On the possible solution(s) of the Continuum Problem

Sakaé Fuchino (渕野 昌)

Kobe University, Japan

https://fuchino.ddo.jp/index.html

(2021 年 12 月 27 日 (01:13 JST) printer version) 2021 年 12 月 10 日 (13:15 ~ JST), 至 東北大ロジックセミナー (Tohoku University Logic Seminar)

The following slides are typeset by up \mbox{ET}_{EX} with beamer class, and presented on UP2 Version 2.0.0 by Ayumu Inoue running on an ipad pro (10.5inch).

The Main Thesis

The Main Thesis. If one of the reasonable strong enough reflection principles should be assumed (as an additional set-theoretic axiom), then the continuum is either \aleph_1 or \aleph_2 or extremely large.

- The adjective "reasonable" in the statement above might be subjective.
- ▷ Still I am going to try to convince you in this talk that the whole statement has certain degree of objectivity.

Reflection Principles

▶ We consider the following type of statements:

 $\mathsf{RP}_{\mathcal{C},<\kappa}$ For the class \mathcal{C} of structures, if $\mathfrak{A} \in \mathcal{C}$ then there is a substructure $\mathfrak{B} \in \mathcal{C}$ of \mathfrak{A} of cardinality $< \kappa$.

- Note that Downward Löwenheim-Skolem theorems (DLSTs) can be seen as statements of this type. For example, the usual DLST for first-order logic can be formulated as RP_{C<κ} for
 - $C = \{\mathfrak{A} : \mathfrak{A} \text{ is an infinite structure in countable language}$ with built-in Skolem-functions};

 $\kappa = \aleph_1.$

Let us call a statement of the form RP_{C,<κ} a reflection principle (RP, for short) and "< κ" the reflection point of the reflection principle.

Reflection Principles (2/2)

- Sometimes it is convenient to consider some refinement of the substructure relation of the elements of the class of structures in the Reflection Principles:
- $\mathsf{RP}_{\mathcal{C},\sqsubseteq,<\kappa}$ For the class \mathcal{C} of structures, and a binary relation \sqsubseteq on \mathcal{C} which refines the substructure relation on the elements of \mathcal{C} , if $\mathfrak{A} \in \mathcal{C}$ then there is a $\mathfrak{B} \in \mathcal{C}$ s.t. $\mathfrak{B} \sqsubseteq \mathfrak{A}$ of cardinality $<\kappa$.
- \triangleright In this framework, the usual DLST can be more naturally formulated as $\mathsf{RP}_{\mathcal{C},\sqsubseteq,<\kappa}$ for

 $\mathcal{C} := \{\mathfrak{A} : \mathfrak{A} \text{ is an infinite structure in a countable language}\};$

- $\sqsubseteq :=$ the elementary substructure relation \prec ;
- $\kappa := \aleph_1.$

Some more RPs provable in ZFC

- **Theorem 1.** (Alan Dow, 1988) For any compact Hausdorff space X, if X is not metrizable, then X has a subspace of size $\langle \aleph_2 \rangle$ which is not metrizable.
- \triangleright For a proof, see [dow] or [fuchino].
- **Theorem 2.** (DLST for L(Q)) Let L(Q) be the logic obtained from the first-order logic by adding the (unary) quantifier Q where Qx(...) is interpreted as "there are uncountably many x s.t. ...". Then, for any uncountable structure \mathfrak{A} (in a countable language), there is $\mathfrak{B} \prec_{L(Q)} \mathfrak{A}$ of cardinality $< \aleph_2$.

