮ The situation is not so chaotic as it looks:

Theorem 15.The following are equivalent: (a) CH;
(b) SDLS(Lℵ0 , < ℵ2); (c) SDLS−(Lℵ0,II , < ℵ2);
(d) SDLS(Lℵ0,II , < ℵ2).
Proof

Theorem 16.The following are equivalent: (a) Diagonal Reflec-
tion Principle for internally clubness (in the sense of [Cox, 2012]),
(b) SDLS−(Lℵ0

stat , < ℵ2).

Theorem 17.The following are equivalent: (a) Diagonal Reflec-
tion Principle for internally clubness (in the sense of [Cox, 2012])
+ CH,
(b) CH and SDLS−(Lℵ0

stat , < ℵ2);

(c) SDLS−(Lℵ0,II
stat , < ℵ2);

(d) SDLS(Lℵ0
stat , < ℵ2);

(e) SDLS(Lℵ0,II
stat , < ℵ2).



Game Reflection Principle reflection principles (17/23)

◮ The Game Reflection Principle (GRP) of Bernhard König (Strong
Game Reflection Principle in his terminology in [König, 2004]) is
defined using the following notion of infinite games:

For any uncountable set A and A ⊆ ω1>A, G
ω1>A(A) is the game of

length ω1 for Players I and II. A match in G
ω1>A(A) looks like the

following:

I a0 a1 a2 · · · aξ · · ·

II b0 b1 b2 · · · bξ · · ·
(ξ < ω1)

where aξ, bξ ∈ A for ξ < ω1.
II wins this match if 〈aξ, bξ : ξ < ω1〉 ∈ [A] where
〈aξ, bξ : ξ < ω1〉 is the sequence f ∈ ω1A s.t. f (2ξ) = aξ and
f (2ξ + 1) = bξ for all ξ < ω1 and
[A] = {f ∈ ω1A : f ↾ α ∈ A for all α < ω1}.



Game Reflection Principle (2/2) reflection principles (18/23)

GRP: For all uncountable set A and ω1-club C ⊆ [A]ℵ1 , if the player
II has no winning strategy in G

ω1>A(A), there is B ∈ C s.t. II
has no winning strategy in G

ω1>B(A ∩ ω1>B).

Theorem 18. ([König, 2004]) (a) GRP implies CH.

(b) GRP implies Rado’s Conjecture.

(c) GRP is forced by starting from a supercompact κ and collap-
sing it to ℵ2 by the standard σ-closed collapsing poset.

Theorem 19. GRP implies the Diagonal Reflection Principle for
internally closedness.
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Fodor-type Reflection Principle (FRP) Semi-stationary Reflection (SSR)

Axiom R = RPIU

Rado Conjecture (RC)

RPIC

MA+(σ-closed)
SDLS−(Lℵ0stat, <ℵ2)

MA+ω1(σ-closed) MM

MM+ω1

SDLS (Lℵ0,IIstat , <ℵ2)

(Strong) Game Reflection Principle (GRP)
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Fodor-type Reflection Principle (FRP) Semi-stationary Reflection (SSR)

Axiom R = RPIU

Rado Conjecture (RC)

RPIC

MA+(σ-closed)
SDLS−(Lℵ0stat, <ℵ2)

MA+ω1(σ-closed) MM

MM+ω1

SDLS (Lℵ0,IIstat , <ℵ2)

(Strong) Game Reflection Principle (GRP)

CH follows.

The continuum can be “arbitrary” large.

2
ℵ0 = ℵ2 follows.

2
ℵ0 ≤ ℵ2



Further Results and open problems reflection principles (21/23)

◮ If we replace the reflection down to < ℵ2 by reflection down to
< 2ℵ0 and/or down to ≤ 2ℵ0 , most of the principles are consistent
under very large (e.g. weakly inaccessible and much more)
continuum.

⊲ Strong reflection properties seem to support CH and large
continuum but not 2ℵ0 = ℵ2.

◮ Our reflection priniples are connected to stationarity of subsets of
[λ]ℵ0 . Some of the reflection principles can be generalized to the
corresponding principles connected to stationarity of subsets of [λ]µ

with certain cardinal arithmetical assumptions.

◮ The results in connection with what is mentioned above are still
not in the final form and there seems to be many open questions.

◮ Hamburger’s Problem and Galvin Conjecture are still open!
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Topology and its Applications Vol.157, 8 (2010), 1415–1429.

Sakaé Fuchino, Hiroshi Sakai, Lajos Soukup and Toshimichi
Usuba, More about Fodor-type Reflection Principle, submitted.
http://fuchino.ddo.jp/papers/moreFRP.pdf
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Fodor-type Reflection Principle (FRP)

(FRP) For any regular κ > ω1, any stationary E ⊆ Eκ
ω and any

mapping g : E → [κ]ℵ0 with g(α) ⊆ α for all α ∈ E , there is
γ ∈ Eκ

ω1
s.t.

(*) for any I ∈ [γ]ℵ1 closed w.r.t. g and club in γ, if
〈Iα : α < ω1〉 is a filtration of I then sup(Iα) ∈ E and
g(sup(Iα)) ⊆ Iα hold for stationarily many α < ω1.

⊲ F = 〈Iα : α < λ〉 is a filtration of I if F is a continuously
increasing ⊆-sequence of subsets of I of cardinality < | I | s.t.
I =

⋃
α<λ Iα.

◮ FRP follows from Martin’s Maximum or Rado’s Conjecture.
MA+(σ-closed) already implies FRP but PFA does not imply FRP
since PFA does not imply stationary reflection of subsets of Eω2

ω

(Magidor, Beaudoin) which is a consequence of FRP.

