
















































































On the possible solution(s) of
the Continuum Problem
Sakaé Fuchino (渕野 昌)

Kobe University, Japan

https://fuchino.ddo.jp/index.html

(2021年 12月 27日 (01:13 JST) printer version)
2021年 12月 10日 (13:15～ JST), 至 東北大ロジックセミナー

(Tohoku University Logic Seminar)
The following slides are typeset by upLATEX with beamer class, and

presented on UP2 Version 2.0.0 by Ayumu Inoue running on an ipad pro (10.5inch).

The most up-to-date version of these slides is going to be downloadable as
https://fuchino.ddo.jp/slides/tohoku-fuchino-2021-12-pf.pdf

The subject of the talk is related to the research supported by
Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

https://fuchino.ddo.jp/index.html
http://www.math.tohoku.ac.jp/research/seminar.html
https://edu.tsuda.ac.jp/~ayminoue/program/UP2/
https://fuchino.ddo.jp/slides/tohoku-fuchino-2021-12-pf.pdf


















































































The Main Thesis The Contnuum Problem (2/23)

The Main Thesis. If one of the reasonable strong enough reflec-
tion principles should be assumed (as an additional set-theoretic
axiom), then the continuum is either ℵ1 or ℵ2 or extremely large.

▶ The adjective “reasonable” in the statement above might be
subjective.

▷ Still I am going to try to convince you in this talk that the whole
statement has certain degree of objectivity.



















































































Reflection Principles The Contnuum Problem (3/23)

▶ We consider the following type of statements:

RPC,< κ For the class C of structures, if A ∈ C then there is a sub-
structure B ∈ C of A of cardinality <κ.

▶ Note that Downward Löwenheim-Skolem theorems (DLSTs) can be
seen as statements of this type. For example, the usual DLST for
first-order logic can be formulated as RPC<κ for

C = {A : A is an infinite structure in countable language
with built-in Skolem-functions};

κ = ℵ1.

▶ Let us call a statement of the form RPC,< κ a reflection principle
(RP, for short) and “<κ” the reflection point of the reflection
principle.



















































































Reflection Principles (2/2) The Contnuum Problem (4/23)

▶ Sometimes it is convenient to consider some refinement of the
substructure relation of the elements of the class of structures in
the Reflection Principles:

RPC,⊑,< κ For the class C of structures, and a binary relation v on
C which refines the substructure relation on the elements of C, if
A ∈ C then there is a B ∈ C s.t. B v A of cardinality <κ.

▷ In this framework, the usual DLST can be more naturally
formulated as RPC,⊑,< κ for

C := {A : A is an infinite structure in a countable language};
v:= the elementary substructure relation ≺ ;
κ := ℵ1.



















































































Some more RPs provable in ZFC The Contnuum Problem (5/23)

Theorem 1. (Alan Dow, 1988) For any compact Hausdorff space
X , if X is not metrizable, then X has a subspace of size < ℵ2
which is not metrizable.

▷ For a proof, see [dow] or [fuchino] . □□

Theorem 2. (DLST for L(Q)) Let L(Q) be the logic obtained
from the first-order logic by adding the (unary) quantifier Q where
Qx (...) is interpreted as “there are uncountably many x s.t. ...”.
Then, for any uncountable structure A (in a countable language),
there is B ≺L(Q) A of cardinality <ℵ2.

Proof.



















































































The Continuum Hypothesis is a Reflection Principle The Contnuum Problem (6/23)

▶ Let Lℵ0,II be the monadic second-order logic where the second order
variable X , Y etc. run over countable subsets of the underlying set
of the structure in question (suggested by “ℵ0”). As usual, the logic
has the built-in binary relation ε where, for a first order variable x
and a second order X , “x ε X ” is interpreted as “x is an element of
X ”. The logic allows ∀ and ∃ quantification the second-order
variables (suggested by “ II ”).

▷ For structures A, B of countable language with B ⊆ A, we say that
B = 〈B , ...〉 is a weak Lℵ0,II -elementary substructure of A
(notation: B ≺−

Lℵ0,II
A) if, for any Lℵ0,II -formula

φ = φ(x0, ..., xn−1) in the language of A without second-order free
variables, and b0, ..., bn−1 ∈ B , we have

B |= φ(b0, ..., bn−1) ⇔ A |= φ(b0, ..., bn−1).



















































































The Continuum Hypothesis is a Reflection Principle (2/2) The Contnuum Problem (7/23)

▶ If C = {A : A is a structure in a countable language}, we shall
drop C from RPC,⊑,< κ and write RP⊑,< κ.