The Continuum Hypothesis is a Reflection Principle

- Let L^{ℵ₀,II} be the monadic second-order logic where the second order variable X, Y etc. run over countable subsets of the underlying set of the structure in question (suggested by "ℵ₀"). As usual, the logic has the built-in binary relation ε where, for a first order variable x and a second order X, "x ε X" is interpreted as "x is an element of X". The logic allows ∀ and ∃ quantification the second-order variables (suggested by "I").
- ▷ For structures \mathfrak{A} , \mathfrak{B} of countable language with $\mathfrak{B} \subseteq \mathfrak{A}$, we say that $\mathfrak{B} = \langle B, ... \rangle$ is a weak $L^{\aleph_0, ll}$ -elementary substructure of \mathfrak{A} (notation: $\mathfrak{B} \prec_{L^{\aleph_0, ll}}^{-}\mathfrak{A}$) if, for any $L^{\aleph_0, ll}$ -formula $\varphi = \varphi(x_0, ..., x_{n-1})$ in the language of \mathfrak{A} without second-order free variables, and $b_0, ..., b_{n-1} \in B$, we have

 $\mathfrak{B}\models\varphi(b_0,\ldots,b_{n-1}) \Leftrightarrow \mathfrak{A}\models\varphi(b_0,\ldots,b_{n-1}).$

The Continuum Hypothesis is a Reflection Principle (2/2) The Continuum Problem (7/23)

- If C = {𝔄 : 𝔅 is a structure in a countable language}, we shall drop C from RP_{C,⊑,<κ} and write RP_{⊑,<κ}.
- \triangleright Thus $\mathsf{RP}_{\prec_{l}^{-\aleph_{0},ll},<\aleph_{2}}$ is the statement:

 $(\mathsf{RP}_{\prec_{L}^{-\aleph_{0}, \parallel}, <\aleph_{2}}): \text{ For any structure } \mathfrak{A} \text{ in a countable language, there}$ is a substructure \mathfrak{B} of \mathfrak{A} of cardinality $<\aleph_{2}$ s.t. $\mathfrak{B}\prec_{L}^{-\aleph_{0}, \parallel}\mathfrak{A}$.

Theorem 3. (S.F., A. Ottenbreit, and H. Sakai [I]) CH is equivalent to $RP_{\prec_{L^{\aleph_0, II}}^{-}, < \aleph_2}$.

Proof.

Stationary Logic

- Let L^{ℵ₀}_{stat} be the be the monadic second-order logic where the second order variable X, Y etc. run again over countable subsets of the underlying set of the structure in question. The built-in predicate ε is just like in case of L^{ℵ₀,II}. L^{ℵ₀}_{stat} does not allow the second-order quantification but has the new second-order quantifier "stat X(...)" whose interpretation is "there are stationarily many X s.t. ...". In the literature L^{ℵ₀}_{stat} is often referred to as stationary logic.
- \rhd The elementarity $\prec_{{\cal L}_{stat}^{\aleph_0}}^{-}$ is defined similarly as before.

▶ $\mathsf{RP}_{\prec^{-}_{L^{\aleph_0}_{stat}}, < \aleph_2}$ is thus the principle:

 $\begin{array}{l} \mathsf{RP}_{\prec_{\substack{\mathsf{L}_{stat}}}^{-}, <\aleph_2}: & \text{For any structure } \mathfrak{A} \text{ in a countable language, there is} \\ & \mathsf{a substructure } \mathfrak{B} \text{ of } \mathfrak{A} \text{ of cardinality } <\aleph_2 \text{ s.t. } \mathfrak{B} \prec_{\substack{\mathsf{L}_{stat}}}^{-} \mathfrak{A}. \end{array}$

Stationary Logic (2/2)

 $\begin{aligned} & \mathsf{RP}_{\overset{-}{\underset{L_{stat}}{\overset{N}}{\underset{lag}},<\overset{N}{\underset{lag}}{\underset{lag}}}: & \text{ For any structure } \mathfrak{A} \text{ in a countable language, there is} \\ & \text{ a substructure } \mathfrak{B} \text{ of } \mathfrak{A} \text{ of cardinality } <\aleph_2 \text{ s.t. } \mathfrak{B} \prec^{-}_{\overset{N}{\underset{lag}}{\underset{lag}}} \mathfrak{A}. \end{aligned}$ $& \mathsf{RP}_{\overset{-}{\underset{lag}$

RP : For every regular $\lambda \geq \aleph_2$, if S is a stationary subset of $[\lambda]^{\aleph_0}$, then for any $X \in [\lambda]^{\aleph_1}$, there is $Y \in [\lambda]^{\aleph_1}$ s.t. $X \subseteq Y$ and $S \cap [Y]^{\aleph_0}$ is stationary in $[Y]^{\aleph_0}$.

