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Outline LöSko & compactness no. (2/24)

▶ Löwenheim-Skolem Spectrum of a Logic

▶ Stationary logic with two notions of elementary substructure

▶ Full second order logic

▶ A slight modification of Magidor’s theorem
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Löwenheim-Skolem Spectrum of a Logic LöSko & compactness no. (3/24)

▶ Notation: A structure A is a (first-order) structure of
countable signature (if not mentioned otherwise).

▷ For a structure A, we denote with |A| the underlying set of A, and
∥A∥ the cardinality (of the underlying set) of A.

Cf.: if X is a set, we denote with |X | the cardinality of X .

▶ Let L be a logic with a notion ≺L of elementary substructure. The
Löwenheim-Skolem spectrum of the logic L is defined as:

LSS(L) := {µ ∈ Card : for any structure A of a countable signature
and S ⊆ |A| with | S | < µ,
there is B ≺L A s.t. S ⊆ |B| and ∥B∥ < µ}.



















































































Löwenheim-Skolem Spectrum of a Logic (2/2) LöSko & compactness no. (4/24)

LSS(L) := {µ ∈ Card : for any structure A of a countable signature
and S ⊆ |A| with | S | < µ,
there is B ≺L A s.t. S ⊆ |B| and ∥B∥ < µ}.

Lemma 1. For a logic L (with natural properties expected to a “logic”),
we have

LSS(L) = {µ ∈ Card : for any structure A with a signature of
size <µ, there is B ≺L A s.t. ∥B∥ < µ}.

Proof

Lemma 2. For any logic L, LSS(L) is a closed class of cardinals.

Proof



















































































Stationary logic with two notions of elementary substructure LöSko & compactness no. (5/24)

▶ Lℵ0
stat is the monadic second order logic whose second-order variables

run over countable subsets of the underlying set of the structure,
with new quantifier with the quantification stat X︸︷︷︸

second-order variable

whose interpretation
is “there are stationarily many X s.t. ...”

B ≺Lℵ0
stat

A :⇔ B |= φ(b0, ..., bm−1,A0, ...,An−1) holds if and only

if A |= φ(b0, ..., bm−1,A0, ...,An−1) holds for all Lℵ0
stat-formulas

φ = φ(x0, ...,X0, ...), for all b0, ..., bm−1 ∈ |B| , and for all
A0, ...,An−1 ∈ [ |B| ]ℵ0 .

B ≺−
Lℵ0
stat

A :⇔ B |= φ(b0, ..., bm−1) holds if and only if

A |= φ(b0, ..., bm−1) holds for all Lℵ0
stat-formulas φ = φ(x0, ..., xm−1)

without free second-order variables, and for all b0, ..., bm−1 ∈ |B| .

▶ In the following, we consider the logic Lℵ0
stat as equipped with ≺Lℵ0

stat
.

The logic Lℵ0
stat equipped with ≺−

Lℵ0
stat

is denoted with Lℵ0 −
stat .



















































































Stationary logic with two notions of elementary substructure (2/2) LöSko & compactness no. (6/24)

▶ Lℵ0,II
stat is like Lℵ0

stat but the quantification ∃X and ∀X of the second
order variables X is allowed in addition. These quantifiers are then
interpreted as: "there exists a countable subset X of the underlying
set of the structure s.t. ..." and "for all countable subsets X of the
underlying set of the structure ..." respectively.

▷ ≺Lℵ0,II
stat

and ≺−
Lℵ0,II
stat

are defined as before.

▶ Also, we regard the logic Lℵ0,II
stat as equipped with ≺Lℵ0,II

stat
.

▷ The logic Lℵ0
stat equipped with ≺−

Lℵ0,II
stat

is denoted with Lℵ0,II−
stat .



















































































Full second order logic LöSko & compactness no. (7/24)

▶ LII denotes the (monadic, full) second-order logic with second-order
variables X , Y , Z etc. running over all subsets of the underlying set
of a structure. In addition to the constructs of the first-order logic,
we have the symbol ε as a logical binary predicate and allow the
expression “x ε X ” for a first order variable x and a second-order
variable X as an atomic formula. We also allow the quantification
of the form “∃X ” (and its dual “∀X ”) over the second-order variables X .