▷ Thus RP≺−
Lℵ0,II

,<ℵ2
is the statement:

(RP≺−
Lℵ0,II

,<ℵ2
) : For any structure A in a countable language, there

is a substructure B of A of cardinality <ℵ2 s.t. B ≺−
Lℵ0,II

A.

Theorem 3. (S.F., A. Ottenbreit, and H. Sakai [I] ) CH is equivalent
to RP≺−

Lℵ0,II
,<ℵ2

.

Proof.



















































































Stationary Logic The Contnuum Problem (8/23)

▶ Let Lℵ0
stat be the be the monadic second-order logic where the second

order variable X , Y etc. run again over countable subsets of the
underlying set of the structure in question. The built-in predicate ε
is just like in case of Lℵ0,II . Lℵ0

stat does not allow the second-order
quantification but has the new second-order quantifier “stat X (...)”
whose interpretation is “there are stationarily many X s.t. ...”. In
the literature Lℵ0

stat is often referred to as stationary logic.

▷ The elementarity ≺−
L
ℵ0
stat

is defined similarly as before.

▶ RP≺−

L
ℵ0
stat

,<ℵ2
is thus the principle:

RP≺−

L
ℵ0
stat

,<ℵ2
: For any structure A in a countable language, there is

a substructure B of A of cardinality <ℵ2 s.t. B ≺−
L
ℵ0
stat

A.



















































































Stationary Logic (2/2) The Contnuum Problem (9/23)

RP≺−

L
ℵ0
stat

,<ℵ2
: For any structure A in a countable language, there is

a substructure B of A of cardinality <ℵ2 s.t. B ≺−
L
ℵ0
stat

A.

▶ RP≺−

L
ℵ0
stat

,<ℵ2
implies the principle called RP in [

Definition 37.17
millennium-book] :

RP : For every regular λ ≥ ℵ2, if S is a stationary subset of [λ]ℵ0 ,
then for any X ∈ [λ]ℵ1 , there is Y ∈ [λ]ℵ1 s.t. X ⊆ Y and
S ∩ [Y ]ℵ0 is stationary in [Y ]ℵ0 .

Proposition 4.(S.F., Ottenbreit and Sakai, [II] ) RP≺−

L
ℵ0
stat

,<ℵ2
implies RP.

Proof. Back to Cor.10.

Corollary 5. RP≺−

L
ℵ0
stat

,<ℵ2
implies that 2ℵ0 ≤ ℵ2.

Proof. By Proposition 4. and by the fact that RP implies 2ℵ0 ≤ ℵ2

(
Theorem 27.18 (Todorčević)
[millennium-book]). □□ (Corollary 5.)



















































































2ℵ0 = ℵ2 follows from a RP The Contnuum Problem (10/23)

▶ The following Proposition can be proved using Corollary 5. and
Theorem 3.2 (a) by Baumgartner and Taylor in [

Theorem 3.2
baumgartner-taylor] :

Proposition 6. (S.F., A. Ottenbreit, and H. Sakai, [II] )
RP≺−

L
ℵ0
stat

,< κ for κ > ℵ2 implies κ > 2ℵ0 .

Corollary 7. (S.F., A. Ottenbreit, and H. Sakai, [II] )
RP≺−

L
ℵ0
stat

,< 2ℵ0 implies 2ℵ0 = ℵ2.

Proof. ▶ RP≺−

L
ℵ0
stat

,< 2ℵ0 implies 2ℵ0 ≤ ℵ2.

[ If 2ℵ0 > ℵ2, then 2ℵ0 > 2ℵ0 by Proposition 6. This is a contradiction. ]
▶ RP≺−

L
ℵ0
stat

,<ℵ1
does not hold.

[ “there exists uncountably many x s.t. ...” is expressible in Lℵ0
stat

(Lemma 4a.) ]
▷ Thus, 2ℵ0 6= ℵ1 and hence 2ℵ0 = ℵ2.

□□ (Corollary 7.)



















































































Game Reflection Principle The Contnuum Problem (11/23)

▶ For a set A and A ⊆ ω1>A , we define the game G(A) in which two
players I and II choose elements of A alternately:

I a0 a1 a2 · · · aξ · · ·
II b0 b1 b2 · · · bξ · · · (ξ < ω1)

▶ II wins the game, if
▷ 〈aξ, bξ : ξ < η〉 ∈ A and 〈aξ, bξ : ξ < η〉⌢〈aη〉 6∈ A for any

aη ∈ A some η < ω1; or
▷ 〈aξ, bξ : ξ < ω1〉 ∈ [A]

where [A] := {f ∈ ω1A : f ↾ ν ∈ A for all ν < ω1}.

