Laver-generically large cardinals, their first order definability and some applications of the method

Sakaé Fuchino (渕野 昌)

Kobe University, Japan

https://fuchino.ddo.jp/index.html

(2021年09月14日 (00:03 JST) printer version)

2021 年 09 月 13 日 (10:30- CEST), XVIth Luminy Workshop in set theory

This presentation is typeset by upLATEX with beamer class

The most up-to-date version of these slides is downloadable as https://fuchino.ddo.jp/slides/luminy-talk-2021-09-pf.pdf

The research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

References

- Sakaé Fuchino, André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong Löwenheim-Skolem theorems for stationary logics, I, Archive for Mathematical Logic, Volume 60, issue 1-2, (2021), 17–47. https://fuchino.ddo.jp/papers/SDLS-x.pdf
- Sakaé Fuchino, André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong Löwenheim-Skolem theorems for stationary logics, II
 reflection down to the continuum, Archive for Mathematical Logic, Volume 60, issue 3-4, (2021), 495–523. https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [Def] Sakaé Fuchino, and Hiroshi Sakai, The first-order definability of generic large cardinals, submitted. https://fuchino.ddo.jp/papers/definability-of-glc-x.pdf
- [König] Bernhard König, Generic compactness reformulated, Archive for Mathematical Logic 43, (2004), 311–326.

Existence of Laver-generically supercompact cardinals

First-order def.bility (3/10)

- ► We consider the following "axioms".
- $\label{eq:suppose that \mathcal{P} is an iterable class of p.o.s. I.e. \mathcal{P} is a class (property) s.t. all $\mathbb{P} \in \mathcal{P}$ are p.o.s, \mathcal{P} is closed w.r.t. restriction; and if $\mathbb{P} \in \mathcal{P}$ and $\mathbb{Q} \in V^{\mathbb{P}}$ with $\| \vdash_{\mathbb{P}}^{``} \mathbb{Q} \in \mathcal{P}$, then $\mathbb{P} * \mathbb{Q} \in \mathcal{P}$.}$
- LGSC (\mathcal{P}): there is a cardinal κ s.t. for any $\lambda \ge \kappa$ and for any $\mathbb{P} \in \mathcal{P}$, there is $\mathbb{Q} \in V^{\mathbb{P}}$ s.t. $\Vdash_{\mathbb{P}}^{"} \mathbb{Q} \in \mathcal{P}^{"}$ and $\Vdash_{\mathbb{P}*\mathbb{Q}}^{"}$ there is $j: V \xrightarrow{\leq} M \subseteq V^{\mathbb{P}*\mathbb{Q}}$ s.t. $crit(j) = \kappa, \ j(\kappa) > \lambda, \ \mathbb{P}, \underbrace{\mathbb{H}} \in M, \ j''\lambda \in M.$ "
- \triangleright If LGSC (\mathcal{P}) holds, then the κ as in the definition above is called the Laver-generically (L-g for short) supercompact cardinal for \mathcal{P} .
- \triangleright Actually, under LGSC (\mathcal{P}) for most \mathcal{P} , κ as above is unique.

Background

- ► Strong reflection principles decide the size of the continuum.
- $\begin{bmatrix} \alpha \end{bmatrix}$ Downward Löwenheim-Skolem Theorem for the stationary logic down to $< 2^{\aleph_0}$ for elementarity w.r.t. first- and second-order parameters (SDLS($\mathcal{L}_{stat}^{\aleph_0}, < \aleph_2$) in the notation of [I]) implies $2^{\aleph_0} = \aleph_1$. - S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [I].
- $\begin{bmatrix} \beta \end{bmatrix} \begin{tabular}{ll} Downward Löwenheim-Skolem Theorem for the stationary logic down to < 2^{\aleph_0} for elementarity w.r.t. only first-order parameters (SDLS⁻(<math>\mathcal{L}^{\aleph_0}_{stat}, < 2^{\aleph_0}$) in the notation of [I]) implies $2^{\aleph_0} = \aleph_2$. — S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [II].
- [γ] Downward Löwenheim-Skolem Theorem for a $\mathcal{P}_{\kappa}(\lambda)$ version of stationary logic down to $< 2^{\aleph_0}$ (SDLS^{*int*}₊($\mathcal{L}^{PKL}_{stat}, < 2^{\aleph_0}$) in the notation of [II]) implies that the continuum is very large (e.g. wealky hyper Mahlo and more).

