Generically suppercompact cardinals as reflection principles

Sakaé Fuchino (渕野 昌)

Kobe University, Japan

https://fuchino.ddo.jp/index.html

(2021年05月14日 (01:13 JST) printer version)

2021 年 05 月 12 日 (23:00 JST, 於 Barcelona Set theory Seminar) This presentation is typeset by upLATEX with beamer class, and given on UP2 Version 2.0.0 by Ayumu Inoue

The most up-to-date version of these slides is downloadable as https://fuchino.ddo.jp/slides/barcelona-2021-pf.pdf

The research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

References

- Sakaé Fuchino, André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong Löwenheim-Skolem theorems for stationary logics, I, Archive for Mathematical Logic, Volume 60, issue 1-2, (2021), 17–47. https://fuchino.ddo.jp/papers/SDLS-x.pdf
- Sakaé Fuchino, André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong Löwenheim-Skolem theorems for stationary logics, II
 reflection down to the continuum, Archive for Mathematical Logic, Volume 60, issue 3-4, (2021), 495–523. https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [König] Bernhard König, Generic compactness reformulated, Archive for Mathematical Logic 43, (2004), 311–326.

Generically supercompact cardinals

For a family *P* of p.o.s, a cardinal κ is said to be generically supercompact by *P* :⇔ for any λ ≥ κ, there is a p.o. ℙ ∈ *P* with (V, ℙ)-generic G, and classes j, M ⊆ V[G] s.t.

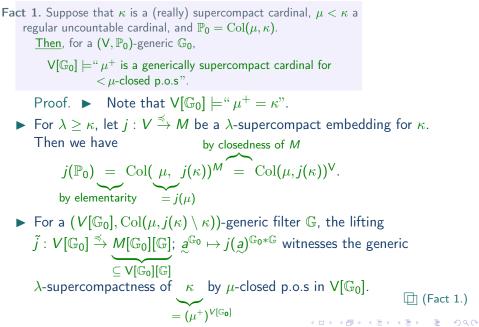
$$(1) \quad j: V \stackrel{\preccurlyeq}{\to} M \subseteq V[\mathbb{G}];$$

- (2) crit $(j) = \kappa, j(\kappa) > \lambda$; and
- $(3) \quad j''\lambda \in M.$

• We call j as above a λ -generically supercompact embedding for κ .

Fact 1. Suppose that κ is a (really) supercompact cardinal, $\mu < \kappa$ a regular uncountable cardinal, and $\mathbb{P}_0 = \operatorname{Col}(\mu, \kappa)$. <u>Then</u>, for a (V, \mathbb{P}_0)-generic \mathbb{G}_0 , $V[\mathbb{G}_0] \models "\mu^+$ is a generically supercompact cardinal for $< \mu$ -closed p.o.s".

Generically supercompact cardinals



Generic supercompactness by $< \mu$ -closed p.o.s

► The generic supercompactness by < µ-closed p.o.s is first-order formalizable:</p>

Theorem 2. For regular uncountable κ and μ ,

 κ is generically supercompact by $< \mu$ -closed p.o.s \Leftrightarrow for any $\lambda \ge \kappa$, there is a $< \mu$ -closed p.o. \mathbb{P} s.t. $\Vdash_{\mathbb{P}}$ " there is a V-normal ultrafilter on $\mathcal{P}^{V}(\mathcal{P}_{\kappa}(\lambda)^{V})$ ".

to the proof of Theorem 7

The proof of Theorem 2 is done by imitating the proof of Solovay-Reinhardt characterization of supercompactness in terms of existence of normal filters.

Generic supercompactness by $< \mu$ -closed p.o.s (2/4) Gen. supercompact cardinals (6/18)

Theorem 2. For regular uncountable κ and μ , κ is generically supercompact by $<\mu$ -closed p.o.s \Leftrightarrow for any $\lambda \ge \kappa$, there is a $<\mu$ -closed p.o. \mathbb{P} s.t. $\parallel_{\mathbb{P}}$ " there is a V-normal ultrafilter on $\mathcal{P}^{V}(\mathcal{P}_{\kappa}(\lambda)^{V})$ ".

