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Downward Löwenheim-Skolem Theorem for First-Order Logic Downward LöSko (2/21)

▶ We use the following notation: A structure A is a (first-order)
structure of countable signature (if not mentioned otherwise).

▷ For a structure A, we denote with |A| the underlying set of A, and
∥A∥ the cardinality (of the underlying set) of A.

Cf.: if X is a set, we denote with |X | the cardinality of X .

Theorem 1. (Downward Löwenheim-Skolem Theorem) For any un-
countable cardinal κ and a structure A (of countable signature) if
S ⊆ |A| is of cardinality <κ, then there is B ≺ A s.t. S ⊆ |B|
and ∥B∥ < κ. □□



















































































Löwenheim-Skolem Spectrum of a Logic Downward LöSko (3/21)

▶ Let L be a logic with the notion ≺L of elementary substructure.
The Löwenheim-Skolem spectrum of the logic L is defined as:

LSS(L) := {µ ∈ Card : for any structure A of a countable signature
and S ⊆ |A| with | S | < µ,
there is B ≺L A s.t. S ⊆ |B| and ∥B∥ < µ}.

▷ Denoting the first-order logic with L, (the classical) Downward
Löwenheim-Skolem Theorem can be reformulated as:

Theorem 2. LSS(L) = {κ ∈ Card : κ ≥ ℵ1}.



















































































On the restriction to countable signatures Downward LöSko (4/21)

Lemma 2a. For a logic L (with natural properties expected to a
“logic”), we have

LSS(L) = {µ ∈ Card : for any structure A with a signature of
size <µ, there is B ≺L A s.t. ∥B∥ < µ}.

Proof. “⊆”: Suppose that µ ∈ LSS(L) and let A be a structure
with a signature of size ν < µ. W.l.o.g., we may assume that A is a
relational structure and A = ⟨ |A| ,Rn,α⟩n∈ω,α<ν where Rn,α is an
n-ary relation on |A| for n ∈ ω and α < ν. We may also assume,
w.l.o.g., that ∥A∥ ≥ µ and ν ⊆ |A| .

▷ Let Rn :=
⋃

α<ν{α} × Rn,α for each n ∈ ω. Let A− := ⟨ |A| ,Rn⟩n∈ω.
Applying our assumption on µ, we find B− ≺L A− with
∥B−∥ < µ and ν ⊆ |B−| . By the last condition, we can
reconstruct a submodel B of A from B− with the same underlying
set and B ≺L A.



















































































On the restriction to countable signatures (2/2) Downward LöSko (5/21)

Lemma 2a. For a logic L (with natural properties expected to a
“logic”), we have

LSS(L) = {µ ∈ Card : for any structure A with a signature of
size <µ, there is B ≺L A s.t. ∥B∥ < µ}.

Proof. “⊆”: Suppose that µ ∈ LSS(L) and let A be a structure
with a signature of size ν < µ. W.l.o.g., we may assume that A is
a relational structure and A = ⟨ |A| ,Rn,α⟩n∈ω,α<ν where Rn,α is an
n-ary relation on |A| for n ∈ ω and α < ν. We may also assume,
w.l.o.g., that ∥A∥ ≥ µ and ν ⊆ |A| .
Let Rn :=

⋃
α<ν{α} × Rn,α for each n ∈ ω. Let A− := ⟨ |A| ,Rn⟩n∈ω.

Applying our assumption on µ, we find B− ≺L A− with ∥B−∥ < µ
and ν ⊆ |B−| . By the last condition, we can reconstruct an L-
elementary submodel B of A from B− with the same underlying set.

“⊇”: Suppose now that µ is in the set on the right side of the
equality. Let A be a structure of size ≥ µ with a countable
signature, and S ∈ [ |A| ]<µ.
Let A+ = ⟨A, a⟩a∈S . Applying the assumption on µ, we obtain
B+ ≺L A+ of size <µ. Denoting by B the B+ reduced to the
original language, we have ∥B∥ < µ, S ⊆ |B| and B ≺L A.