- S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [II].

Background (2/3) — $[\delta]$ replaces $[\alpha]$

• $[\alpha]$ can be seen as a consequence of the following $[\delta]$:

[δ] Game Reflection Principle ($\Leftrightarrow \omega_2$ is generically supercompact by σ -closed forcing)

implies CH (i.e. $2^{\aleph_0} = \aleph_1$).

- B.König [König].

 $\begin{bmatrix} \beta \end{bmatrix} \text{ Downward Löwenheim-Skolem Theorem for the stationary logic} \\ \text{down to } < 2^{\aleph_0} \text{ for elementarity w.r.t. only first-order parameters} \\ (\text{SDLS}^-(\mathcal{L}_{stat}^{\aleph_0}, < 2^{\aleph_0}) \text{ in the notation of [I]}) \text{ implies } 2^{\aleph_0} = \aleph_2. \\ - \text{S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [II]}.$

[γ] Downward Löwenheim-Skolem Theorem for a $\mathcal{P}_{\kappa}(\lambda)$ version of stationary logic down to $< 2^{\aleph_0}$ (SDLS^{*int*}₊($\mathcal{L}^{PKL}_{stat}, < 2^{\aleph_0}$) in the notation of [II]) implies that the continuum is very large (e.g. wealky hyper Mahlo and more).

- S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [II].

The scenarios of refl. principles are covered by instances of LGSC First-order def.bility (6/10)

Theorem 1 (S.F, A. O.M.Rodrigues., and H.Sakai [II])

- $[\delta^+]$ LGSC (σ -closed) implies that the Laver generic $\kappa = \aleph_2$ and CH holds.
- [ε] LGSC (proper) implies that the Laver generic $\kappa = \aleph_2$ and $2^{\aleph_0} = \aleph_2$ holds.

[ζ] LGSC (ccc) implies that the Laver generic κ is extremely large and $\kappa \leq 2^{\aleph_0}$ holds.

With a slight strengthening of LGSC (ccc), we obtain $\kappa = 2^{\aleph_0}$.

The scenarios of refl. principles are covered by instances of LGSC (2/2)First-order def.bility (7/10)

Theorem 2 (S.F, A. O.M.Rodrigues., and H.Sakai [II])

 $[\delta^+]$ LGSC (σ -closed) implies Game Reflection Principle and MA^{+ ω_1}(σ -closed).

[ε] LGSC (proper) implies MA^{+ ω_1}(proper). In particular, this implies SDLS⁻($\mathcal{L}_{stat}^{\aleph_0}, < \aleph_2$).

 $\begin{bmatrix} \zeta \end{bmatrix} \quad \mathsf{LGSC}(\mathsf{ccc}) \text{ with the assertion that the Lever generic } \kappa \text{ is } 2^{\aleph_0} \\ \text{implies } \mathsf{MA}^{+\mu}(\mathsf{ccc}) \text{ for all } \mu < 2^{\aleph_0} \text{ and } \mathsf{SDLS}^{int}_+(\mathcal{L}^{\mathsf{PKL}}_{stat}, < 2^{\aleph_0}).$

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

LGSC is frist-order formalizable

► If LGSC (P) should be treated as a new axiom to be added to ZFC, it should be formalizable in the language of ZFC.