Proof. (\Rightarrow) :

Let λ ≥ κ and let P be a < μ-closed p.o. with (V, P)-generic G and classes j, M ⊆ V[G] s.t. j : V → M is a λ-generically supercompact embedding for κ.</p>

- ▷ In particular, $j''\lambda \in M$.
- ▶ In V[\mathbb{G}], let

 $U_j := \{A \in V : A \subseteq \mathcal{P}_{\kappa}(\lambda)^{\mathsf{V}}, j''\lambda \in j(A)\}.$

 \triangleright U_j is a V-normal ultrafilter on $\mathcal{P}^{\mathsf{V}}(\mathcal{P}_{\kappa}(\lambda)^{\mathsf{V}})$.

Generic supercompactness by $< \mu$ -closed p.o.s (3/4) Gen. supercompact cardinals (7/18)

Theorem 2. For regular uncountable κ and μ , κ is generically supercompact by $< \mu$ -closed p.o.s \Leftrightarrow for any $\lambda \ge \kappa$, there is a $< \mu$ -closed p.o. \mathbb{P} s.t. $\parallel \vdash_{\mathbb{P}}$ "there is a V-normal ultrafilter on $\mathcal{P}^{V}(\mathcal{P}_{\kappa}(\lambda)^{V})$ ". Proof. (\Leftarrow):

- ▶ Let $\lambda \ge \kappa$ and let \mathbb{P} be a < μ -closed p.o. with (V, \mathbb{P}) -generic \mathbb{G} and V-normal ultrafilter $U \in V[\mathbb{G}]$ on $\mathcal{P}^{V}(\mathcal{P}_{\kappa}(\lambda)^{V})$.
- W := {f ∈ V : f : P_κ(λ)^V → V}
 For f, g ∈ W, f ~_U g :⇔ {x ∈ P_κ(λ)^V : f(x) = g(x)} ∈ U; f ∈_U g :⇔ {x ∈ P_κ(λ)^V : f(x) ∈ g(x)} ∈ U.
- ► \sim_U is a congruence relation to \in_U . We write $f / \sim_U \in_U g / \sim_U :\Leftrightarrow f \in_U g$. \checkmark closedness of \mathbb{P} is needed here!

Claim. \in_U is an extensional, well-founded and set-like rel. on \mathcal{W}/\sim_U .

► Let *M* be a Mostowski-collapse of $\langle \mathcal{W} / \sim_U, \in_U \rangle$. Let *j* be the mapping which corresponds to the mapping : $V \to \mathcal{W} / \sim_U$; $a \mapsto const_a / \sim_U$. Then $j : V \stackrel{\leq}{\to} M$ is a λ -generically supercompact embedding for κ . \square (Theorem 2) Generic supercompactness by $<\mu$ -closed p.o.s (4/4) Gen supercompact cardinals (8/18)

Some more details of the proof:

- ▶ Let $\lambda \ge \kappa$ and let \mathbb{P} be a < μ -closed p.o. with (V, \mathbb{P})-generic \mathbb{G} and V-normal ultrafilter $U \in V[\mathbb{G}]$ on $\mathcal{P}^{V}(\mathcal{P}_{\kappa}(\lambda)^{V})$.
- W := {f ∈ V : f : P_κ(λ)^V → V}
 For f, g ∈ W, f ~_U g :⇔ {x ∈ P_κ(λ)^V : f(x) = g(x)} ∈ U; f ∈_U g :⇔ {x ∈ P_κ(λ)^V : f(x) ∈ g(x)} ∈ U.
 ~_U is a congruence relation to ∈_U.

We write
$$f / \sim_U \in_U g / \sim_U :\Leftrightarrow f \in_U g$$
.

Claim. \in_U is an extensional, well-founded and set-like rel. on \mathcal{W}/\sim_U .

⊢ To show the well-foundedness, suppose for contradiction that there is a sequence (f_n : n ∈ ω) in W, s.t. f_{n+1} ∈_U f_n for all n ∈ ω.
▶ A_n := {x ∈ P_κ(λ)^V : f_{n+1}(x) ∈ f(n)}.
▶ Since ℙ does not add any new ω-sequence, (f_n : n ∈ ω) ∈ V. Thus

► Since \mathbb{P} does not add any new ω -sequence, $\langle f_n : n \in \omega \rangle \in V$. Thus $\bigcap_{n \in \omega} A_n \in U$ (Lemma A1). For $x \in \bigcap_{n \in \omega} A_n \in U$, we have $f_1(x) \ni f_2(x) \ni f_3(s) \ni \cdots$. \mathcal{U} ... **Problem.** Can generic supercompactness by a class \mathcal{P} adding new ω -sequences first-order definable?