Proof.Back to Cor.10.Corollary 5.
$$\mathbb{RP}_{\stackrel{N_0}{\underset{stat}{\sim}},<\aleph_2}$$
 implies that $2^{\aleph_0} \leq \aleph_2$.Proof. By Proposition 4. and by the fact that RP implies $2^{\aleph_0} \leq \aleph_2$
([millennium-book]). \square (Corollary 5.)

$2^{\aleph_0} = \aleph_2$ follows from a RP

The following Proposition can be proved using Corollary 5. and Theorem 3.2 (a) by Baumgartner and Taylor in [baumgartner-taylor]:

Proposition 6. (S.F., A. Ottenbreit, and H. Sakai, [II])

$$\operatorname{RP}_{\underset{L_{stat}}{\sim}, <\kappa} \text{ for } \kappa > \aleph_2 \text{ implies } \kappa > 2^{\aleph_0}.$$

Corollary 7. (S.F., A. Ottenbreit, and H. Sakai, [II]) $\mathsf{RP}_{\prec_{l_{stat}}^{-}, <2^{\aleph_0}} \text{ implies } 2^{\aleph_0} = \aleph_2.$

Proof. ► $\operatorname{RP}_{\downarrow_{stat}^{\mathbb{N}_{0}}, \leq 2^{\mathbb{N}_{0}}}$ implies $2^{\mathbb{N}_{0}} \leq \mathbb{N}_{2}$. [If $2^{\mathbb{N}_{0}} > \mathbb{N}_{2}$, then $2^{\mathbb{N}_{0}} > 2^{\mathbb{N}_{0}}$ by Proposition 6. This is a contradiction.] ► $\operatorname{RP}_{\downarrow_{stat}^{\mathbb{N}_{0}}, <\mathbb{N}_{1}}$ does not hold. ["there exists uncountably many x s.t. ..." is expressible in $L_{stat}^{\mathbb{N}_{0}}$ (Lemma 4a.)] ► Thus, $2^{\mathbb{N}_{0}} \neq \mathbb{N}_{1}$ and hence $2^{\mathbb{N}_{0}} = \mathbb{N}_{2}$.

Game Reflection Principle

- ► For a set A and $\mathcal{A} \subseteq {}^{\omega_1 >} A$, we define the game $\mathcal{G}(\mathcal{A})$ in which two players I and II choose elements of A alternately: $\begin{array}{c|c} I & a_0 & a_1 & a_2 & \cdots & a_{\xi} & \cdots \\ \hline II & b_0 & b_1 & b_2 & \cdots & b_{\xi} & \cdots \end{array} \quad (\xi < \omega_1)$
- ▶ *II* wins the game, if
- $arphi \langle a_{\xi}, b_{\xi} : \xi < \eta \rangle \in \mathcal{A} \text{ and } \langle a_{\xi}, b_{\xi} : \xi < \eta \rangle \widehat{\ } \langle a_{\eta} \rangle \notin \mathcal{A} \text{ for any}$ $a_{\eta} \in \mathcal{A} \text{ some } \eta < \omega_{1}; \text{ or}$ $arphi \langle a_{\xi}, b_{\xi} : \xi < \omega_{1} \rangle \in [\mathcal{A}]$ $\text{ where } [\mathcal{A}] := \{ f \in {}^{\omega_{1}}\mathcal{A} : f \upharpoonright \nu \in \mathcal{A} \text{ for all } \nu < \omega_{1} \}.$
- ► The Game Reflection Principle (GRP) [könig] (Strong Game Reflection Principle in B. König's terminology) is the following principle:
- **GRP**: For any set A of regular cardinality, $\mathcal{A} \subseteq {}^{\omega_1 >} A$, and for ω_1 club $\mathcal{C} \subseteq [A]^{\aleph_1}$, if the player II does not have a winning strategy in $\mathcal{G}(\mathcal{A})$ then there is a $B \in \mathcal{C}$ s.t. II does not have a winning strategy in $\mathcal{G}(\mathcal{A} \cap {}^{\omega_1 >} B)$.