Theorem 3. (S.F., and H.Sakai [Def]) Suppose that \mathcal{P} is an iterable class of p.o.s. Then the following are equivalent: (a) κ is L-g supercompact for \mathcal{P} (so LGSC (\mathcal{P}) holds). (b) For any λ , and for any $\mathbb{P} \in \mathcal{P}$, there is a \mathbb{P} -name \mathbb{Q} with $\Vdash_{\mathbb{P}} " \mathbb{Q} \in \mathcal{P} "$ s.t. $\Vdash_{\mathbb{P}*\mathbb{Q}}$ "there are a regular cardinal $\theta > \kappa, \lambda$, a transitive set N, and a mapping i_0 s.t. (1) $j_0: \mathcal{H}(\theta)^{\mathsf{V}} \xrightarrow{\leq} \mathsf{N},$ (2) $\mathbb{P} * \mathbb{Q} \in \mathcal{H}(\theta)^{\mathsf{V}},$ (3) $\operatorname{crit}(j_0) = \kappa, \ j_0(\kappa) > \lambda,$ (4) for any $b \in N$, there is $a \in \mathcal{H}(\theta)^{\vee}$ s.t. $b \in i_0(a)$ (5) $\mathbb{P} * \mathbb{Q}$, $\mathbb{H} \in N$, and (6) $j_0 "\lambda \in N$ ".

(ロ) (個) (目) (目) (目) (の)()

A sketch of the proof of "(b) \Rightarrow (a)"

- ▶ We imitate the ultraproduct construction: Assume that (b) holds.
- $\,\vartriangleright\,$ Let $\mathbb H$ be a (V, $\mathbb P*\mathbb Q)\text{-generic filter.}$ Working in V[$\mathbb H$], let
 - $\mathcal{F} := \{ f \in \mathsf{V} : f : \operatorname{dom}(f) \to \mathsf{V}, \operatorname{dom}(f) \in \mathcal{H}(\theta)^{\mathsf{V}} \}$, and
 - $\Pi := \{ \langle f, a \rangle : f \in \mathcal{F}, a \in j_0(\operatorname{dom}(f)) \}.$

For $\langle f, a \rangle$, $\langle g, b \rangle \in \Pi$, let

• $\langle f, a \rangle \sim \langle g, b \rangle : \Leftrightarrow \langle a, b \rangle \in j_0(S_{f(x)=g(y)})$, where $S_{f(x)=g(y)} := \{ \langle u, v \rangle : u \in \text{dom}(f), v \in \text{dom}(g), f(u) = g(v) \};$

and

- $\langle f, a \rangle \in \langle g, b \rangle :\Leftrightarrow \langle a, b \rangle \in j_0(S_{f(x) \in g(y)})$, where $S_{f(x) \in g(y)} := \{ \langle u, v \rangle : u \in \operatorname{dom}(f), v \in \operatorname{dom}(g), f(u) \in g(v) \}.$
- I) ~ is a congruent relation to E; Let *t̃_u* : {∅} → {u} for u ∈ V, then ② i : V → Π/~; u ↦ ⟨*t̃_u*, ∅⟩/~ is an elementary embedding;
 ③ (Π/~, E/~) is well-founded and set-like; and ④ The Mostowski collapse M of (Π/~, E/~) together with the canonical embedding j of V into M is as desired. □

Je vous remercie de votre attention. ご清聴ありがとうございました. Thank you for your attention!

$(\Pi/\sim, E/\sim)$ is well-founded

Suppose not and let $\langle f_n, b_n \rangle \in \Pi$, $n \in \omega$ (in $V[\mathbb{H}]$) be s.t.

