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The first-order definability of generic and Laver-generic large cardinals First-order def.bility (2/11)

The main result in this talk was obtained in a joint work with
酒井 拓史 (Hiroshi, SAKAI).

The result stands in the context of a joint research done together
with André Ottenbreit Maschio Rodrigues, and Hiroshi Sakai.
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Existence of Laver-generically supercompact cardinals First-order def.bility (4/11)

▶ The following “axioms” are introduced in [II]:

▷ Suppose that P is an iterable class of p.o.s. I.e. P is a class
(property) s.t. all P ∈ P are p.o.s, P is closed w.r.t. restriction; and

if P ∈ P and Q
∼

∈ VP with ‖–P “ Q
∼

∈ P ”, then P ∗Q
∼

∈ P .

LGSC (P): there is a cardinal κ s.t. for any λ ≥ κ and for any P ∈ P ,
there is Q

∼
∈ VP s.t. ‖–P “ Q

∼
∈ P ” and

‖–P∗Q
∼

“ there is j : V ≼→ M ⊆ VP∗Q
∼ s.t.

crit(j) = κ, j(κ) > λ, P,H∼ ∈ M, j ′′λ ∈ M. ”

▷ If LGSC (P) holds, then the κ as in the definition above is called
the Laver-generically (L-g for short) supercompact cardinal for P.

▷ Actually, under LGSC (P) for most P, κ as above is unique.

to 9/11 to 7/11



















































































Background First-order def.bility (5/11)

▶ Strong reflection principles decide the size of the continuum.

[α ] Downward Löwenheim-Skolem Theorem for the stationary logic
down to < 2ℵ0 for elementarity w.r.t. first- and second-order para-
meters (SDLS(Lℵ0

stat , <ℵ2) in the notation of [I]) implies 2ℵ0 = ℵ1.
— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [I].

[β ] Downward Löwenheim-Skolem Theorem for the stationary logic
down to < 2ℵ0 for elementarity w.r.t. only first-order parameters
(SDLS−(Lℵ0

stat , < 2ℵ0) in the notation of [I]) implies 2ℵ0 = ℵ2.
— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [II].

[ γ ] Downward Löwenheim-Skolem Theorem for a Pκ(λ) version of sta-
tionary logic down to < 2ℵ0 (SDLSint

+ (LPKL
stat , < 2ℵ0) in the notation

of [II]) implies that the continuum is very large (e.g. wealky hyper
Mahlo and more).

— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [II].



















































































Background (2/2) — [ δ ] replaces [α ] First-order def.bility (6/11)

▶ [α ] can be seen as a consequence of the following [ δ ]:

[ δ ] Game Reflection Principle (⇔ ω2 is generically supercompact by
σ-closed forcing)

implies CH (i.e. 2ℵ0 = ℵ1).
— B.König [König].

[β ] Downward Löwenheim-Skolem Theorem for the stationary logic
down to < 2ℵ0 for elementarity w.r.t. only first-order parameters
(SDLS−(Lℵ0

stat , < 2ℵ0) in the notation of [I]) implies 2ℵ0 = ℵ2.
— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [II].

[ γ ] Downward Löwenheim-Skolem Theorem for a Pκ(λ) version of sta-
tionary logic down to < 2ℵ0 (SDLSint

+ (LPKL
stat , < 2ℵ0) in the notation

of [II]) implies that the continuum is very large (e.g. wealky hyper
Mahlo and more).

— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [II].
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LGSC solves The Continuum Problem First-order def.bility (7/11)

Theorem 1 (S.F, A.O.M.Rodrigues., and H.Sakai [II])

[ δ+ ] LGSC (σ-closed) implies that the Laver generic κ = ℵ2

and CH holds.

[ ε ] LGSC (proper) implies that the Laver generic κ = ℵ2

and 2ℵ0 = ℵ2 holds.

[ ζ ] LGSC (ccc) implies that the Laver generic κ is extremely large
and κ ≤ 2ℵ0 holds.

With a slight strengthening of LGSC (ccc), we obtain κ = 2ℵ0 .



















































































LGSC implies strong relection principles First-order def.bility (8/11)

Theorem 2 (S.F, A. O.M.Rodrigues., and H.Sakai [II])

[ δ+ ] LGSC (σ-closed) implies Game Reflection Principle of [König], and
MA+ω1(σ-closed).

[ ε ] LGSC (proper) implies MA+ω1(proper). In particular, this implies
SDLS−(Lℵ0

stat , < 2ℵ0).

[ ζ ] LGSC (ccc) with the assertion that the Lever generic κ is 2ℵ0

implies MA+µ(ccc) for all µ < 2ℵ0 and SDLSint
+ (LPKL

stat , < 2ℵ0).



















































































LGSC is frist-order formalizable First-order def.bility (9/11)

▶ If LGSC (P) should be treated as a new axiom to be added to ZFC,
it should be formalizable in the language of ZFC.

Theorem 3. (S.F., and H.Sakai [Def]) Suppose that P is an iterable
class of p.o.s. Then the following are equivalent:

( a ) κ is L-g supercompact for P (so LGSC (P) holds).
( b ) For any λ, and for any P ∈ P , there is a P-name Q

∼
with

‖–P “ Q
∼

ε P ” s.t.