▶ The Game Reflection Principle (GRP) [könig] (Strong Game
Reflection Principle in B. König’s terminology) is the following principle:

GRP : For any set A of regular cardinality, A ⊆ ω1>A, and for ω1-
club C ⊆ [A]ℵ1 , if the player II does not have a winning strategy
in G(A) then there is a B ∈ C s.t. II does not have a winning
strategy in G(A ∩ ω1>B).



















































































Game Reflection Principle (2/3) The Contnuum Problem (12/23)

GRP : For any set A of regular cardinality, A ⊆ ω1>A, and for ω1-
club C ⊆ [A]ℵ1 , if the player II does not have a winning strategy
in G(A) then there is a B ∈ C s.t. II does not have a winning
strategy in G(A ∩ ω1>B).

▶ GRP is also a principle of the type RPC,⊑,<ℵ2 .
▷ This follows among other things from the following:

Theorem 8. (B. König [könig]) GRP implies CH.

Theorem 9. (S.F., A. Ottenbreit, and H. Sakai, [I]) GRP implies
RP≺−

L
ℵ0
stat

,<ℵ2
.

Corollary 10. GRP implies the Singular Cardinal Hypothesis (SCH).



















































































Game Reflection Principle (3/3) The Contnuum Problem (13/23)

Corollary 10. GRP implies the Singular Cardinal Hypothesis (SCH).

Proof. GRP ⇒︸︷︷︸
Theorem 9

RP≺−

L
ℵ0
stat

,<ℵ2
⇒︸︷︷︸

Proposition 4.

RP

see the proof of Proposition 5. + by definition︷︸︸︷
⇒ 2ℵ0 ≤ ℵ2 + FRP

⇒︸︷︷︸
[fuchino-rinot]

SCH □□ (Corollary 10.)

Theorem 11. ([könig]) GRP is equivalent to the assertion:
“ℵ2 is generically supercompact by σ-closed p.o.s”.



















































































(Existence of) generic large cardinals as Reflection Principles The Contnuum Problem (14/23)

Theorem 11. ([könig]) GRP is equivalent to the assertion:
“ℵ2 is generically supercompact by σ-closed p.o.s”.

▶ For a class P of p.o.s, a cardinal κ is generically supercompact by P,
if for any λ ≥ κ there is a P ∈ P s.t. for any (V,P)-generic G, there
are classes M, j ∈ V[G] s.t. j : V ≺→κ M , j(κ) > λ and j ′′λ ∈ M.

▷ j : V ≺→κ M :
j is an elementary
embedding of V to M;
M is a transitive class;
j(α) = α for all α < κ;
and j(κ) > κ
(κ is a critical point of j ).
This is formalizable in ZFC !!
(see [

5.1 Proposition
the higher inf.] )



















































































The closedness condition j ′′λ ∈ M The Contnuum Problem (15/23)

▶ The supercompactness of a cardinal κ is defined by the existence of
j , M⊆ V for any λ ≥ κ s.t. j : V ≺→κ M, j(κ) > λ, and [M]λ ⊆ M.

▷ The last condition (the closedness of M) is too strong for a
“generic” version of the supercompactness, in general. The
condition “ j ′′λ ∈ M” is a replacement of this closedness of M.

Lemma 12. (Lemma 2.5 in [I]) Suppose that G is a (V,P)-generic
filter for a p.o. P ∈ V, and j : V ≺→κ M ⊆ V[G] with j ′′λ ∈ M for
a λ ≥ κ. Then, we have the following:

( 1 ) For any set A ∈ V with V |= |A | ≤ λ, we have j ′′A ∈ M.
( 2 ) j ↾ λ, j ↾ λ2 ∈ M.
( 3 ) For any A ∈ V with A ⊆ λ or A ⊆ λ2 we have A ∈ M.
( 4 ) (λ+)M ≥ (λ+)V, Thus, if (λ+)V = (λ+)V[G], then (λ+)M = (λ+)V.
( 5 ) H(λ+)V ⊆ M. ( 6 ) j ↾ A ∈ M for all A ∈ H(λ+)V.



















































































Lévy Collapse The Contnuum Problem (16/23)

▶ For a set S ⊆ On and an infinite regular cardinal λ, let
Col(λ, S) := {f :

f is a mapping with dom(f ) ⊆ (S \ 2)× λ, rng(f ) ⊆ sup S ,
| f | < λ, for all 〈α, ξ〉 ∈ dom(f ) (f (〈α, ξ〉 < α))},

1Col(λ,S) := ∅, and
f ≤Col(λ,S) g :⇔ g ⊆ f for f , g ∈ Col(λ, S).