□□ (Lemma 2a)



















































































Löwenheim-Skolem Spectrum of L(Q) Downward LöSko (6/21)

▶ Let L(Q) be the logic obtained from the first-order logic by adding
a new unary (first-order) quantifier Q which is interpreted by

A |= Qx φ(x , ...) ⇔ there are uncountably many a ∈ |A| s.t.
A |= φ(a, ...).

▷ ≺L(Q) is defined just as in the first-order logic for formulas of L(Q).

Theorem 3. LSS(L(Q)) = {κ ∈ Card : κ ≥ ℵ2}.

Proof. Suppose that κ ≥ ℵ2 and A is a structure with a countable
signature with ∥A∥ ≥ κ.
Let θ be a sufficiently large regular cardinal >ω1 with A ∈ H(θ).
For S ∈ [ |A| ]<κ, let M ≺ H(θ) be s.t.

( 1 ) A ∈ M,
( 2 ) ω1,S ⊆ M, and
( 3 ) |M | < κ. Let B := |A| ∩M and B := A ↾ B .



















































































Löwenheim-Skolem Spectrum of L(Q) (2/2) Downward LöSko (7/21)

Theorem 3. LSS(L(Q)) = {κ ∈ Card : κ ≥ ℵ2}.
Proof. Suppose that κ ≥ ℵ2 and A is a structure with a countable

signature with ∥A∥ ≥ κ.
Let θ be a sufficiently large regular cardinal >ω1 with A ∈ H(θ).
For S ∈ [ |A| ]<κ, let M ≺ H(θ) be s.t.

( 1 ) A ∈ M,
( 2 ) ω1,S ⊆ M, and
( 3 ) |M | < κ. Let B := |A| ∩M and B := A ↾ B .

S ⊆ B = |B| , ∥B∥ < κ.
Thus we are done by:

Claim. B ≺L(Q) A.

⊢ It is enough to show:

▶ M |= “ A |= φ(b0, ..., bn−1)” ⇔ B |= φ(b0, ..., bn−1)
for any L(Q)-formula φ = φ(x0, ..., xn−1) and b0, ..., bn−1 ∈ B .

▷ The crucial step of the induction proof:
M |= “ A |= Qxψ(x , b0, ..., bn−1)” ⇔ H(θ) |= “ A |= Qxψ(x , b0, ..., bn−1)”
⇔ H(θ) |= “ there is 1-1 f : ω1 → {a ∈ |A| : A |= ψ(a, b0, ..., bn−1)}”
⇔ M |= “ there is 1-1 f : ω1 → {a ∈ |A| : A |= ψ(a, b0, ..., bn−1)}”
⇒ {b ∈ |A| ∩M : M |= “ A |= ψ(b, b0, ..., bn−1)”} is uncountable
⇔︸︷︷︸

by induction hypothesis and by the def. of B

{b ∈ |B| : B |= ψ(b, b0, ..., bn−1)} is uncountable

⇔ B |= Qxψ(x , b0, ..., bn−1), and



















































































Löwenheim-Skolem Spectrum of L(Q) (2/2) Downward LöSko (8/21)

Theorem 3. LSS(L(Q)) = {κ ∈ Card : κ ≥ ℵ2}.
Proof. Suppose that κ ≥ ℵ2 and A is a structure with a countable

signature with ∥A∥ ≥ κ.
Let θ be a sufficiently large regular cardinal >ω1 with A ∈ H(θ).
For S ∈ [ |A| ]<κ, let M ≺ H(θ) be s.t.

( 1 ) A ∈ M,
( 2 ) ω1,S ⊆ M, and
( 3 ) |M | < κ. Let B := |A| ∩M and B := A ↾ B .

S ⊆ B = |B| , ∥B∥ < κ.
Thus we are done by:

Claim. B ≺L(Q) A.