Game Reflection Principle (2/3)

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

GRP: For any set A of regular cardinality, $\mathcal{A} \subseteq {}^{\omega_1 >} A$, and for ω_1 club $\mathcal{C} \subseteq [A]^{\aleph_1}$, if the player II does not have a winning strategy in $\mathcal{G}(\mathcal{A})$ then there is a $B \in \mathcal{C}$ s.t. II does not have a winning strategy in $\mathcal{G}(\mathcal{A} \cap {}^{\omega_1 >} B)$.

▶ GRP is also a principle of the type RP_{C,⊑,<∞2}.
 ▷ This follows among other things from the following:

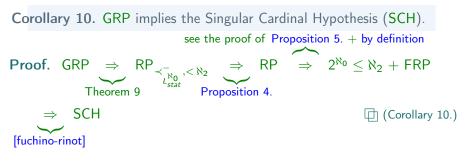
Theorem 8. (B. König [könig]) GRP implies CH.

Theorem 9. (S.F., A. Ottenbreit, and H. Sakai, [I]) GRP implies $\underset{\substack{ \mathsf{RP} \prec _{L_{stat}}^{-}, <\aleph_2}{\overset{-}{\cdot}} \cdot }{\mathsf{RP}}$

Corollary 10. GRP implies the Singular Cardinal Hypothesis (SCH).

Game Reflection Principle (3/3)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへで



Theorem 11. ([könig]) GRP is equivalent to the assertion: " \aleph_2 is generically supercompact by σ -closed p.o.s".

(Existence of) generic large cardinals as Reflection Principles The Continuum Problem (14/23)

Theorem 11. ([könig]) GRP is equivalent to the assertion: " \aleph_2 is generically supercompact by σ -closed p.o.s".

For a class *P* of p.o.s, a cardinal κ is generically supercompact by *P*, if for any λ ≥ κ there is a ℙ ∈ *P* s.t. for any (V, ℙ)-generic G, there are classes *M*, *j* ∈ V[G] s.t. *j* : V ≺_κ *M*, *j*(κ) > λ and *j*″λ ∈ *M*.

・ロト ・ 日 ・ モ ト ・ モ ・ うへつ

 $\begin{array}{l} \triangleright \ j: \mathsf{V} \xrightarrow{\prec}_{\kappa} M: \\ j \text{ is an elementary} \\ \text{embedding of V to } M; \\ M \text{ is a transitive class;} \\ j(\alpha) = \alpha \text{ for all } \alpha < \kappa; \\ \text{and } j(\kappa) > \kappa \\ (\kappa \text{ is a critical point of } j). \\ \text{This is formalizable in ZFC } !! \\ \text{(see [the higher inf.])} \end{array}$