▷ Col(λ, S) adds surjections from λ to α for each α ∈ S .

Lemma 13. (see e.g. 10.17 Lemma in [the higher inf.])
( 1 ) Suppose κ, µ are infinite regular cardinal with µ < κ. If κ is

an inaccessible cardinal, then Col(µ, κ) has the κ-cc.
( 2 ) Suppose κ, µ are infinite regular cardinal with µ < κ. If κ is

an inaccessible cardinal or µ = ω, then Col(µ, κ) forces that all
ordinals α with µ ≤ α < κ to be of cardinality µ and preserves all
cardinals and cofinality ≥ κ.

( 3 ) If S = X ∪̇ Y then Col(µ, S) ∼= Col(µ,X )× Col(µ,Y ).



















































































A model of “ℵ2 is generically supercompact ...” The Contnuum Problem (17/23)

▶ By the following theorem with µ = ℵ1, we obtain a model in which
ℵ2 is generically supercompact by σ-closed p.o.s.

Theorem 14. Suppose that κ is a supercompact cardinal, µ < κ a
regular uncountable cardinal, and P0 = Col(µ, κ). Then, for a
(V,P0)-generic G0,

▷ V[G0] |= “ µ+ is generically supercompact by <µ-closed p.o.s ” .

Proof. Note that V[G0] |= “ µ+ = κ”.
For λ ≥ κ, let j : V ≼→ M be a λ-supercompact embedding for κ.
Then we have j(P0) =︸︷︷︸

by elementarity

Col(j(µ),︸ ︷︷ ︸
= µ

j(κ))M =︸︷︷︸
by closedness of M

Col(µ, j(κ))V.

For a (V[G0],Col(µ, j(κ) \ κ))-generic filter G, the lifting
j̃ : V[G0]

≼→ M[G0][G]︸ ︷︷ ︸
⊆ V[G0][G]

; a∼
G0 7→ j(a∼)

G0∗G

witnesses the generic λ-supercompactness of

= (µ+)V[G0]︷︸︸︷
κ by µ-closed p.o.s

in V[G0]. □□ (Theorem 14.)



















































































Laver-generic supercompact cardinals The Contnuum Problem (18/23)

▶ The proof of Theorem 14. can be yet refined to obtain the
following:

Theorem 15. Suppose that κ is a supercompact cardinal, and P0 =
Col(ℵ1, κ). Then, for a (V,P0)-generic G0,

▷ V[G0] |= “ ℵ2 is Laver-generically supercompact for σ-closed p.o.s ”.

Here, a cardinal κ is said to be Laver-generically supercompact for a
class P of p.o.s, if, for any λ ≥ κ and any P ∈ P , there is a P-name
of a p.o. Q

∼
with ‖–P “ Q

∼
ε P ” s.t., for any (V,P ∗Q

∼
)-generic filter

H, there are M, j ⊆ V[H] s.t.

▷ j : V ≺→κ M,
▷ j(κ) > λ, ▷ P, H ∈ M and ▷ j ′′λ ∈ M.

▶ The definition of Laver-generic supercompactness is slightly stronger
than the one given in [II].



















































































The Trichotomy The Contnuum Problem (19/23)

▶ If P in the definition of Laver-generic large cardinal is taken to be
some natural class of p.o.s then we obtain the trichotomy
mentioned at the beginning of the talk. In particular:

Theorem 16. ([II]) (1) Suppose that µ is Laver-generically super-
compact for σ-closed p.o.s. Then, 2ℵ0 = ℵ1,
µ = ℵ2, and MA+ω1(σ-closed) holds.

( 2 ) Suppose that µ is Laver-generically supercompact for proper
p.o.s. Then 2ℵ0 = µ = ℵ2, and PFA+ω1 holds.

( 3 ) Suppose that µ is Laver-generically superhuge for ccc p.o.s.
Then 2ℵ0 = µ and Pµ(λ) for any regular λ ≥ µ carries an ℵ1-
saturated normal ideal. In particular, µ is µ-weakly Mahlo. Also
MA++κ(ccc , <µ) for all κ < µ holds.



















































































Lever-generic large cardinals are definable The Contnuum Problem (20/23)

▶ We called this notion of generic large cardinals “Laver-generic large
cardinal” since we need to iterate large cardinal times along with a
“Laver diamond” to obtain models for (2) and (3) of Theorem 16.

▶ “Laver-generic large cardinals” are first order definable. This is not
at all trivial and is proved in [fuchino-sakai] .
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ご清聴ありがとうございました．
Thank you for your attention!



















































































Definition of some notations
▶ For an ordinal α and a set A, αA := {f : f : α → A}.
▷ For an ordinal β, β>A :=

⋃
α<β

αA. Back

▶ For a set A and a cardinal κ, [A]κ := {a ∈ P(A) : | a | = κ}.