Is there any "nice" first-order definable property which can replace the generic supercompactness by \mathcal{P} ?

The assertion

"V is a generic extension of an inner model by adding supercompact many Cohen reals"

for example, is first-order formalizable and implies the generic supercompactness by c.c.c. p.o.s. However, this statement is too artificial to be considered as a "nice" set-theoretic principle.

Some Cardinal arithmetic

Lemma 3. Suppose that κ is a gen. supercompact cardinal by $< \mu$ -closed forcing. Then we have $2^{<\mu} < \kappa$.

In particular, if $\kappa = \mu^+$ and κ is gen. supercompact by $< \mu$ -closed forcing, then we have $2^{<\mu} = \mu$.

Proof. Suppose otherwise and let $\lambda = 2^{<\mu} \ge \kappa$.

- ▶ Let \mathbb{P} be a < μ -closed p.o. with a (V, \mathbb{P})-generic \mathbb{G} and j, $M \in V[\mathbb{G}]$ s.t. $V[\mathbb{G}] \models j : V \xrightarrow{\leq} M$, $crit(j) = \kappa$, $j(\lambda) \ge j(\kappa) > \lambda$, and (*) $j''\lambda \in M$.
- We have $\mathcal{P}_{\mu}(\mu)^{\mathsf{V}} \subseteq \mathcal{P}_{\mu}(\mu)^{\mathsf{M}} \subseteq \mathcal{P}_{\mu}(\mu)^{\mathsf{V}[\mathbb{G}]}$.
- \triangleright Since \mathbb{P} is μ -closed, $\mathcal{P}_{\mu}(\mu)^{\mathsf{V}} = \mathcal{P}_{\mu}(\mu)^{\mathsf{V}[\mathbb{G}]}$. Thus, $\mathcal{P}_{\mu}(\mu)^{\mathsf{V}} = \mathcal{P}_{\mu}(\mu)^{\mathsf{M}}$ and

$$M \models |\lambda| = |\mathcal{P}_{\mu}(\mu)^{\vee}| = |\mathcal{P}_{\mu}(\mu)^{M}| = |\mathcal{P}_{j(\mu)}(j(\mu))^{M}| = j(\lambda)$$

the bijection showing this is in M because of (*)

り (Lemma 3.)

by elementarity

Game Reflection Principle

For a set A and A ⊆ ^{µ>}A, we consider the following game G^{µ>A}(A) for players I and II:

where a_{ξ} , $b_{\xi} \in A$ for $\xi < \mu$. \triangleright II wins this match if

 $\langle a_{\xi}, b_{\xi} : \xi < \eta \rangle \in \mathcal{A} \text{ and } \langle a_{\xi}, b_{\xi} : \xi < \eta \rangle \cap \langle a_{\eta} \rangle \not\in \mathcal{A} \text{ for some } \eta < \mu; \text{ or } \langle a_{\xi}, b_{\xi} : \xi < \mu \rangle \in [\mathcal{A}]$

where $[\mathcal{A}] := \{ f \in {}^{\mu}\mathcal{A} : f \upharpoonright \xi \in \mathcal{A} \text{ for all } \xi < \mu \}.$

For regular cardinals μ, κ with ω < μ < κ, The Game Reflection Principle for < μ and < κ is the assertion:</p>

GRP^{< μ}(< κ): For any set A of regular cardinality $\geq \kappa$ and μ -club $\mathcal{C} \subseteq [A]^{<\kappa}$, if the player II has no winning strategy in $\mathcal{G}^{\mu>A}(\mathcal{A})$ for some $\mathcal{A} \subseteq {}^{\mu>A}$, there is $B \in \mathcal{C}$ s.t. the player II has no winning strategy in $\mathcal{G}^{\mu>B}(\mathcal{A} \cap {}^{\mu>B})$.

