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Existence of Laver-generically supercompact cardinals — fisaus s (41

» The following “axioms” are introduced in [ll]:

> Suppose that P is an iterable class of p.o.s. l.e. P is a class
(property) s.t. all P € P are p.o.s, P is closed w.r.t. restriction; and

if PcPand Qc VP with |Fp“Q € P”, then PxQ € P.

LGSC(P): thereisa cardinal k s.t. for any A > k and for any P € P,
there is Q € VP sit. |Fp“Q € P” and

|Fpag “thereis j: V5 M C VP8 st
Tocnit(j) =k, j(k) >\, P.He M, j"xe M.”
>> If LGSC(P) holds, then the x as in the definition above is called
the Laver-generically (L-g for short) supercompact cardinal for P.

> Actually, under LGSC (P) for most P,  as above is unique.



BaCkgrOU nd Fistorder def ity (5,/11)

» Strong reflection principles decide the size of the continuum.

[a] Downward Lowenheim-Skolem Theorem for the stationary logic
down to < 280 for elementarity w.r.t. first- and second-order para-
meters (SDLS(LLS,, < Np) in the notation of [I]) implies 280 = X;.

— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [l].

[#] Downward Léwenheim-Skolem Theorem for the stationary logic
down to <280 for elementarity w.r.t. only first-order parameters
(SDLS™ (LY, < 2%0) in the notation of [I]) implies 2% = R,.

— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [ll].

[7] Downward Léwenheim-Skolem Theorem for a P,.(\) version of sta-
tionary logic down to < 2% (SDLS*(LEKL, < 2%0) in the notation
of [I]) implies that the continuum is very large (e.g. wealky hyper
Mahlo and more).

— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [ll].



Background (2/2) — [0] replaces [a]

Fistorder def ity (6/11)
» [« can be seen as a consequence of the following [ ]:

[6] Game Reflection Principle (< wy is generically supercompact by
o-closed forcing)

implies CH (i.e. 2% = Ry).
— B.Kénig [Kanig].

Downward Léwenheim-Skolem Theorem for the stationary logic

down to <20 for elementarity w.r.t. only first-order parameters

(SDLS™(£32,, < 2%0) in the notation of [I]) implies 2% = X,

— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [ll].

[5]

[v] Downward Léwenheim-Skolem Theorem for a P, () version of sta-

tionary logic down to < 2% (SDLS™(LEKL < 2%0) in the notation
of []) implies that the continuum is very large (e.g. wealky hyper
Mahlo and more).

— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [lI].



LGSC solves The Continuum Problem Fa iy (111

Theorem 1 (S.F, A. O.M.Rodrigues., and H.Sakai [l])

[67] LGSC (o-closed) implies that the Laver generic k = N

and holds.

[e] LGSC (proper) implies that the Laver generic kK = N
and holds.

[(] LGSC(ccc) implies that the Laver generic & is ’extremely large
and k < 2% holds.

With a slight strengthening of LGSC (ccc), we obtain x = 2%,



LGSC implies strong relection principles P iy (1)

Theorem 2 (S.F, A. O.M.Rodrigues., and H.Sakai [ll])
[67] LGSC (o-closed) implies Game Reflection Principle of [Kdnig], and
MA™1“1 (g-closed).

[e] LGSC (proper) implies MA™“*(proper). In particular, this implies
SDLS™(£52,, < 2M0).

[¢] LGSC(ccc) with the assertion that the Lever generic  is 2%o
implies MA™#(ccc) for all < 2% and SDLST*(LEKE, < 2%0).



I_GSC IS frist'order formalizable Fistorder ef ity (9/11)

» If LGSC(P) should be treated as a new axiom to be added to ZFC,
it should be formalizable in the language of ZFC.

Theorem 3. (S.F., and H.Sakai [Def]) Suppose that P is an iterable
class of p.o.s. Then the following are equivalent:

(a) kis L-g supercompact for P (so LGSC (P) holds).

