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Downward Löwenheim-Skolem Theorem for First-Order Logic Magidor’s Theorem (2/17)

▶ Notation: A structure A is a (first-order) structure of
countable signature (if not mentioned otherwise).

▷ For a structure A, we denote with |A| the underlying set of A, and
∥A∥ the cardinality (of the underlying set) of A.

Cf.: if X is a set, we denote with |X | the cardinality of X .

Theorem 1. (Downward Löwenheim-Skolem Theorem) For any un-
countable cardinal κ and a structure A (of countable signature) if
S ⊆ |A| is of cardinality <κ, then there is B ≺ A s.t. S ⊆ |B|
and ∥B∥ < κ. □□



















































































Löwenheim-Skolem Spectrum of a Logic Magidor’s Theorem (3/17)

▶ Let L be a logic with a notion ≺L of elementary substructure. The
Löwenheim-Skolem spectrum of the logic L is defined as:

LSS(L) := {µ ∈ Card : for any structure A of a countable signature
and S ⊆ |A| with | S | < µ,
there is B ≺L A s.t. S ⊆ |B| and ∥B∥ < µ}.

▷ Denoting the first-order logic with L, (the classical) Downward
Löwenheim-Skolem Theorem can be reformulated as:

Theorem 2. LSS(L) = {κ ∈ Card : κ ≥ ℵ1}.

Lemma 2a. For a logic L (with natural properties expected to a
“logic”), we have

LSS(L) = {µ ∈ Card : for any structure A with a signature of
size <µ, there is B ≺L A s.t. ∥B∥ < µ}.

Proof



















































































LSS(L) is closed Magidor’s Theorem (4/17)

Lemma 2b. For any logic L, LSS(L) is a closed class of cardinals.

Proof. Suppose that ⟨κα : α < δ⟩ is a strictly increasing sequence
in LSS(L) and κ = supα<δ κα. We want to show that κ ∈ LSS(L).

▶ Suppose that A is a structure and S ⊆ [ |A| ]<κ. Let α < δ be s.t.
| S | < κα. Since κα ∈ LSS(L), there is a B ≺L A s.t. S ⊆ |B|
and ∥B∥ < κα < κ. This shows that κ ∈ LSS(L). □□ (Lemma 2b)



















































































Löwenheim-Skolem Spectrum of some non-first-order logics Magidor’s Theorem (5/17)

▶ Let L(Q) be the logic obtained from the first-order logic by adding
a new unary (first-order) quantifier Q.
Interpretation: Qx ... ⇔ "there are uncountably many x s.t. ...".

▷ The proof of the following theorem was given in my previous talk at
Tokyo Model Theory Seminar (see the [slides of the talk]):

Theorem 3.LSS(L(Q)) = {κ ∈ Card : κ ≥ ℵ2}.

▶ Lℵ0
stat is the monadic second order logic whose second-order variables

run over countable subsets of the underlying set of the structure,
with new quantifier with the quantification stat X︸︷︷︸

second-order variable

whose interpretation
is “there are stationarily many X s.t. ...”
In my next talk, I will present some results about LSS(Lℵ0

stat). E.g.:

Theorem 4. (see Fuchino, Ottenbreit Maschio Rodrigues, and Sakai [2021])
For any n ∈ N, n ≥ 2, the statement “ℵn = min LSS(Lℵ0

stat)” is
independent from ZFC (modulo a large cardinal).

https://sites.google.com/view/tokyo-model-theory-seminar/%E3%83%9B%E3%83%BC%E3%83%A0
https://fuchino.ddo.jp/slides/tokyo-fuchino-2022-05-18-pf.pdf#page=6
https://link.springer.com/article/10.1007/s00153-020-00751-6


















































































Full second order logic Magidor’s Theorem (6/17)

▶ LII denotes the (monadic, full) second-order logic with second-order
variables X , Y , Z etc. running over all subsets of the underlying set
of a structure. In addition to the constructs of the first-order logic,
we have the symbol ε as a logical binary predicate and allow the
expression “x ε X ” for a first order variable x and a second-order
variable X as an atomic formula. We also allow the quantification
of the form “∃X ” (and its dual “∀X ”) over the second-order variables X .

▷ The relation symbol ε is interpreted as the (real) element relation
and the interpretation of the quantifier ∃X in LII is defined by:

A |= ∃Xφ(a0, ..., am−1,B0, ...,Bn−1,X ) :⇔
there exists a B ∈ P( |A| ) s.t. A |= φ(a0, ..., am−1,B0, ...,Bn−1,B)

for a first-order structure A, an LII-formula φ in the signature of
the structure A with φ = φ(x0, ..., xm−1,X0, ...,Xn−1,X ) where
x0, ..., xm−1 and X0, ...,Xn−1, X are first- and second-order vari-
ables, a0, ..., am−1 ∈ |A| , and B0, ...,Bn−1 ∈ P( |A| ).



















































































Full second order logic (2/6) Magidor’s Theorem (7/17)

B ≺LII A :⇔ B |= φ(b0, ..., bn−1) holds if and only if A |=
φ(b0, ..., bn−1) holds for all formulas φ = φ(x0, ...) in LII without
free second-order variables, and for all b0, ..., bn−1 ∈ |B| .