Game Reflection Principle (2/4)

GRP^{< μ}(< κ): For any set A of regular cardinality $\geq \kappa$ and μ -club $C \subseteq [A]^{<\kappa}$, if the player II has no winning strategy in $\mathcal{G}^{\mu>A}(\mathcal{A})$ for some $\mathcal{A} \subseteq \mu>A$, there is $B \in \mathcal{C}$ s.t. the player II has no winning strategy in $\mathcal{G}^{\mu>B}(\mathcal{A} \cap \mu>B)$.

Lemma 4. For any uncountable regular cardinals $\mu_0 \mu$, κ with $\mu_0 \leq \mu < \kappa$, $\text{GRP}^{<\mu}(<\kappa)$ implies $\text{GRP}^{<\mu_0}(<\kappa)$.

► The "Strong Game Reflection Principle" Bernhard König introduced in his 2004 paper [König] is GRP^{<ω1}(< ℵ2) in our terminology.</p>

Game Reflection Principle (3/4)

- **Proposition 5.** (Lemma 4.11 in [1]) For a regular uncountable μ and $\kappa = \mu^+$, if κ is gen. supercompact by $<\mu$ -closed forcing, then $\text{GRP}^{<\mu}(<\kappa)$ holds.
- Proof. Suppose that $\lambda \ge \kappa$, $\mathcal{A} \subseteq {}^{\mu>}\lambda$, and the set $\{S \in \mathcal{P}_{\mu}(\lambda) : \text{II has a w.s. in } \mathcal{G}^{\mu>S}(\mathcal{A} \cap {}^{\mu>}S)\}$ contains a μ -club \mathcal{C} . We want to show that II has a w.s. in $\mathcal{G}^{\mu>\lambda}(\mathcal{A})$.
- ▶ Let \mathbb{P} be a < μ -closed p.o. with (V, \mathbb{P}) -gen. \mathbb{G} s.t. there are j, $M \subseteq V[\mathbb{G}]$ with $j : V \stackrel{\leq}{\to} M$, $crit(j) = \kappa$, $j(\kappa) > \lambda$, and (*) $j''\lambda \in M$.
- ▶ In *M*, we have $j''\lambda \in j(\mathcal{C})$. Thus, the player II has a w.s. in $\mathcal{G}^{\mu>j''\lambda}(j(\mathcal{A}) \cap {}^{\mu>}j''\lambda)$.
- ▶ By the closedness (*) of M, M also thinks that II has a w.s. in $\mathcal{G}^{\mu>\lambda}(\mathcal{A}) \cong \mathcal{G}^{\mu>j''\lambda}(j(\mathcal{A}) \cap {}^{\mu>}j''\lambda).$
- Again by the closedness (*) II has a w.s. in $\mathcal{G}^{\mu>\lambda}(\mathcal{A})$ in V[G].

Since \mathbb{P} is $<\mu$ -closed, it follows that II has a w.s. in $\mathcal{G}^{\mu>\lambda}(\mathcal{A})$ in V.

to the proof of Theorem 7

(Proposition 5)

Game Reflection Principle (4/4)

Theorem 7. ([König], [1]) For a regular uncountable cardinal μ and $\kappa = \mu^+$,

 κ is gen. supercompact by $<\mu\text{-closed p.o.s.} \ \Leftrightarrow$

 $2^{<\mu} = \mu$ and $\text{GRP}^{<\mu}(<\kappa)$.

The condition $2^{<\mu} = \mu$ follows from $\text{GRP}^{<\mu}(<\kappa)$ if $\mu = \omega_1$:

Theorem 8. ([König], [1]) $\text{GRP}^{<\omega_1}(<\kappa)$ implies $2^{\aleph_0} < \kappa$.

Proof of Theorem 7: " \Rightarrow " follows from Lemma 3 and Proposition 5. The proof for " \Leftarrow " is too involved to be presented here.

► A very rough idea of "⇐":

Game Reflection Principle (4/4)

・ロト ・ 理ト ・ ヨト ・ ヨー ・ のへで

- **Theorem 7.** ([König], [1]) For a regular uncountable cardinal μ and $\kappa = \mu^+$,
 - κ is gen. supercompact by $<\mu\text{-closed}$ p.o.s. $\,\Leftrightarrow\,$
 - $2^{<\mu} = \mu$ and $\text{GRP}^{<\mu}(<\kappa)$.