 $\langle f_0, b_0 \rangle \exists \langle f_1, b_1 \rangle \exists \langle f_2, b_2 \rangle \exists \cdots$

Let f_n , $n \in \omega$ be \mathbb{P} -names of f_n , $n \in \omega$ (note that we can choose f_n , $n \in \omega$ s.t. $\langle f_n : n \in \omega \rangle \in V$ and $\| \vdash_{\mathbb{P}} ``f_n \in V"$ for each $n \in \omega$), and let

 $\mathcal{Q} := \{ \langle \mathbb{p}, n, u \rangle : \mathbb{p} \in \mathbb{P}, n \in \omega, u \in \mathcal{H}(\theta)^{\mathsf{V}}, \\ \mathbb{p} \text{ decides } \underline{f}_n, \text{ and } \mathbb{p} \Vdash_{\mathbb{P}} ``u \varepsilon \operatorname{dom}(\underline{f}_n)" \}.$ Since θ is regular, $\mathcal{Q} \in \mathcal{H}(\theta)^{\mathsf{V}}$. For $\langle \mathbb{p}_0, n_0, u_0 \rangle$, $\langle \mathbb{p}_1, n_1, u_1 \rangle \in \mathcal{Q}$, let $\langle \mathbb{p}_0, n_0, u_0 \rangle \sqsubset \langle \mathbb{p}_1, n_1, u_1 \rangle :\Leftrightarrow \mathbb{p}_0 \leq_{\mathbb{P}} \mathbb{p}_1, n_0 = n_1 + 1, \\ \operatorname{and} \mathbb{p}_0 \Vdash_{\mathbb{P}} ``f_{n_0}(u_0) \varepsilon f_{n_1}(u_1)".$

$(\Pi/\sim, E/\sim)$ is well-founded (2/2)

In V[H], let $\langle \mathbb{P}_n : n \in \omega \rangle$ be a descending sequence in H w.r.t. $\leq_{\mathbb{P}}$ s.t. each \mathbb{D}_n decides f_n to be f_n . Then $\langle (j_0(\mathbb{p}_n), n, b_n \rangle : n \in \omega \rangle$ is a descending chain in $j_0(\langle Q, \Box \rangle)$ w.r.t. $i_0(\Box)$. Since V[H] can see the sequence $\langle \mathbb{D}_n : n \in \omega \rangle$, we have $V[\mathbb{H}] \models i_0(\langle Q, \Box \rangle)$ is not well-founded". Since being well-founded is Δ_1 , it follows that $N \models ij_0(\langle Q, \Box \rangle)$ is not well-founded". By elementarity, it follows that $\mathcal{H}(\theta)^{\mathsf{V}} \models \langle \mathcal{Q}, \Box \rangle$ is not well-founded". However, if $\langle \langle \mathbb{Q}_n, k_n, u_n \rangle : n \in \omega \rangle$ is a descending chain in $\langle \mathcal{Q}, \Box \rangle$, then we would have

 $g_{k_0}(u_0) \ni g_{k_1}(u_1) \ni g_{k_2}(u_2) \ni \cdots$ where g_{k_n} , for each $n \in \omega$, is the element of \mathcal{F} which is decided to be f_{k_n} by \mathbb{P}_n . This is a contradiction.

(日) (型) (目) (目) (日) (の)

Back

Game Reflection Principle and SDLS

The Game Reflection Principle in [δ] implies The Downward Löwenheim-Skolem Theorem in [α] for stationary logic down to <ℵ₂ SDLS(L^{ℵ₀}_{stat}, <ℵ₂).

- S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [I].

- ▷ $SDLS^{-}(\mathcal{L}_{stat}^{\aleph_{0}}, < \aleph_{2})$ is equivalent to Diagonal Reflection Principle (for internally clubness) of S. Cox [Cox].
- $\triangleright \ \ \mathsf{SDLS}(\mathcal{L}^{\aleph_0}_{stat},<\aleph_2) \ \ \mathsf{is equivalent to CH} + \ \mathsf{Diagonal Reflection} \\ \mathsf{Principle} \ (\mathsf{for internally clubness}) \ \mathsf{of S. Cox} \ [\mathsf{Cox}].$

- S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [I].

[Cox] Sean Cox, The diagonal reflection principle, Proceedings of the American Mathematical Society, Vol.140, No.8 (2012), 2893-2902.

Back to 5/10