▷ The relation symbol ε is interpreted as the (real) element relation
and the interpretation of the quantifier ∃X in LII is defined by:

A |= ∃Xφ(a0, ..., am−1,B0, ...,Bn−1,X ) :⇔
there exists a B ∈ P( |A| ) s.t. A |= φ(a0, ..., am−1,B0, ...,Bn−1,B)

for a first-order structure A, an LII-formula φ in the signature of
the structure A with φ = φ(x0, ..., xm−1,X0, ...,Xn−1,X ) where
x0, ..., xm−1 and X0, ...,Xn−1, X are first- and second-order vari-
ables, a0, ..., am−1 ∈ |A| , and B0, ...,Bn−1 ∈ P( |A| ).



















































































Full second order logic (2/2) LöSko & compactness no. (8/24)

B ≺LII A :⇔ B |= φ(b0, ..., bn−1) holds if and only if A |=
φ(b0, ..., bn−1) holds for all formulas φ = φ(x0, ...) in LII without
free second-order variables, and for all b0, ..., bn−1 ∈ |B| .

▷ Exclusion of second-order free variables and parameters in this
context is natural because of the following trivial example:

Example 3. Let B ⫋ A. Let B = |B| . Then
A |= ∃x (x ̸ε B) but B |= ¬∃x (x ̸ε B).

Theorem 4. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact, or a limit of supercompact cardinals}.

▶ A cardinal κ is supercompact if, for any λ ≥ κ, there are transitive
class M and elementary embedding j : V → M s.t. κ is the smallest
ordinal moved by j (critical point of j : we denote these conditions
as j : V ≺→κ M), j(κ) > λ and [M]λ ⊆ M. Back to the proof of Proposition 12.

Back to the Example.

https://link.springer.com/article/10.1007/BF02771565


















































































A slight modification of Magidor’s theorem LöSko & compactness no. (9/24)

Theorem 4. (M.Magidor [1971])
LSS(LII) = {κ : κ is supercompact, or a limit of supercompact cardinals}.

▷ Let LHO denote the higher order logic that is the union of nth order
logics for all n ∈ ω.

▷ Note that, if L′ has more expressive power than L then we have
LSS(L′) ⊆ LSS(L).

Corollary 5. (M.Magidor [1971])
LSS(LII) = LSS(LHO)

= {κ : κ is supercompact, or a limit of supercompact cardinals}.

Proof. LSS(LII) ⊇︸︷︷︸
by the remark above

LSS(LHO) ⊇︸︷︷︸
by a modification of the proof

of Theorem 4. “⊇”

{κ : · · · }

⊇︸︷︷︸
Theorem 4. “⊆”

LSS(LII) □□ (Corollary 8)

https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/article/10.1007/BF02771565


















































































The spectrum of compactness numbers of a logic LöSko & compactness no. (10/24)

▶ For a logic L, the compactness spectrum of L is defined as:

CS(L) := {κ ∈ Card : for any L-theory T (possibly of an uncountable
signature), of size κ, T is satisfiable if and only if
all S ∈ [T ]<κ are satisfiable}.

▶ The strong compactness number of a logic L is defined as:

scn(L) := min({κ ∈ Card : for any L-theory T (possibly of an uncountable
signature) of any size, T is satisfiable if and
only if all S ∈ [T ]<κ are satisfiable)}.

Lemma 6. For any logic L,
( 1 ) {κ ∈ Card : scn(L) ≤ κ} ⊆ CS(L).
( 2 ) min(CS(L)) ≤ scn(L).



















































































Strong compactness number of the infinitary second-order logics LöSko & compactness no. (11/24)

Theorem 7. (M.Magidor [1971], see also Theorem 23.4 in [Kanamori])
For a cardinal κ > ℵ0, the following are equivalent:

( a ) κ is extendible.
( b ) κ = scn(LII

κ,ω).

▶ A cardinal κ is extendible if, for any η > 0, there is j : Vκ+η
≺→κ Vζ

for some ζ with η < j(κ).

▷ In the definition above, the condition “η < j(κ)” can be dropped:
(Proposition 23.15 in [Kanamori]). Also, if η > κ, we may replace
κ+ η by η. If the condition above holds for an η we say that κ is
η-extendible.

▶ For a cardinal κ, LII
κ,ω is the logic defined as LII but also allowing

conjunction and disjunction of <κ many formulas (with the re-
striction that the number of free variables in such conjunction or
disjunction is always kept finite).

Back to Theorem 8.

https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/book/10.1007/978-3-540-88867-3
https://link.springer.com/book/10.1007/978-3-540-88867-3


















































































Strong compactness number of the infinitary second-order logics (2/4) LöSko & compactness no. (12/24)

Proof of Theorem 7: “(a) ⇒ (b)”: Suppose that κ is extendible.
▶ We first show κ ≥ scn(LII

κ,ω).
▷ Suppose that T is a set of sentences in LII

κ,ω of size λ ≥ κ s.t. T is
<κ-satisfiable. We want to show that T is satisfiable.