Proof. A very rough idea of " \Leftarrow ": By Theorem 2, it is enough to show that for each $\lambda \ge \kappa$ there is a $< \mu$ -closed p.o. \mathbb{P} s.t. \mathbb{P} forces a V-normal ultrafilter.

- \triangleright We design a game in which the player II tries to obtain the set $\{b_{\xi} : \xi < \mu\}$ which encodes a filter basis while the player I challenges by presenting a regressive function a_{ξ} and demands that player II should choose the move b_{ξ} which should witness the V-normality for this regressive function.
- ▷ We prove that the player II has a w.s. in the game under $GRP^{<\mu}(<\kappa)$ (2^{< µ} = µ is necessary for this proof), and that in the generic extension with < µ-closed forcing collapsing enough cardinals, the player I can enumerate all the regressive functions and a wined game for II creates a V-normal filter. (□) (Theorem 7)

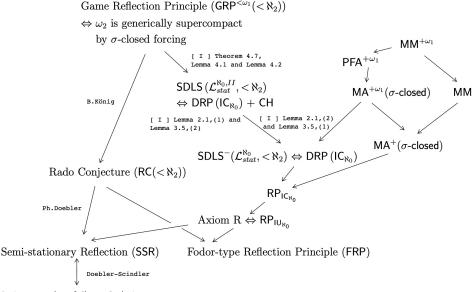
・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Theorem 8. ([König], [1]) For a regular cardinal $\kappa > \aleph_1$, GRP^{$< \omega_1$}($< \kappa$) implies the Rado Conjecture RC($< \kappa$) with reflection point $< \kappa$.

Theorem 9. ([1]) Suppose that κ is a regular uncountable cardinal s.t. $\mu^{\aleph_0} < \kappa$ for all $\mu < \kappa$ holds. Then $\text{GRP}^{<\omega_1}(<\kappa)$ implies the Downward Löwenheim-Skolem Theorem $\text{SDLS}_+(\mathcal{L}_{stat}^{\aleph_0, ll}, <\kappa)$ for stationary logic with reflection point $<\kappa$.

Reflection down to $< \aleph_2$

Gen. supercompact cardinals (17/18)



A strong version of Changs Conjecture

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Moltes gràcies per la seva atenció! ご清聴ありがとうございました. Thank you for your attention! Downward Löwenheim-Skolem Theorem for stationary Logic (1/2)

- The logic L^{ℵ0,II} is the monadic second-order logic with second-order variables X, Y, Z etc. which are interpreted as countable sets of the underlying set of the structure. second order quantifiers ∃ (and its dual ∀) are allowed.
- ▷ The logic has a built-in relation symbol ε which connects first and second order variables as " $x \varepsilon X$ with the obvious interpretation.
- $\triangleright \mathcal{L}_{stat}^{\aleph_0, II}$ is an extension of $\mathcal{L}^{\aleph_0, II}$ in which a new second order quantifier "stat" is also allowed with the interpretation

$$\mathfrak{A} \models stat X \varphi(a_0, ..., a_{m-1}, B_0, ..., B_{n-1}, X) \Leftrightarrow$$

 $\{B \in [|\mathfrak{A}|]^{\aleph_0} : \mathfrak{A} \models \varphi(a_0, ..., a_{m-1}, B_0, ..., B_{n-1}, B)\}$ is stationary.

 $\mathsf{SDLS}_+(\mathcal{L}^{\aleph_0,ll}_{stat}, <\kappa)$: For any structure \mathfrak{A} (with a countable signature), there are stationarily may $M \in [|\mathfrak{A}|]^{<\kappa}$ s.t. $\mathfrak{A} \upharpoonright M \prec_{\mathcal{C}^{\aleph_0,ll}} \mathfrak{A}$.

Downward Löwenheim-Skolem Theorem for stationary Logic (2/2)

Proposition A6. (M. Magidor) $SDLS_+(\mathcal{L}_{stat}^{\aleph_0, ll}, < \aleph_2)$ implies Fodor-Type Reflection Principle.

Proposition A7. ([1]) SDLS₊($\mathcal{L}_{stat}^{\aleph_0, II}, < \kappa$) implies $2^{\aleph_0} < \kappa$.