The closedness condition $j'' \lambda \in M$

- ▶ The supercompactness of a cardinal κ is defined by the existence of $j, M \subseteq V$ for any $\lambda \geq \kappa$ s.t. $j : V \stackrel{\prec}{\rightarrow}_{\kappa} M, j(\kappa) > \lambda$, and $[M]^{\lambda} \subseteq M$.
- ▷ The last condition (the closedness of M) is too strong for a "generic" version of the supercompactness, in general. The condition " $j''\lambda \in M$ " is a replacement of this closedness of M.
- **Lemma 12.** (Lemma 2.5 in [I]) Suppose that \mathbb{G} is a (V, \mathbb{P}) -generic filter for a p.o. $\mathbb{P} \in V$, and $j : V \xrightarrow{\prec}_{\kappa} M \subseteq V[\mathbb{G}]$ with $j''\lambda \in M$ for a $\lambda \geq \kappa$. Then, we have the following:
- (1) For any set $A \in V$ with $V \models |A| \le \lambda$, we have $j''A \in M$.
- $(2) \quad j \upharpoonright \lambda, j \upharpoonright \lambda^2 \in M.$
- (3) For any $A \in V$ with $A \subseteq \lambda$ or $A \subseteq \lambda^2$ we have $A \in M$.
- (4) $(\lambda^+)^M \ge (\lambda^+)^V$, Thus, if $(\lambda^+)^V = (\lambda^+)^{V[\mathbb{G}]}$, then $(\lambda^+)^M = (\lambda^+)^V$.
- (5) $\mathcal{H}(\lambda^+)^{\mathsf{V}} \subseteq M$. (6) $j \upharpoonright A \in M$ for all $A \in \mathcal{H}(\lambda^+)^{\mathsf{V}}$.

Lévy Collapse

For a set S ⊆ On and an infinite regular cardinal λ, let Col(λ, S) := {f : f is a mapping with dom(f) ⊆ (S \ 2) × λ, rng(f) ⊆ sup S, |f| < λ, for all ⟨α, ξ⟩ ∈ dom(f) (f(⟨α, ξ⟩ < α))},

 $\mathbb{1}_{\operatorname{Col}(\lambda,S)} := \emptyset$, and

 $f \leq_{\operatorname{Col}(\lambda,S)} g :\Leftrightarrow g \subseteq f \text{ for } f, g \in \operatorname{Col}(\lambda,S).$

 \triangleright Col(λ , S) adds surjections from λ to α for each $\alpha \in S$.

Lemma 13. (see e.g. 10.17 Lemma in [the higher inf.]) (1) Suppose κ , μ are infinite regular cardinal with $\mu < \kappa$. If κ is an inaccessible cardinal, then $\operatorname{Col}(\mu, \kappa)$ has the κ -cc.

- (2) Suppose κ , μ are infinite regular cardinal with $\mu < \kappa$. If κ is an inaccessible cardinal or $\mu = \omega$, then $\operatorname{Col}(\mu, \kappa)$ forces that all ordinals α with $\mu \leq \alpha < \kappa$ to be of cardinality μ and preserves all cardinals and cofinality $\geq \kappa$.
- (3) If $S = X \cup Y$ then $\operatorname{Col}(\mu, S) \cong \operatorname{Col}(\mu, X) \times \operatorname{Col}(\mu, Y)$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ ▲ □ ▶ ◆ □

A model of " \aleph_2 is generically supercompact ..."

- ▶ By the following theorem with $\mu = \aleph_1$, we obtain a model in which \aleph_2 is generically supercompact by σ -closed p.o.s.
- Theorem 14. Suppose that κ is a supercompact cardinal, $\mu < \kappa$ a regular uncountable cardinal, and $\mathbb{P}_0 = \operatorname{Col}(\mu, \kappa)$. Then, for a $(\mathsf{V}, \mathbb{P}_0)$ -generic \mathbb{G}_0 ,
- \triangleright V[G₀] \models " μ^+ is generically supercompact by $<\mu$ -closed p.o.s".
- **Proof.** Note that $V[\mathbb{G}_0] \models "\mu^+ = \kappa"$. For $\lambda > \kappa$, let $i: V \xrightarrow{\leq} M$ be a λ -supercompact embedding for κ . Then we have $j(\mathbb{P}_0) = \operatorname{Col}(j(\mu), j(\kappa))^M = \operatorname{Col}(\mu, j(\kappa))^{\vee}$. by elementarity $= \mu$ by closedness of MFor a $(V[\mathbb{G}_0], \operatorname{Col}(\mu, i(\kappa) \setminus \kappa))$ -generic filter \mathbb{G} , the lifting $\tilde{j}: \mathsf{V}[\mathbb{G}_0] \xrightarrow{\leq} M[\mathbb{G}_0][\mathbb{G}]; \quad a^{\mathbb{G}_0} \mapsto j(a)^{\mathbb{G}_0 * \mathbb{G}}$ $= (\mu^+)^{\mathsf{V}[\mathbb{G}_0]}$ $\subset V[\widetilde{\mathbb{G}}_0][\mathbb{G}]$ witnesses the generic λ -supercompactness of κ by μ -closed p.o.s in $V[\mathbb{G}_0]$. 🗇 (Theorem 14.)