◮ FRP is a large cardinal property: By Fact 3. and Theorem 4., FRP
implies the total failure of the square principle. 戻る



Proof of Fact 1

Fact 1. (A. Hajnal and I. Juhász, 1976) For any uncountable cardi-
nal κ there is a non-metrizable space X of size κ s.t. all subspaces
Y of X of cardinality < κ are metrizable.

Proof.
◮ Let κ′ ≥ κ be of cofinality ≥ κ, ω1.

⊲ The topological space (κ′ + 1,O) with

O = P(κ′) ∪ {(κ′ \ x) ∪ {κ′} : x ⊆ κ′, x is bounded in κ′}

is non-metrizable since the point κ′ has character = cf(κ′) > ℵ0.
⊲ Any subspace of κ′ +1 of size < κ is discrete and hence metrizable.

�

戻る



Proof of Fact 3
◮ It is enough to prove the following:

Lemma. (Folklore ?, see [F., Juhász et al.,2010]) For a regular
cardinal κ ≥ ℵ2 if, there is a

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

non-reflectingly stationary S ⊆ Eκ
ω ,

then there is a non
✿✿✿✿✿✿✿✿✿✿✿✿✿

meta-lindelöf (and hence non metrizable) lo-
cally compact and locally countable topological space X of cardi-
nality κ s.t. all subspace Y of X of cardinality < κ are metrizable.

Proof.
◮ Let I = {α+ 1 : α < κ} and X = S ∪ I .
⊲ Let 〈aα : α ∈ S〉 be s.t. aα ∈ [I ∩ α]ℵ0 , aα is of order-type ω and

cofinal in α. Let O be the topology on X introduced by letting

(1) elements of I are isolated; and

(2) {aα ∪ {α} \ β : β < α} a neighborhood base of each α ∈ S .

◮ Then (X ,O) is not meta-lindelöf (by Fodor’s Lemma) but each
α < κ as subspace of X is metrizable (by induction on α). � 戻る



Sketch of a Proof of Theorem 5

Theorem 5. ([Dow, Tall and Weiss, 1990]) (Assuming the con-
sistency of a supercompact cardinal) the statement

“The reflection cardinal of non-metrizability in first
countable topological spaces is ≤ 2ℵ0”

is consistent.

Proof.
◮ The standard models of real-valued measurability, real-valued

Cohenness etc. (i.e. starting from a model with a supercompact
cardinal and add that many random (or Cohen) reals etc.
(side-by-side)). establish the inequality. �

◮ The consistency of “The reflection cardinal = 2ℵ0” can be also
obtained if we start from a model which satisfies the square
principles at cofinally many cardinals below the supercompact κ.

戻る



Coloring number and chromatic number of a graph

◮ For a cardinal κ ∈ Card, a graph G = 〈G ,K 〉 has coloring number
≤ κ if there is a well-ordering ⊑ on G s.t. for all p ∈ G the set

{q ∈ G : q ⊑ p and q K p}

has cardinality < κ. 戻る

⊲ The coloring number col(G ) of a graph G is the minimal cardinal
among such κ as above.

◮ The chromatic number chr(G ) of a graph G = 〈G ,K 〉 is the
minimal cardinal κ s.t. G can be partitioned into κ pieces
G =

⋃
α<κ Gα s.t. each Gα is pairwise non adjacent (independent).

⊲ For all graph G we have chr(G ) ≤ col(G ).
戻る



κ-special trees
◮ For a cardinal κ, a tree T is said to be κ-special if T can be

represented as a union of κ subsets Tα, α < κ s.t. each Tα is an
antichain (i.e. pairwise incomparable set).

戻る



Stationary subset of Eκ
ω

◮ For a cardinal κ,

Eκ
ω = {γ < κ : cf(γ) = ω}.

◮ A subset C ⊆ ξ of an ordinal ξ of uncountable cofinality, C is
closed unbounded (club) in ξ if (1): C is cofinal in ξ (w.r.t. the
canonical ordering of ordinals) and (2): for all η < ξ, if C ∩ η is
cofinal in η then η ∈ C .

◮ S ⊆ ξ is stationary if S ∩ C 6= ∅ for all club C ⊆ ξ.

◮ A stationary S ⊆ ξ if reflectingly stationary if there is some η < ξ

of uncountable cofinality s.t.S ∩ η is stationary in η. Thus:

◮ A stationary S ⊆ ξ if non reflectingly stationary if S ∩ η is non
stationary for all η < ξ of uncountable cofinality.

戻る



Meta-Lindelöf spaces

◮ A topological space X is meta-lindelöf if every open cover U of X
has a point countable open refinemet, ie. such an open cover U0

that (0) If u ∈ U0 then u ⊆ v for some v ∈ U ; (1) for any x ∈ X ,
the set {u ∈ U0 : x ∈ u} is countable.

Theorem (A.H. Stone). Every metrizable space is meta-lindelöf.

戻る



Proof of Theorem 15.
CH ⇒ SDLS(Lℵ0,II , < ℵ2): For a structure A with a countable
signature L and underlying set A, let θ be large enough and
Ã = 〈H(θ),A,∈〉. where A = AÃ. Let B̃ ≺ Ã be s.t.|B | = ℵ1 for

the underlying set B of B and [B]ℵ0 ⊆ B . B = A ↾ AB̃ is then as
desired.

SDLS(Lℵ0 , < ℵ2) ⇒ CH: Suppose A = {ω2 ∪ [ω2]
ℵ0 ,∈}. Consider

the Lℵ0-formula ∃x∀y (y ∈ x ↔ y ε X ).

The rest is easy.
戻る