▷ Exclusion of second-order free variables and parameters in this
context is natural because of the following trivial example:

Example 5. Let B ⫋ A. Let B = |B| . Then
A |= ∃x (x ̸ε B) but B |= ¬∃x (x ̸ε B).

Theorem 6. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact, or a limit of supercompact cardinals}.

▶ A cardinal κ is supercompact if, for any λ ≥ κ, there are transitive
class M and elementary embedding j : V → M s.t. κ is the smallest
ordinal moved by j (critical point of j : we denote these conditions
as j : V ≺→κ M), j(κ) > λ and [M]λ ⊆ M. Back to the proof of Proposition 12.

https://link.springer.com/article/10.1007/BF02771565


















































































Full second order logic (3/6) Magidor’s Theorem (8/17)

Theorem 6. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact, or a limit of supercompact cardinals}.

Back to "A slight modification of ..."

Proof. “⊇”: Since LSS(LII) is closed (Lemma 2b), it is enough
to prove that supercompact cardinals belong to LSS(LII).

▶ Suppose that κ is supercompact and A a structure in a countable signa-
ture. W.l.o.g., |A| is a cardinal λ0 < λ and let S ⊆ [λ0]

<κ (= [ |A| ]<κ).
▶ Let j : V ≺→κ M be s.t. j(κ) > λ and [M]λ ⊆ M.

▷ Then A, j(A) ↾ j ′′λ0, j ↾ λ0 ∈ M, M |= j ↾ λ0 : A
∼=→ j(A) ↾ j ′′λ0 and

P( |A| )V = P( |A| )M . For any LII-formula φ = φ(x0, ...) without
free second order variables, and any a0, ... ∈ |A| ,
M |= j(A) |= φ(j(a0), ...) ⇔ V |= A |= φ(a0, ...)
⇔ M |= A |= φ(a0, ...) ⇔ M |= j(A) ↾ j ′′λ0 |= φ(j(a0), ..., ).

▶ Thus M |= j(A) ↾ j ′′λ0 ≺LII j(A),

∥j(A) ↾ j ′′λ0∥ < j(κ), j(S) = j ′′S ⊆ |j(A) ↾ j ′′λ0| .

▷ By elementarity, V |= there is B ≺LII A s.t. S ⊆ |B| and ∥B∥ < κ.

https://link.springer.com/article/10.1007/BF02771565


















































































Full second order logic (4/6) Magidor’s Theorem (9/17)

Theorem 6. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact, or a limit of supercompact cardinals}.

“⊆”: The proof of this direction uses the following characterization of
supercompact cardinals by Magidor:

Theorem 7. (M.Magidor [1971], see Theorem 22.10 [Kanamori])
A cardinal κ is supercompact

⇔ for class many ζ > κ, there is α < κ with e : Vα
≺→δ Vζ+ω

for a δ < α s.t. e(δ) = κ.

Back to p.11

https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/book/10.1007/978-3-540-88867-3


















































































Full second order logic (5/6) Magidor’s Theorem (10/17)

Theorem 6. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact, or a limit of supercompact cardinals}.

“⊆”: Assume that κ ∈ LSS(LII) and suppose µ < κ. We have to
show that there is a supercompact cardinal δ with µ < δ ≤ κ.

▶ First, note that there is an LII-sentence φ∗ s.t.
▷ ⟨X ,E ⟩ |= φ∗ ⇔ E is well-founded and extensional binary relation and

mcol(⟨X ,E ⟩) = ⟨Vγ ,∈⟩ for some γ.
For each λ ≥ κ, let Aλ = ⟨Vλ+ω, κ,∈⟩. By the choice of κ, there is
Bµ,λ ≺LII Aλ s.t. (1) µ ⊆ |Bµ,λ| and (2) ∥Bµ,λ∥ < κ.

https://link.springer.com/article/10.1007/BF02771565


















































































Full second order logic (6/6) Magidor’s Theorem (11/17)

Theorem 6. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact, or a limit of supercompact cardinals}.

“⊆”: Assume that κ ∈ LSS(LII) and suppose µ < κ. We have to show
that there is a supercompact cardinal δ with µ < δ ≤ κ.