⊢ It is enough to show:

▶ M |= “ A |= φ(b0, ..., bn−1)” ⇔ B |= φ(b0, ..., bn−1)
for any L(Q)-formula φ = φ(x0, ..., xn−1) and b0, ..., bn−1 ∈ B .

▷ The crucial step of the induction proof (reverse direction):
M ̸|= “ A |= Qxψ(x , b0, ..., bn−1)” ⇔ H(θ) ̸|= “ A |= Qxψ(x , b0, ..., bn−1)”
⇔ H(θ) |= “ there is a 1-1 f : {a ∈ |A| : A |= ψ(a, b0, ..., bn−1)} → ω”
⇔ M |= “ there is 1-1 f : {a ∈ |A| : A |= ψ(a, b0, ..., bn−1)} → ω”
⇒ {b ∈ |A| ∩M : M |= “ A |= ψ(b, b0, ..., bn−1)”} is countable
⇔︸︷︷︸

by induction hypothesis and by the def. of B

{b ∈ |B| : B |= ψ(b, b0, ..., bn−1)} is countable
Theorem 5 is going to be
proved similarly.

⇔ B ̸|= Qxψ(x , b0, ..., bn−1).
⊣ □□ ((Theorem 3.))



















































































Full second order logic Downward LöSko (9/21)

▶ LII denotes the (monadic, full) second-order logic with second-order
variables X , Y , Z etc. running over all subsets of the underlying set
of a structure. In addition to the constructs of the first-order logic,
we have the symbol ε as a logical binary predicate and allow the
expression “x ε X ” for a first order variable x and a second-order
variable X as an atomic formula. We also allow the quantification
of the form “∃X ” (and its dual “∀X ”) over the second-order variables X .

▷ The relation symbol ε is interpreted as the (real) element relation
and the interpretation of the quantifier ∃X in LII is defined by:

A |= ∃Xφ(a0, ..., am−1,B0, ...,Bn−1,X ) :⇔
there exists a B ∈ P( |A| ) s.t. A |= φ(a0, ..., am−1,B0, ...,Bn−1,B)

for a first-order structure A, an LII-formula φ in the signature of
the structure A with φ = φ(x0, ..., xm−1,X0, ...,Xn−1,X ) where
x0, ..., xm−1 and X0, ...,Xn−1, X are first- and second-order vari-
ables, a0, ..., am−1 ∈ |A| , and B0, ...,Bn−1 ∈ P( |A| ).



















































































Full second order logic (2/4) Downward LöSko (10/21)

B ≺LII A :⇔ B |= φ(b0, ..., bn−1) holds if and only if A |=
φ(b0, ..., bn−1) holds for all formulas φ = φ(x0, ...) in LII without
free second-order variables, and for all b0, ..., bn−1 ∈ |B| .

▷ Exclusion of second-order free variables and parameters in this
context is natural because of the following trivial example:

Example 4. Let B ⫋ A. Let B = |B| . Then
A |= ∃x (x ̸ε B) but B |= ¬∃x (x ̸ε B).

Theorem 5. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact or a limit of supercompact cardinals}.

▶ A cardinal κ is supercompact if, for any λ ≥ κ, there are transitive
class M and elementary embedding j : V → M s.t. κ is the smallest
ordinal moved by j (critical point of j : we denote these conditions
as j : V ≺→κ M), j(κ) > λ and [M]λ ⊆ M.



















































































Full second order logic (3/4) Downward LöSko (11/21)

Theorem 5. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact or a limit of supercompact cardinals}.

▶ A cardinal κ is supercompact if, for any λ ≥ κ, there are transitive
class M and elementary embedding j : V → M s.t. κ is the smallest
ordinal moved by j (critical point of j : we denote these conditions as
j : V ≺→κ M), j(κ) > λ and [M]λ ⊆ M.

Proof. “⊇”:

The idea of this proof is similar
to the proof of Theorem 3.

Suppose that
κ is supercompact and A
a structure in a countable
signature. W.l.o.g., |A| is a
cardinal λ and let S ⊆ [λ]<κ.