‖–P∗Q
∼

“ there are a regular cardinal θ > κ, λ, a transitive set N,
and a mapping j0 s.t.

(1) j0 : H(θ)V
≼→ N, (2) P ∗Q

∼
∈ H(θ)V,

(3) crit(j0) = κ, j0(κ) > λ,
(4) for any b ε N, there is a ε H(θ)V s.t. b ε j0(a)

(5) P ∗Q
∼

, H∼ ∈ N, and (6) j0
′′λ ∈ N ”.



















































































A sketch of the proof of “(b) ⇒ (a)” First-order def.bility (10/11)

▶ We imitate the ultraproduct construction: Assume that (b) holds.
▷ Let H be a (V,P ∗Q

∼
)-generic filter. Working in V[H], let

・ F := {f ∈ V : f : dom(f ) → V, dom(f ) ∈ H(θ)V}, and
・ Π := {〈f , a〉 : f ∈ F , a ∈ j0(dom(f ))}.

For 〈f , a〉, 〈g , b〉 ∈ Π, let

・ 〈f , a〉 ∼ 〈g , b〉 :⇔ 〈a, b〉 ∈ j0(Sf (x)=g(y)), where
Sf (x)=g(y) := {〈u, v〉 : u ∈ dom(f ), v ∈ dom(g), f (u) = g(v)};

and
・ 〈f , a〉 E 〈g , b〉 :⇔ 〈a, b〉 ∈ j0(Sf (x)εg(y)), where

Sf (x)εg(y) := {〈u, v〉 : u ∈ dom(f ), v ∈ dom(g), f (u) ∈ g(v)}.

▶ ① ∼ is a congruent relation to E ; Let f̌u : {∅} → {u} for u ∈ V,
then ② i : V → Π/∼; u 7→ 〈f̌u, ∅〉/∼ is an elementary embedding;
③ (Π/∼,E/∼) is well-founded and set-like; and ④ The
Mostowski collapse M of (Π/∼,E/∼) together with the canonical
embedding j of V into M is as desired. □□



















































































ご清聴ありがとうございました．
Thank you for your attention!



















































































(Π/∼,E/∼) is well-founded

Suppose not and let 〈fn, bn〉 ∈ Π, n ∈ ω (in V [H]) be s.t.
〈f0, b0〉 E〈f1, b1〉 E〈f2, b2〉 E· · · .

Let f∼n, n ∈ ω be P-names of fn, n ∈ ω (note that we can choose
f∼n, n ∈ ω s.t. 〈f∼n : n ∈ ω〉 ∈ V and ‖–P “ f∼n ∈ V ” for each n ∈ ω),
and let

Q := {〈p, n, u〉 : p ∈ P, n ∈ ω, u ∈ H(θ)V,

p decides f∼n, and p ‖–P “ u ε dom(f∼n) ” }.
Since θ is regular, Q ∈ H(θ)V.
For 〈p0, n0, u0〉, 〈p1, n1, u1〉 ∈ Q, let

〈p0, n0, u0〉 < 〈p1, n1, u1〉 :⇔ p0 ≤P p1, n0 = n1 + 1,
and p0 ‖–P “ f∼n0(u0) ε f∼n1(u1) ”.



















































































(Π/∼,E/∼) is well-founded (2/2)

In V[H], let 〈pn : n ∈ ω〉 be a descending sequence in H w.r.t. ≤P
s.t. each pn decides f∼n to be fn.
Then 〈〈j0(pn), n, bn〉 : n ∈ ω〉 is a descending chain in j0(〈Q,<〉)
w.r.t. j0(<).
Since V[H] can see the sequence 〈pn : n ∈ ω〉, we have
V[H] |= “ j0(〈Q,<〉) is not well-founded” .
Since being well-founded is ∆1, it follows that
N |= “ j0(〈Q,<〉) is not well-founded”. By elementarity, it follows
that H(θ)V |= “ 〈Q,<〉 is not well-founded” . However, if
〈〈qn, kn, un〉 : n ∈ ω〉 is a descending chain in 〈Q,<〉, then we
would have

gk0(u0) 3 gk1(u1) 3 gk2(u2) 3 · · ·
where gkn , for each n ∈ ω, is the element of F which is decided to
be f∼kn by pn. This is a contradiction.
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Game Reflection Principle and SDLS

▶ The Game Reflection Principle in [ δ ] implies The Downward
Löwenheim-Skolem Theorem in [α ] for stationary logic down to
<ℵ2 SDLS(Lℵ0

stat , <ℵ2).
— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [I].

▷ SDLS−(Lℵ0
stat , <ℵ2) is equivalent to Diagonal Reflection Principle

(for internally clubness) of S. Cox [Cox].

▷ SDLS(Lℵ0
stat , <ℵ2) is equivalent to CH + Diagonal Reflection

Principle (for internally clubness) of S. Cox [Cox].
— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [I].

[Cox] Sean Cox, The diagonal reflection principle, Proceedings of
the American Mathematical Society, Vol.140, No.8 (2012),
2893-2902.
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