▶ First, note that there is an LII-sentence φ∗ s.t.
▷ ⟨X ,E ⟩ |= φ∗ ⇔ E is well-founded and extension binary relation and

mcol(⟨X ,E ⟩) = ⟨Vγ ,∈⟩ for some γ.
For each λ ≥ κ, let Aλ = ⟨Vλ+ω, κ,∈⟩. By the choice of κ, there is
Bµ,λ ≺LII Aλ s.t. (1) µ ⊆ |Bµ,λ| and (2) ∥Bµ,λ∥ < κ.

▶ We have Bµ,λ |= φ∗ by elementarity and since Aλ |= φ∗. Hence the
Mostowski collapse of Bµ,λ is of the form ⟨Vβ , δ,∈⟩. Let

eµ,λ : Vβ

∼=→ Bµ,λ ≺LII Aµ,λ be the inverse of Mostowski collapsing function.

▷ Then we have eµ,λ ↾ µ = idµ by (1). Hence the critical point δµ,λ of
eµ,λ is somewhere between µ and κ (i.e. µ ≤ δµ,λ ≤ κ).

▷ Since there are only set many such cardinals, there is µ ≤ δ∗µ ≤ κ
s.t. there are class many λ’s s.t. δµ,λ = δ∗µ.

▶ By Theorem 7 , it follows that δ∗µ is supercompact. □□ (Theorem 6)

https://link.springer.com/article/10.1007/BF02771565


















































































A slight modification of Magidor’s theorem Magidor’s Theorem (12/17)

Theorem 6. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact, or a limit of supercompact cardinals}.

▶ The proof of “⊇” of Theorem 6. actually shows the following:

▷ Let LHO denote the higher order logic that is the union of nth order
logics for all n ∈ ω.

▷ Note that, if L′ has more expressive power than L then we have
LSS(L′) ⊆ LSS(L).

Corollary 8. (M.Magidor [1971])
LSS(LII) = LSS(LHO)

= {κ : κ is supercompact, or a limit of supercompact cardinals}.

Proof. LSS(LII) ⊇︸︷︷︸
by the remark above

LSS(LHO) ⊇︸︷︷︸
by a modification of the proof

of Theorem 6. “⊇”

{κ : · · · }

⊇︸︷︷︸
Theorem 6. “⊆”

LSS(LII) □□ (Corollary 8)

https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/article/10.1007/BF02771565


















































































The spectrum of compactness numbers of a logic Magidor’s Theorem (13/17)

▶ For a logic L, the compactness spectrum of L is defined as:

CS(L) := {κ ∈ Card : for any L-theory T (possibly of an uncountable
signature), of size κ, T is satisfiable if and only if
all S ∈ [T ]<κ are satisfiable}.

▶ The strong compactness number of a logic L is defined as:

scn(L) := min({κ ∈ Card : for any L-theory T (possibly of an uncountable
signature) of any size, T is satisfiable if and
only if all S ∈ [T ]<κ are satisfiable)}.

Lemma 9. For a logic L, {κ ∈ Card : scn(L) ≤ κ} ⊆ CS(L).

Proposition 10.
scn(LII) ≤ the smallest extendible cardinal.



















































































The spectrum of compactness numbers of a logic (2/3) Magidor’s Theorem (14/17)

Proposition 10. (follows from Theorem 11 below.)
scn(LII) ≤ the smallest extendible cardinal.

▶ A cardinal κ is extendible if, for any η > 0, there is j : Vκ+η
≺→κ Vζ

for some ζ with η < j(κ).

▶ For a cardinal κ, LII
κ,ω is the logic defined like LII but also conjunc-

tion and disjunction of <κ many formulas are allowed (while the
number of free variables in such formulas is always kept finite).

Theorem 11. (M.Magidor [1971]), see Theorem 23.4 in [Kanamori]
The following are equivalent for κ > ω:

(a) κ is extendible.
(b) for any LII

κ,ω-theory T ∗, if all T ∈ [T ∗]<κ are satisfiable, then T ∗

is also satisfiable.

▶ κ is the least extendible cardinal ⇒︸︷︷︸
by Theorem 11

κ = scn(LII
κ,ω) ≥ scn(LII).

https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/book/10.1007/978-3-540-88867-3


















































































The spectrum of compactness numbers of a logic (3/3) Magidor’s Theorem (15/17)

I will go into more detail of the following theorems in my next
talk on Jun 1.:

Theorem?? 12. (M. Magidor) Let κ be the least extendible cardinal.
Then scn(LII) = scn(LII

κ,ω) = κ.

Theorem 13. If κ is σ-closed-gen. supercompact, then κ ∈ LSS(Lℵ0
stat).

Theorem?? 14.
If κ is σ-closed-gen. super-almost-huge, then scn(Lℵ0

stat) ≤ κ.

(Theorem 14 is false in this form: for a correct version of the theorem see the slides of the next talk).