▶ C ⊆ [A]ℵ1 is ω1-club if
▷ for all a ∈ [A]ℵ1 there is b ∈ C with a ⊆ b (unbounded or cofinal);

and
▷ for any ⊆-increasing sequence 〈aξ : ξ < ω1〉 of elements of C, we

have
⋃

ξ<ω1
aξ ∈ C. Back



















































































Stationarity of sets of countable sets
▶ For a set X , we write

[X ]ℵ0 := {a : a ⊆ X , and a is countable}.

▶ C ⊆ [X ]ℵ0 is closed unbounded (club), if
▷ For any a ∈ [X ]ℵ0 there is b ∈ C s.t. a ⊆ b (unbounded or cofinal);

and
▷ For any increasing sequence 〈an : n ∈ ω〉 in C, (i.e. an ∈ C for all

n ∈ ω and, for n, n′ ∈ ω with n < n′, an ⊆ an′), we have⋃
n∈ω an ∈ C . (closed)

▶ S ⊆ [X ]ℵ0 is stationary, if S ∩ C 6= ∅ for all club C ⊆ [X ]ℵ0 .
Back



















































































Proof of Proposition 4.
RP : For every regular λ > ℵ2, if S is a stationary subset of [λ]ℵ0 ,

then for any X ∈ [λ]ℵ1 , there is Y ∈ [λ]ℵ1 s.t. X ⊆ Y and
S ∩ [Y ]ℵ0 is stationary in [Y ]ℵ0 .

Proposition 4. (S.F., Ottenbreit and Sakai, [II]) RP≺−

L
ℵ0
stat

,<ℵ2
implies RP.

Lemma 4a. "there exist uncountably many x s.t. ..." is expressible
in Lℵ0

stat .

Proof. “stat X∃x (x 6ε X ∧ ...)” will do. □□ (Lemma 4a)

Proof of Proposition 4. Suppose that S ⊆ [λ]ℵ0 is stationary and
X ⊆ [λ]ℵ1 .

▶ Let κ be a sufficiently large regular cardinal and
A := 〈H(κ), λ, S ,X ,∈〉

▶ Let B = 〈B , ...〉 be s.t. B ≺−
L
ℵ0
stat

A and |B | < ℵ2.

▷ Then Y := λ ∩ B is as desired. □□ (Propostion 4.) Back



















































































Proof of Theorem 3.

Theorem 3. (S.F., A.Ottenbreit, and H. Sakai [I]) CH is equivalent
to RP≺−

Lℵ0,II
,<ℵ2

.

Proof. ▶ (⇐) : Assume that RP≺−
Lℵ0,II

,<ℵ2
holds and consider the

structure A := 〈P(ω),

constant︷︸︸︷
n , ω︸︷︷︸
unary relation

,

binary relation︷︸︸︷
∈ 〉n∈ω.

▷ Note the formula ∀X (“X ⊆ ω ” → ∃x∀y (y ∈ x ↔ y ε X )).
▶ For every B ≺−

Lℵ0,II
A, we have B = A. Thus CH holds.

(⇒) : ▶ Assume that CH holds and let A = 〈A, ...〉 be a structure
in a countable language.

▶ Let κ be a regular cardinal s.t. A ∈ H(κ).
▷ By CH, there is M ≺ H(κ) s.t. A ∈ M, |M | = ℵ1 and [M]ℵ0 ⊆ M.
▶ Let B := A ↾ A ∩M. Then ‖B‖ ≤ ℵ1 and B ≺−

Lℵ0,II
A. Back



















































































Proof of Theorem 2.

Theorem 2. (DLST for L(Q)) Let L(Q) be the logic obtained
from the first-order logic by adding the (unary) quantifier Q where
Qx (...) is interpreted as “there are uncountably many x s.t. ...”.
Then, for any uncountable structure A (in a countable language),
there is B ≺L(Q) A of cardinality <ℵ2.

Proof. Suppose that A = 〈A, ...〉 is a structure in a countable
language.

▶ Let κ be a regular cardinal with A ∈

H(κ) = {x : | trcl(x) | < κ}︷︸︸︷
H(κ). Let M ≺ H(κ) be s.t.

A ∈ M, ω1 ⊆ M, and |M | = ℵ1.
▶ Let B := A ∩M and B := A ↾ B .

Then B is of cardinality <ℵ2 and B ≺L(Q) A. □□ (Theorem 2.) Back