▶ Let j : V ≺→κ M be s.t. j(κ) > λ and [M]λ ⊆ M.

▷ Then A, j(A) ↾ j ′′λ, j ↾ λ ∈ M, M |= j ↾ λ : A
∼=→ j(A) ↾ j ′′λ and

P( |A| )V = P( |A| )M . For any LII-formula φ = φ(x0, ...) without
free second order variables and any a0, ... ∈ |A| ,
M |= j(A) |= φ(j(a0), ...) ⇔ V |= A |= φ(a0, ...)
⇔ M |= A |= φ(a0, ...) ⇔ M |= j(A) ↾ j ′′λ |= φ(j(a0), ..., ).

▶ Thus M |= j(A) ↾ j ′′λ ≺LII j(A), ∥j(A) ↾ j ′′λ∥ < j(κ),

j(S) = j ′′S ⊆ |j(A) ↾ j ′′λ| .
▷ By elementarity, it follows that

V |= there is B ≺LII A s.t. S ⊆ |B| and ∥B∥ < κ.

Theorem 11. is going to be proved analogously.



















































































Full second order logic (4/4) Downward LöSko (12/21)

Theorem 5. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact or a limit of supercompact cardinals}.

▶ A cardinal κ is supercompact if, for any λ ≥ κ, there are transitive
class M and elementary embedding j : V → M s.t. κ is the smallest
ordinal moved by j (critical point of j : we denote these conditions as
j : V ≺→κ M), j(κ) > λ and [M]λ ⊆ M.

▶ Since LSS(L) is closed for any logic L, the inclusion “⊇” follows
from this.

“⊆”: The proof of this direction requires a heavier tool of set theory. I
will discuss about this proof in my next talk at:

▶ Kobe Set Theory Seminar

May 25, 2022　 (We) | 16:00 – (zoom)
Sakaé Fuchino: On Magidor’s characterization of supercompact cardinals

as Löwenheim-Skolem numbers of the second order logic
□□ (Theorem 5)

http://www2.kobe-u.ac.jp/~fuchino/kobe-set-theory-seminar/


















































































Weak second-order logics Downward LöSko (13/21)

▶ Lℵ0,II denotes the weak (monadic) second-order logic with
second-order variables X , Y , Z etc. whose intended interpretation is that
they run over countable subsets of the underlying set of the structure.

▷ Similarly to the full second-order logic, we introduce, also in Lℵ0,II, the
element relation symbol ε as a logical predicate and allow the expression
“x ε X ” for a first order variable x and a weak second-order variable
X as an atomic formula. We also allow the quantification of the
form “∃X ” (or its dual “∀X ”) over the weak second-order variables X .

▷ The relation symbol ε here is also interpreted as the element relation
and the interpretation of the quantifier ∃X in Lℵ0,II is defined by

A |= ∃Xφ(a0, ..., am−1,B0, ...,Bn−1,X ) :⇔
there exists a B ∈ [ |A| ]ℵ0 s.t. A |= φ(a0, ..., am−1,B0, ...,Bn−1,B)

for a first-order structure A, an Lℵ0,II-formula φ in the signature
of the structure A with φ = φ(x0, ..., xm−1,X0, ...,Xn−1,X ) where
x0, ..., xm−1, and X0, ...,Xn−1, X are first- and second-order vari-
ables, a0, ..., am−1 ∈ |A| , and B0, ...,Bn−1 ∈ [ |A| ]ℵ0 .



















































































Weak second-order logics (2/4) Downward LöSko (14/21)

▶ If we allow the weak second-order variables in ℵ0-interpretation and
the logical relation symbol ε but no quantification over the weak
second-order variables, the resulting logic is called Lℵ0 .