Laver-generic supercompact cardinals

- ► The proof of Theorem 14. can be yet refined to obtain the following:
- Theorem 15. Suppose that κ is a supercompact cardinal, and $\mathbb{P}_0 = \operatorname{Col}(\aleph_1, \kappa)$. Then, for a $(\mathsf{V}, \mathbb{P}_0)$ -generic \mathbb{G}_0 ,
- \triangleright V[\mathbb{G}_0] \models " \aleph_2 is Laver-generically supercompact for σ -closed p.o.s".

Here, a cardinal κ is said to be Laver-generically supercompact for a class \mathcal{P} of p.o.s, if, for any $\lambda \geq \kappa$ and any $\mathbb{P} \in \mathcal{P}$, there is a \mathbb{P} -name of a p.o. \mathbb{Q} with $\Vdash_{\mathbb{P}} \mathbb{Q} \in \mathcal{P}$ s.t., for any $(\mathsf{V}, \mathbb{P} * \mathbb{Q})$ -generic filter \mathbb{H} , there are $M, j \subseteq \mathsf{V}[\mathbb{H}]$ s.t.

- $\triangleright \ j: \mathsf{V} \xrightarrow{\prec}_{\kappa} M, \\ \triangleright \ j(\kappa) > \lambda, \quad \triangleright \quad \mathbb{P}, \ \mathbb{H} \in M \text{ and } \quad \triangleright \quad j''\lambda \in M.$
- The definition of Laver-generic supercompactness is slightly stronger than the one given in [II].

The Trichotomy

- ► If P in the definition of Laver-generic large cardinal is taken to be some natural class of p.o.s then we obtain the trichotomy mentioned at the beginning of the talk. In particular:
- **Theorem 16.** ([II]) (1) Suppose that μ is Laver-generically supercompact for σ -closed p.o.s. Then, $2^{\aleph_0} = \aleph_1$, $\mu = \aleph_2$, and MA^{+ ω_1}(σ -closed) holds.
 - (2) Suppose that μ is Laver-generically supercompact for proper p.o.s. Then $2^{\aleph_0} = \mu = \aleph_2$, and PFA^{+ ω_1} holds.
 - (3) Suppose that μ is Laver-generically superhuge for ccc p.o.s. Then $2^{\aleph_0} = \mu$ and $\mathcal{P}_{\mu}(\lambda)$ for any regular $\lambda \geq \mu$ carries an \aleph_1 -saturated normal ideal. In particular, μ is μ -weakly Mahlo. Also MA^{++ κ}(ccc, $< \mu$) for all $\kappa < \mu$ holds.

Lever-generic large cardinals are definable

- ▶ We called this notion of generic large cardinals "Laver-generic large cardinal" since we need to iterate large cardinal times along with a "Laver diamond" to obtain models for (2) and (3) of Theorem 16.
- "Laver-generic large cardinals" are first order definable. This is not at all trivial and is proved in [fuchino-sakai].

References.