▷ We may assume that all the symbols used in T are elements of λ
and the coding of formulas is done in an appropriate way.

▶ Let j : Vλ
≺→κ Vζ for some ζ and λ < j(κ). By Theorem 4 and since

κ is supercompact (Proposition 23.6 in [Kanamori]), all T0 ∈ [T ]<κ

has a model of size <κ. In particular Vλ |= “ T is <κ-satisfiable”.
▶ Vζ |= “ j ′′T ∈ [ j(T )]< j(κ)”. By elementarity of j ,

Vζ |= “ j ′′T has a model (of size < j(κ) )”.
Let A ∈ Vζ be a structure s.t. Vζ |= “ A |= j ′′T and ∥A∥ < j(κ)”.
Then A |= j ′′T (Vζ interprets model relation of LII

κ,ω correctly at
the structure A because of P(λ)Vζ = P(λ)V etc.). By renaming the
interpretations of the non-logical symbols ⊆ j ′′λ by corresponding
symbols ⊆ λ we obtain a model A∗ of T from A.

▶ Thus, T is satisfiable.

https://link.springer.com/book/10.1007/978-3-540-88867-3


















































































Strong compactness number of the infinitary second-order logics (3/4) LöSko & compactness no. (13/24)

▶ To show that κ ≤ scn(LII
κ,ω), note that scn(LII

κ,ω) exists by the
proof above.

▷ So it is enough to show that any µ < κ is not scn(LII
κ,ω).

Suppose µ < κ and consider the theory

T := {∀x(
∨∨

α<µ
x ≡ cα)} ∪ {d ̸≡ cα : α < µ}.

Then T is not satisfiable but any subset of T of size <µ is
satisfiable. In particular, µ cannot be scn(LII

κ,ω).

“(b) ⇒ (a)”: Suppose that κ = scn(LII
κ,ω).

▶ Let φ∗ be the LII-sentence in the language {∈} of set theory s.t.

⟨ |A| , ∈A⟩ |= φ∗ ⇔ ∈A is well-founded and extensional binary
relation and mc(⟨ |A| , ∈A⟩) = ⟨Vγ ,∈⟩ for some γ

where mc denotes the Mostowski collapse function.



















































































Strong compactness number of the infinitary second-order logics (4/4) LöSko & compactness no. (14/24)
For regular λ > κ, let
T := {φ∗}∪ {φ( j (a0), ...) : φ is a first-order formula in the

language of set theory,
a0, ... ∈ Vλ and Vλ |= φ(a0, ...)}

∪ {“α is an ordinal” : α < κ+ 1}
∪ {∀x(x ∈ α ↔

∨∨
β<α

x ≡ β ) : α < κ}
∪ { j (κ) > κ}.

▶ It is easy to see that
T is <κ-satisfiable.

▷ By the choice of κ, it follows that T is satisfiable. A model of T
witnesses that κ is λ-extendible. Since this holds for arbitrary λ, it
follows that κ is extendible. □□ (Theorem 7)



















































































Strong compactness number of the full second-order logic LöSko & compactness no. (15/24)

Theorem 8. (M.Magidor [1971]) Suppose that κ is the least ex-
tendible cardinal. Then we have scn(LII) = scn(LII

κ,ω) = κ.

Proof. (1) scn(LII
κ,ω) = κ follows from Theorem 7 .

▶ (2) scn(LII) ≤ scn(LII
κ,ω) since LII

κ,ω extends LII.

▷ Thus it is enough to show that κ∗ := scn(LII) is extendible.
▶ By (1) and (2), there is no extendible cardinal below κ∗. Thus, for

each µ < κ∗, we can choose a cardinal λµ s.t. µ is not
λµ-extendible. Note that it follows that µ is not ξ-extendible for
any ξ ≥ λµ. Let λ > κ∗ be s.t.

λ ≥ sup({λµ : µ < κ∗}).

Back to the Examples. Back to the Examples (2/2).

https://link.springer.com/article/10.1007/BF02771565


















































































Strong compactness number of the full second-order logic (2/2) LöSko & compactness no. (16/24)

▶ Let
T := {φ∗}∪ {φ( j (a0), ...) : φ is a first-order formula in the

language of set theory,
a0, ... ∈ Vλ and Vλ |= φ(a0, ...)}

∪ {“α is an ordinal” : α < κ∗ + 1}
∪ {α < β : α < β < κ∗ + 1}
∪ { j (κ∗) > κ∗}.

▶ Again T is <κ∗-satisfiable. By the definition of κ∗, it follows that
T has a model.