▶ Lℵ0
stat is the logic obtained from Lℵ0 by adding the stationarity

quantifier “stat X ” (and its dual “aa X ” (there are club many) but
neither the existential nor universal quantification over second-order
variables). The semantics of the logic is defined by

A |= stat Xφ(a0, ..., am−1,B0, ...,Bn−1,X ) :⇔
{B ∈ [ |A| ]ℵ0 : A |= φ(a0, ..., am−1,B0, ...,Bn−1,B)}
is stationary

for a first-order structure A, an Lℵ0
stat-formula φ in the signature of

A with φ = φ(x0, ..., xm−1,X0, ...,Xn−1,X ), a0, ..., am−1 ∈ |A|
and B0, ...,Bn−1 ∈ [A]ℵ0 .

▶ Lℵ0,II
stat is the logic Lℵ0

stat with weak second-order quantifiers ∃X , ∀X .



















































































Weak second-order logics (3/4) Downward LöSko (15/21)

▶ Let L be one of the logics introduced above. In contrast to the full
second-order logic, the notion of elementary submodels in terms of
first and second order parameters makes sense for L.

▷ For a logic L with weak second-order variables, and structures A, B
with B ⊆ A :

B ≺L A :⇔ B |= φ(b0, ..., bm−1,A0, ...,An−1) holds if and
only if A |= φ(b0, ..., bm−1,A0, ...,An−1) holds for all L-formulas
φ = φ(x0, ...,X0, ...), for all b0, ..., bm−1 ∈ |B| , and for all
A0, ...,An−1 ∈ [ |B| ]ℵ0 .

▶ We obtain a weaker notion of elementarity by dropping the
second-order parameters.

B ≺−
L A :⇔ B |= φ(b0, ..., bm−1) holds if and only if
A |= φ(b0, ..., bm−1) holds for all L-formulas φ = φ(x0, ..., xm−1)
without free second-order variables, and for all b0, ..., bm−1 ∈ |B| .



















































































Weak second-order logics (4/4) Downward LöSko (16/21)

▶ We we consider Lℵ0,II, Lℵ0
stat etc. with ≺Lℵ0,II , ≺Lℵ0

stat
etc. by

default. When we consider Lℵ0,II, etc. together with ≺−
Lℵ0,II

etc. we
shall write Lℵ0,II−, Lℵ0 −

stat etc.

▶ We call a cardinal κ ·ℵ0-closed if µℵ0 < κ holds for all µ < κ.

Proposition 6. (Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2021])
LSS(Lℵ0) = LSS(Lℵ0,II−) = LSS(Lℵ0,II) = {κ ∈ Card : κ is ·ℵ0-closed }.

Proof. The non-trivial direction (of inclusion) is proved similarly to
Theorem 3 or Theorem 5, using M ≺ H(θ) with [M]ℵ0 ⊆ M.

▷ Note that, if µ < θ is ·ℵ0-closed then there is M ≺ H(θ) as above
with |M | = µ. □□ (Proposition 6.)

Corollary 7. (Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2021])
ℵ2 ∈ LSS(Lℵ0) ⇔ CH. □□



















































































Some independence results around LSS(Lℵ0,II−
stat ) Downward LöSko (17/21)

Theorem 8. (see Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2021])

For any n ∈ N, n ≥ 2, the statements “ℵn ∈ LSS(Lℵ0,II−
stat )”

and “ℵn ∈ LSS(Lℵ0,II
stat )” are independent from ZFC (modulo

consistency strength of the caliber “supercompact”. Known lower
bound: class many Woodin cardinals).

Theorem 9. (Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2022])
“2ℵ0 ∈ LSS(Lℵ0 −

stat )” is consistent with ZFC (modulo consistency
strength similar to above) and it implies 2ℵ0 = ℵ2.

▷ The consistency in Theorem 8 and Theorem 9 will be shown in next
slides.

▷ The independence of Theorem 8 can be shown e.g. by V = L. But
we can further localize the reason of ℵn ̸∈ LSS(Lℵ0,II−

stat ).



















































































LSS(Lℵ0,II
stat ) can contain “small” cardinals Downward LöSko (18/21)

▶ A cardinal κ is said to be generically supercompact by σ-closed p.o.s
(or σ-closed gen. supercompact, for short) if, for any λ ≥ κ, there
are σ-closed p.o. P (V,P)-generic G, j , M ⊆ V[G] s.t.
V[G] |= j : V ≺→κ M j(κ) > λ and j ′′λ ∈ M.