[dow] Alan Dow, An introduction to applications of elementary submodels to topology, Topology Proceedings, Vol.13, (1988), 17-72. back to 5/23 [fuchino] Sakaé Fuchino, Fodor-type Reflection Principle and Balogh's reflection theorems, 京都大学数理解析研究所講究録 (RIMS Kôkyûroku) No.1686, (2010), 41–58. back to 5/23 [I] Sakaé Fuchino, André Ottenbreit Maschio Rodrigues, and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, I, Archive for Mathematical Logic, Vol.60, 1-2, (2021), 17-47. back to 7/23 [11] , Strong downward Löwenheim-Skolem theorems for stationary logics, II - reflection down to the continuum, Archive for Mathematical Logic, Vol.60, 3-4, (2021), 495-523, back to 9/23 back to 10/23 [millennium-book] Thomas Jech, Set Theory, The Third Millennium Edition, Springer (2001/2006). back to 9/23

References (2/2)

[baumgartner-taylor] James E. Baumgartner and Alan D. Taylor, Saturation properties of Ideals in generic extensions I, Transactions of the American Mathematical Society, Vol.270, No.2, (1982), 557–574. back to 10/23

[fuchino-rinot] Sakaé Fuchino, and Assaf Rinot, Openly generated Boolean algebras and the Fodor-type Reflection Principle, Fundamenta Mathematicae 212, (2011), 261-283. back to 13/23
[fuchino-sakai] Sakaé Fuchino, and Hiroshi Sakai, he first-order definability of generic large cardinals, submitted.
[the higher inf.] Akihiro Kanamori, The Higher Infinite, Springer–Verlag (1994/2003). back to 14/23
[könig] Bernhard König, Generic compactness reformulated, Archive for Mathematical Logic 43, (2004), 311–326. back to 11/23

ご清聴ありがとうございました. Thank you for your attention!

Definition of some notations

- ► For an ordinal α and a set A, ${}^{\alpha}A := \{f : f : \alpha \to A\}$. ▷ For an ordinal β , ${}^{\beta>}A := \bigcup_{\alpha < \beta} {}^{\alpha}A$. Back
- ▶ For a set A and a cardinal κ , $[A]^{\kappa} := \{a \in \mathcal{P}(A) : |a| = \kappa\}.$
- ▶ $C \subseteq [A]^{\aleph_1}$ is ω_1 -club if
- ▷ for all $a \in [A]^{\aleph_1}$ there is $b \in C$ with $a \subseteq b$ (unbounded or cofinal); and
- $$\label{eq:constraint} \begin{split} \vartriangleright \mbox{ for any } \subseteq &-\mbox{ increasing sequence } \langle a_{\xi} \ : \ \xi < \omega_1 \rangle \mbox{ of elements of } \mathcal{C}, \mbox{ we have } \bigcup_{\xi < \omega_1} a_{\xi} \in \mathcal{C}. \end{split}$$

Stationarity of sets of countable sets

- ► For a set X, we write $[X]^{\aleph_0} := \{a : a \subseteq X, \text{ and } a \text{ is countable}\}.$
- ▶ $C \subseteq [X]^{\aleph_0}$ is closed unbounded (club), if
- ▷ For any $a \in [X]^{\aleph_0}$ there is $b \in C$ s.t. $a \subseteq b$ (unbounded or cofinal); and
- ▷ For any increasing sequence $\langle a_n : n \in \omega \rangle$ in C, (i.e. $a_n \in C$ for all $n \in \omega$ and, for $n, n' \in \omega$ with $n < n', a_n \subseteq a_{n'}$), we have $\bigcup_{n \in \omega} a_n \in C$. (closed)
- ▶ $S \subseteq [X]^{\aleph_0}$ is stationary, if $S \cap C \neq \emptyset$ for all club $C \subseteq [X]^{\aleph_0}$.

Back

Proof of Proposition 4.

RP : For every regular $\lambda > \aleph_2$, if S is a stationary subset of $[\lambda]^{\aleph_0}$, then for any $X \in [\lambda]^{\aleph_1}$, there is $Y \in [\lambda]^{\aleph_1}$ s.t. $X \subseteq Y$ and $S \cap [Y]^{\aleph_0}$ is stationary in $[Y]^{\aleph_0}$.

Proposition 4. (S.F., Ottenbreit and Sakai, [II]) $RP_{\prec_{L_{stat}}^{-}, <\aleph_2}$ implies RP.