▶ Note that σ-closed-gen. supercompact/super-almost-huge cardinals
can be “small”. For example, ℵn for any n ≥ ℵ2 can be
σ-closed-gen. supercompact/super-almost-huge.

https://fuchino.ddo.jp/slides/kobe-fuchino-2022-06-01-pf.pdf


















































































Generically large cardinals Magidor’s Theorem (16/17)

▶ For a class P of p.o.s,

A cardinal κ is generically supercompact by P (P gen. super-
compact, for short) if, for any λ ≥ κ, there is P ∈ P s.t., for a
(V,P)-generic G there are j , M ⊆ V[G] with V[G] |= j : V ≺→κ M,
j(κ) > λ and j ′′λ ∈ M.

A cardinal κ is generically super-almost-huge by P (P gen. su-
perhuge, for short) if, for any λ ≥ κ, there is P ∈ P s.t., for a
(V,P)-generic G there are j , M ⊆ V[G] with V[G] |= j : V ≺→κ M,
j(κ) > λ and j ′′µ ∈ M for all µ < j(κ).

Theorem 13. If κ is σ-closed-gen. supercompact, then κ ∈ LSS(Lℵ0
stat).

Theorem?? 14.
If κ is σ-closed-gen. super-almost-huge, then scn(Lℵ0

stat) ≤ κ.

(Theorem 14 is false in this form: for a correct version of the theorem see the slides of the next talk).

https://fuchino.ddo.jp/slides/kobe-fuchino-2022-06-01-pf.pdf


















































































Thank you for your attention!
ご清聴ありがとうございました．

1 日本語
すべての人間は、生まれながらにして自由であり、かつ、尊厳と権利とに

ついて平等である。人間は、理性と良心とを授けられており、互いに同胞の
精神をもって行動しなければならない。

2 中国語・簡体字 简体中文
谢谢您的倾听。

3 中国語・繁体字

4 韓国語 한국어
관심을 가져 주셔서 감사합니다

1

Gracias por su atención.
Dziękuję za uwagę.
Grazie per l’attenzione.
Dank u voor uw aandacht.
Ich danke Ihnen für Ihre Aufmerksamkeit.

http://www2.kobe-u.ac.jp/~fuchino/kobe-set-theory-seminar/IMG_3171-panorama.JPG


















































































On the restriction to countable signatures
Lemma 2a. For a logic L (with natural properties expected to a

“logic”), we have

LSS(L) = {µ ∈ Card : for any structure A with a signature of
size <µ, there is B ≺L A s.t. ∥B∥ < µ}.

Proof. “⊆”: Suppose that µ ∈ LSS(L) and let A be a structure
with a signature of size ν < µ. W.l.o.g., we may assume that A is a
relational structure and A = ⟨ |A| ,Rn,α⟩n∈ω,α<ν where Rn,α is an
n-ary relation on |A| for n ∈ ω and α < ν. We may also assume,
w.l.o.g., that ∥A∥ ≥ µ and ν ⊆ |A| .

▷ Let Rn :=
⋃

α<ν{α} × Rn,α for each n ∈ ω. Let A− := ⟨ |A| ,Rn⟩n∈ω.
Applying our assumption on µ, we find B− ≺L A− with
∥B−∥ < µ and ν ⊆ |B−| . By the last condition, we can
reconstruct a submodel B of A from B− with the same underlying
set and B ≺L A.



















































































On the restriction to countable signatures (2/2)
Lemma 2a. For a logic L (with natural properties expected to a

“logic”), we have

LSS(L) = {µ ∈ Card : for any structure A with a signature of
size <µ, there is B ≺L A s.t. ∥B∥ < µ}.

Proof. “⊆”: Suppose that µ ∈ LSS(L) and let A be a structure
with a signature of size ν < µ. W.l.o.g., we may assume that A is
a relational structure and A = ⟨ |A| ,Rn,α⟩n∈ω,α<ν where Rn,α is an
n-ary relation on |A| for n ∈ ω and α < ν. We may also assume,
w.l.o.g., that ∥A∥ ≥ µ and ν ⊆ |A| .
Let Rn :=

⋃
α<ν{α} × Rn,α for each n ∈ ω. Let A− := ⟨ |A| ,Rn⟩n∈ω.

Applying our assumption on µ, we find B− ≺L A− with ∥B−∥ < µ
and ν ⊆ |B−| . By the last condition, we can reconstruct an L-
elementary submodel B of A from B− with the same underlying set.

“⊇”: Suppose now that µ is in the set on the right side of the
equality. Let A be a structure of size ≥ µ with a countable
signature, and S ∈ [ |A| ]<µ.
Let A+ = ⟨A, a⟩a∈S . Applying the assumption on µ, we obtain
B+ ≺L A+ of size <µ. Denoting by B the B+ reduced to the
original language, we have ∥B∥ < µ, S ⊆ |B| and B ≺L A.

□□ (Lemma 2a)
Back to p.3