Lemma 9a. (Easy) If κ is σ-closed gen. supercompact then κ is regular
and > 2ℵ0 . □□

Lemma 10. (Folklore ?) If κ is supercompact and P = Col(µ, κ)
for a regular µ < κ, Then P forces “κ = µ+ is σ-closed gen.
supercompact (actually <µ-closed gen. supercompact)”. □□

Theorem 11. If κ is σ-closed gen. supercompact, then κ ∈ LSS(Lℵ0,II
stat ).

Corollary 12. Suppose that (ZFC + ) “there is a supercompact
cardinal” is consistent, then for each n ≥ 2, ℵn ∈ LSS(Lℵ0,II

stat )
(⊆ LSS(Lℵ0

stat)) is consistent. □□



















































































A Proof of Theorem 11 Downward LöSko (19/21)

Theorem 11. If κ is σ-closed gen. supercompact, then κ ∈ LSS(Lℵ0,II
stat ).

Proof. This can be shown similarly to the proof of Theorem 5., “⊆” .

▶ Assume that κ is σ-closed gen. supercompact. Suppose A is a structure
with ∥A∥ ≥ κ and S ∈ [ |A| ]<κ. W.l.o.g., assume |A| = ∥A∥ .

▷ Let P be a σ-closed p.o. s.t. for a (V,P)-generic G, there are j ,
M ⊆ V[G] s.t. j : V ≺→κ M, j(κ) > ∥A∥ and j ′′ ∥A∥ ∈ M.

▷ Then B := j(A) ↾ j ′′ ∥A∥ ∈ M. Since j ↾ |A| ∈ M we also have
A ∈ M and M |= j ↾ |A| : A

∼=→ B.
▷ By σ-closedness of P we have ([ |A| ]ℵ0)V = ([ |A| ]ℵ0)M . Also, all

stationary subsets (club subsets resp.) of ([ |A| ]ℵ0)V remain
stationary (club resp.) in M.

▶ Thus, M |= B ≺Lℵ0,II
stat

j(A), ∥B∥ < j(κ), j(S) ⊆ |B| .
By elementarity, in V, there is C ≺Lℵ0,II

stat
A s.t. ∥C∥ < κ, S ⊆ |C| .

□□ (Theorem 11.)



















































































Uncountable Coloring number of graphs Downward LöSko (20/21)

▶ I learned the following theorem in a tutorial lecture of Menachem
Magidor:

Theorem 13. Suppose κ = min LSS(Lℵ0 −
stat ). Then for any graph G =

⟨G ,E ⟩ with col(G ) > ℵ0, there is G0 ∈ [G ]<κ s.t. col(G0) > ℵ0.
Or, equivalently, for any graph G = ⟨G ,E ⟩, if col(G0) ≤ ℵ0 for
all G0 ∈ [G ]<κ, then col(G ) ≤ ℵ0. □□

▶ I will discuss about this and some other applications of
Löwenheim-Skolem Theorems of non first-order logics in:

▶ Kobe Set Theory Seminar
June 1 2022　 (We) | 16:00 – (zoom)

Sakaé Fuchino: On Löwenheim-Skolem number and compactness
number of some non first-order logics

http://www2.kobe-u.ac.jp/~fuchino/kobe-set-theory-seminar/


















































































1 日本語
すべての人間は、生まれながらにして自由であり、かつ、尊厳と権利とに

ついて平等である。人間は、理性と良心とを授けられており、互いに同胞の
精神をもって行動しなければならない。

2 中国語・簡体字 简体中文
谢谢您的倾听。

3 中国語・繁体字

4 韓国語 한국어
관심을 가져 주셔서 감사합니다
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Thank you for your attention!
ご清聴ありがとうございました．
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