Lemma 4a. "there exist uncountably many x s.t. ..." is expressible in $L_{stat}^{\aleph_0}$.

Proof. "stat $X \exists x (x \notin X \land ...)$ " will do. (Lemma 4a)

Proof of Proposition 4. Suppose that $S \subseteq [\lambda]^{\aleph_0}$ is stationary and $X \subseteq [\lambda]^{\aleph_1}$.

(Propostion 4.)

日本人間を入注を入注す。注

 \blacktriangleright Let κ be a sufficiently large regular cardinal and

 $\mathfrak{A} := \langle \mathcal{H}(\kappa), \lambda, S, X, \in \rangle$

▶ Let $\mathfrak{B} = \langle B, ... \rangle$ be s.t. $\mathfrak{B} \prec_{\mathcal{L}_{stat}^{\aleph_0}}^{-} \mathfrak{A}$ and $|B| < \aleph_2$.

 \triangleright Then $Y := \lambda \cap B$ is as desired.

Proof of Theorem 3.

Theorem 3. (S.F., A. Ottenbreit, and H. Sakai [I]) CH is equivalent to $RP_{\prec_{L^{\aleph_0}, II}^{-}, < \aleph_2}$.

Proof. (\Leftarrow): Assume that $\operatorname{RP}_{\prec_{L^{\aleph_{0}, ll}, < \aleph_{2}}}$ holds and consider the structure $\mathfrak{A} := \langle \mathcal{P}(\omega), n, \omega, \in \rangle_{n \in \omega}$.

 $\triangleright \text{ Note the formula } \forall X (``X \subseteq \underline{\omega}'' \to \exists x \forall y (y \subseteq x \leftrightarrow y \varepsilon X)).$

- ▶ For every $\mathfrak{B} \prec_{I^{\aleph_0, \parallel}}^{-} \mathfrak{A}$, we have $\mathfrak{B} = \mathfrak{A}$. Thus CH holds.
- (⇒): ► Assume that CH holds and let 𝔅 = ⟨𝑋, ...⟩ be a structure in a countable language.
- Let κ be a regular cardinal s.t. $\mathfrak{A} \in \mathcal{H}(\kappa)$.
- \triangleright By CH, there is $M \prec \mathcal{H}(\kappa)$ s.t. $\mathfrak{A} \in M$, $|M| = \aleph_1$ and $[M]^{\aleph_0} \subseteq M$.
- ▶ Let $\mathfrak{B} := \mathfrak{A} \upharpoonright A \cap M$. Then $\|\mathfrak{B}\| \leq \aleph_1$ and $\mathfrak{B} \prec_{\underline{L}^{\aleph_0, H}}^{-} \mathfrak{A}$.

Proof of Theorem 2.

Theorem 2. (DLST for L(Q)) Let L(Q) be the logic obtained from the first-order logic by adding the (unary) quantifier Q where Qx(...) is interpreted as "there are uncountably many x s.t. ...". Then, for any uncountable structure \mathfrak{A} (in a countable language), there is $\mathfrak{B} \prec_{L(Q)} \mathfrak{A}$ of cardinality $< \aleph_2$.

Proof. Suppose that $\mathfrak{A} = \langle A, ... \rangle$ is a structure in a countable language.

 $\mathcal{H}(\kappa) = \{x : |\mathit{trcl}(x)| < \kappa\}$

- ▶ Let κ be a regular cardinal with $\mathfrak{A} \in \mathcal{H}(\kappa)$. Let $M \prec \mathcal{H}(\kappa)$ be s.t. $\mathfrak{A} \in M$, $\omega_1 \subseteq M$, and $|M| = \aleph_1$.
- ▶ Let $B := A \cap M$ and $\mathfrak{B} := \mathfrak{A} \upharpoonright B$. Then \mathfrak{B} is of cardinality $\langle \aleph_2 \rangle$ and $\mathfrak{B} \prec_{L(Q)} \mathfrak{A}$. ① (Theorem 2.) Back