▷ A model A of T witnesses the λ-extendibility of some µ ≤ κ∗. By
the choice of λ however it is only possible that κ∗ is λ-extendible.

□□ (Theorem 8)



















































































Examples showing non-trivial situations LöSko & compactness no. (17/24)

▶ Suppose that κ is extendible and λ (κ < λ) is the first
supercompact cardinal above κ.

This is stronger than just one extendible cardinal.
See [Kanamori] Exercise 23.9.

▷ Let µ (λ < µ) be the first inaccessible above λ. We have

Vµ |= ZFC.

▷ In Vµ, there is no extendible cardinal since an extendible cardinal
would imply cofinally many inaccessible cardinals. By Theorem 8 ,
we have

Vµ |= “ scn(LII) does not exist”.

▷ By Theorem 4 , sufficiently many witnesses for CS(LII) ∩ λ survive
in Vλ ⊆ Vµ. In particular

Vµ |= κ ∈ CS(LII).
□□

Fun Questions: Is it consistent that CS(LII) = ∅? (Yes. Cf.: by
Theorem 4 , it is very easy to obtain a model of LSS(LII) = ∅)

▷ What is (or can be) CS(LII) in V = L ?



















































































Examples showing non-trivial situations (2/2) LöSko & compactness no. (18/24)

▶ Let κ0 < κ1 be two consecutive extendible cardinals. Let λ, be a
supercompact cardinal strictly between κ0 and κ1.

▷ Let G be (V,P)-generic for a sufficiently distributive p.o. P of size
< κ1 forcing a square sequence for a κ strictly between λ and κ1.

▷ In V [G], CS(LII) ∩ λ survives (see Theorem 4 ). In particular

V[G] |= “ min(CS(LII)) ≤ κ0” .

▷ κ1 is now the smallest extendible cardinal Note that □κ does not hold
above a supercompact.

Thus, by Theorem 8 ,

V[G] |= “ scn(LII) = κ1”.



















































































Generic large cardinals LöSko & compactness no. (19/24)

▶ A cardinal κ is said to be generically supercompact by σ-closed p.o.s
(or σ-closed gen. supercompact, for short) if, for any λ ≥ κ, there
are σ-closed p.o. P (V,P)-generic G, j , M ⊆ V[G] s.t.
V[G] |= j : V ≺→κ M j(κ) > λ and j ′′λ ∈ M.

Lemma 9. (Easy) If κ is σ-closed gen. supercompact then κ is regular
and > 2ℵ0 . □□

Lemma 10. (Folklore ?) If κ is supercompact and P = Col(µ, κ)
for a regular µ < κ, Then P forces “κ = µ+ is σ-closed gen.
supercompact (actually <µ-closed gen. supercompact)”. □□

Theorem 11. If κ is σ-closed gen. supercompact, then κ ∈ LSS(Lℵ0,II
stat ).

Corollary 12. Suppose that (ZFC + ) “there is a supercompact
cardinal” is consistent, then for each n ≥ 2, ℵn ∈ LSS(Lℵ0,II

stat )
(⊆ LSS(Lℵ0

stat)) is consistent.

Proof. By Lemma 10 and Theorem 11. □□ (Corollary 12)



















































































Generic large cardinals (2/2) LöSko & compactness no. (20/24)

Theorem 11. If κ is σ-closed gen. supercompact, then κ ∈ LSS(Lℵ0,II
stat ).

Proof.
▶ Assume that κ is σ-closed gen. supercompact. Suppose A is a structure

with ∥A∥ ≥ κ and S ∈ [ |A| ]<κ. W.l.o.g., assume |A| = ∥A∥ = λ.
▷ Let P be a σ-closed p.o. s.t. for a (V,P)-generic G, there are j ,

M ⊆ V[G] s.t. j : V ≺→κ M, j(κ) > λ and j ′′(λℵ0) ∈ M.
▷ Then B := j(A) ↾ j ′′ |A| ∈ M. Since j ↾ |A| ∈ M we also have

A ∈ M and M |= j ↾ |A| : A
∼=→ B.

▷ By σ-closedness of P we have ([ |A| ]ℵ0)V = ([ |A| ]ℵ0)M . Also, all
stationary subsets (club subsets resp.) of ([ |A| ]ℵ0)V remain
stationary (club resp.) in M.

▶ Thus, M |= B ≺Lℵ0,II
stat

j(A), ∥B∥ < j(κ), j(S) = j ′′S ⊆ |B| .
By elementarity, in V, there is C ≺Lℵ0,II

stat
A s.t. ∥C∥ < κ, S ⊆ |C| .