Theorem A8. ([1]) $SDLS_+(\mathcal{L}_{stat}^{\aleph_0, ll}, < \kappa)$ is equivalent to $2^{\aleph_0} < \kappa +$ Diagonal Reflection Principle of S.Cox for internally club sets down to $< \kappa$.

Back

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Rado Conjecture (1/2)

- A tree T = ⟨T, ≤_T⟩ is special if T is a countable union of pairwise incomparable sets (anti-chains) T = ⋃_{n∈ω} A_n.
- For a cardinal κ , Rado Conjecture with reflection point $< \kappa$ is the principle:

 $\mathsf{RC}(<\kappa)$: For any non-special tree *T* there is a subtree $T' \subseteq T$ of size $<\kappa$ s.t. *T'* is non-special.

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

 \triangleright The classical Rado Conjecture **RC** is the principle RC($\leq \aleph_2$).

Rado Conjecture (2/2)

 \triangleright The classical Rado Conjecture **RC** is the principle RC($\leq \aleph_2$).

Theorem A3. (Ph. Doebler) RC implies Semi-Stationary Reflection (which implies in turn a strong version of Chang's Conjecture).

Theorem A4. (S.F., H.Sakai, V.Torres-Perez, T.Usuba) RC implies Fodor-type Reflection Principle (and this principle is known to be equivalent to may "mathematical" reflection statements).

Back

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

μ -club family of $[A]^{<\kappa}$

For a regular cardinals μ < κ and a set A, C ⊆ [A]^{<κ} is μ-club :⇔

C is cofinal in $[A]^{<\kappa}$ w.r.t. \subseteq , and we have $\bigcup_{\alpha<\nu} c_{\alpha} \in C$ for any \subseteq -increasing sequence $\langle c_{\alpha} \in C : \alpha < \nu \rangle$ in C with $\mu \leq \operatorname{cf}(\nu) < \kappa$.

Lemma A2. For regular μ_0 , μ with $\mu_0 < \mu$, if $C \subseteq [A]^{<\kappa}$ is μ_0 -club, then C is μ -club.

Back

イロト (四) (ヨ) (ヨ) (ヨ) () ()

V-normal ultrafilter

Suppose that we are living in a universe W and V is an inner model.
 In W, U ⊆ P^V(P_κ(λ)^V) is a V-normal ultrafilter
 :⇔

(1) $\emptyset \notin U$; For any $A, A' \in U, A \cap A' \in U$; If $A \in U$, $A \subseteq A' \subseteq \mathcal{P}_{\kappa}(\lambda)^{\vee}$, then $A' \in U$; for any $A \in \mathcal{P}^{\vee}(\mathcal{P}_{\kappa}(\lambda)^{\vee})$, either $A \in U$ or $\mathcal{P}_{\kappa}(\lambda)^{\vee} \setminus A \in U$; and

(2) For any
$$x_0 \in \mathcal{P}_{\kappa}(\lambda)^{\mathsf{V}}$$
, $\{x \in \mathcal{P}_{\kappa}(\lambda)^{\mathsf{V}} : x_0 \subseteq x\} \in U$;

(3) For any $\langle A_{\xi} : \xi \in \lambda \rangle \in V$, if $\{A_{\xi} : \xi < \lambda\} \subseteq U$, then $\triangle_{\xi \in \lambda} A_{\xi} := \{x \in \mathcal{P}_{\kappa}(\lambda)^{\mathsf{V}} : x \in A_{\xi} \text{ for all } \xi \in x\} \in U.$

Lemma A1. For V-normal U and $\langle A_n : n \in \omega \rangle \in V$ with $A_n \in U$ for all $n \in \omega$, we have $\bigcap_{n \in \omega} A_n \in U$

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

Proof. Let $A_{\xi} := \mathcal{P}_{\kappa}(\lambda)^{\mathsf{V}}$ for all $\xi \in \lambda \setminus \omega$. Then $U \ni \triangle_{\xi \in \lambda} A_{\xi} \cap \{x \in \mathcal{P}^{\mathsf{V}}(\mathcal{P}_{\kappa}(\lambda)^{\mathsf{V}}) : \omega \subseteq x\} \subseteq \bigcap_{n \in \omega} A_{n}.$

Back to the proof of Claim