(b) For any A, and for any P € P, there is a P-name Q with
Fr“QeP” s.t.

|Fp«q “ there are a regular cardinal 8 > k, A, a transitive set IV,
~ and a mapping jp s.t.

1) jo:HON SN, (2)PxQ e H(B),
3) crit(jo) = K, jo(k) > A,
4) forany be N, there is a e H(0)V s.t. be jo(a)

(
(
(
(5) P+Q HeN,and 6) jo"AeN”.



A sketch of the proof of “(b) = (a)" Fstar iy (10/11)

» We imitate the ultraproduct construction: Assume that (b) holds.
> Let H be a (V, PP x Q)-generic filter. Working in V[H], let
F:={feV:f:dom(f)— V,dom(f) € H(0)}, and
M:={(f,a) : f € F, ac jo(dom(f))}.
For (f,a), (g,b) €1, let
(f,a) ~ (g, b) = (a,b) € jo(Sr(x)=g(y)): Where
St(x)=g(y) = {{u,v) : u € dom(f), v € dom(g), f(u) =g(v)}
and

(f,a) E (g,b) = (a,b) € jo(Sr(x)eq(y)) Where
St(x)eg(y) ‘= 1({u,v) : u € dom(f), v € dom(g), f(u) € g(v)}.

» @ ~ is a congruent relation to E; Let f, : {0} — {u} for u eV,
then @ i :V — N/~; us (f,,0)/~ is an elementary embedding;
® (N/~, E/~) is well-founded and set-like; and & The
Mostowski collapse M of (I1/~, E/~) together with the canonical
embedding j of V into M is as desired. [



CRBH NN TEVELL.

Thank you for your attentlonI




(M/~, E/~) is well-founded

Suppose not and let (f,, b,) € M, n € w (in V[H]) be s.t.
<fb7 bO) a <f17 bl) 3 <f27 b2> a T
Let f,, n € w be P-names of f,, n € w (note that we can choose

fanoncwst (f, : ncw)eVand |Fp“f, cV” foreach ncw),
and let

Q:={(p,nu) :peP, ncw, ucH@®),
p decides f,, and p|p“ u e dom(f,)” }.
Since @ is regular, Q € H(0)V.
For (po, no, o), (P1, M, u1) € Q, let
(Po, o, to) = (p1, M, u1) & Po <pPp1, no=n +1,
and Po H_IP’“ ]Sno(UO) € f/n(ul)”'



(M/~, E/~) is well-founded (2/2)

In V[H], let (p, : n € w) be a descending sequence in H w.r.t. <p
s.t. each p, decides f, to be f,.

Then ((o(pn), n, by) : n € w) is a descending chain in jo((Q, )
w.r.t. jo(C).

Since V[H] can see the sequence (p, : n € w), we have

V[H] = jo((Q,C)) is not well-founded”.

Since being well-founded is Ay, it follows that

N ):“jo(<Q )) is not well-founded”. By elementarity, it follows
that H(0)V =“ (Q, C) is not well-founded”. However, if

({(qn, kn, up) * n € w) is a descending chain in (Q, ), then we
would have

8ko(U0) 2 8ky (1) D gho(t2) > -+

where gy, for each n € w, is the element of F which is decided to
be fx, by ps. This is a contradiction.



Game Reflection Principle and SDLS

» The Game Reflection Principle in [0] implies The Downward
Lowenheim-Skolem Theorem in [«] for stationary logic down to
<R SDLS(LX,, < Np).

— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [l].

> SDLS™(£32,, <N5) is equivalent to Diagonal Reflection Principle
(for internally clubness) of S. Cox [Cox].

> SDLS(L32,,<Xp) is equivalent to CH + Diagonal Reflection
Principle (for internally clubness) of S. Cox [Cox].
— S.F., A.Ottenbreit Maschio Rodrigues, and H.Sakai [l].

[Cox] Sean Cox, The diagonal reflection principle, Proceedings of
the American Mathematical Society, Vol.140, No.8 (2012),
2893-2902.
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