Thus κ ∈ LSS(Lℵ0,II
stat ). □□ (Theorem 11.)

Back to Generic view of ...



















































































Strong compactness number of stationary logic LöSko & compactness no. (21/24)

Lemma 13. Lℵ0
stat extends L(Q) (Qx : there are uncountably many x).

It follows that CS(Lℵ0
stat) ⊆ CS(L(Q)) and scn(L(Q)) ≤ scn(Lℵ0

stat).

Proof. stat X ∃x(x ̸ε X ∧ ...) replaces Qx (...). □□ (Lemma 9)

Lemma 14. For all n ∈ ω none of ℵn, (ℶn)
+ belongs to CS(L(Q)).

In particular, scn(Lℵ0
stat) ≥ scn(L(Q)) ≥ ℶω.

Proof. We show this for ℵ2 and (ℶ1)
+. The general case can be

proved by modifications of the theories below. ℵ1 ̸∈ CS(L(Q)) is
trivial.

▶ The following (non-satisfiable) theory witnesses ℵ2 ̸∈ CS(L(Q)).

T0 := {“E is a linear ordering”, ∀x¬Qy (y E x)}
∪ {cα ̸≡ cβ : α < β < ω2}

▶ The following (non-satisfiable) theory witnesses (2ℵ0)+ ̸∈ CS(L(Q)).

T1 := {¬Qx N(x), ∀x∀y (∀z(N(z) → (z ∈ x ↔ z ∈ y)) → x ≡ y)}
∪ {cα ̸≡ cβ : α < β < (2ℵ0)+}



















































































Generic view of the strong compactness number of stationary logic LöSko & compactness no. (22/24)

▶ Lemma 14 shows that a Compactness Spectrum analogue of
Theorem 11 is impossible.

▶ For a class P of p.o.s, let

scnP(L) := min{κ ∈ Card : for any L-theory T , if T is <κ-satisfiable, then
there is P ∈ P s.t. ∥–P “ Ť is satisfiable in an

inner model contianing Ť ”}.

▶ For a class P of p.o.s, a cardinal κ is said to be generically
supercompact by P (or P-gen. supercompact, for short) if, for any
λ ≥ κ, there are P ∈ P , (V,P)-generic G, j , M ⊆ V[G] s.t.
V[G] |= j : V ≺→κ M j(κ) > λ and j ′′λ ∈ M.

Theorem 15. If κ is P-gen. supercompact, then κ ≥ scnP(LHO).



















































































Generic view of the strong compactness number of stationary logic (2/2) LöSko & compactness no. (23/24)

Theorem 15. If κ is P-gen. supercompact, then κ ≥ scnP(LHO).

Proof. Suppose that T is an LHO-theory with |T | = λ and T is
<κ-satisfiable. W.l.o.g., we assume that all non-logical symbols
appearing in T are elements of λ and the coding of the formulas is
done in an appropriate way.

▶ Let P ∈ P be s.t., for a (V,P)-generic G, there are j , M ⊆ V[G]

with j : V ≺→κ M, j(κ) > λ and (*) j ′′λ ∈ M.
▷ By elementarity, we have M |= “ all T0 ∈ [ j(T )]< j(κ) has a model”.

By the closure property (*) of M, j ′′T ∈ M. Since
M |= “ | j ′′T | = λ < j(κ)” and T is obtained from j ′′T by renaming
of non-logical symbols, we have T ∈ M and M |= “ T has a model” .

□□ (Theorem 15)



















































































Thank you for your attention!
ご清聴ありがとうございました．

1 日本語
すべての人間は、生まれながらにして自由であり、かつ、尊厳と権利とに

ついて平等である。人間は、理性と良心とを授けられており、互いに同胞の
精神をもって行動しなければならない。

2 中国語・簡体字 简体中文
谢谢您的倾听。

3 中国語・繁体字

4 韓国語 한국어
관심을 가져 주셔서 감사합니다

1

Gracias por su atención.
Dziękuję za uwagę.
Grazie per l’attenzione.
Dank u voor uw aandacht.
Ich danke Ihnen für Ihre Aufmerksamkeit.

http://www2.kobe-u.ac.jp/~fuchino/kobe-set-theory-seminar/IMG_3171-panorama.JPG


















































































LSS(L) is closed

Lemma 2. For any logic L, LSS(L) is a closed class of cardinals.

Proof. Suppose that ⟨κα : α < δ⟩ is a strictly increasing sequence
in LSS(L) and κ = supα<δ κα. We want to show that κ ∈ LSS(L).

▶ Suppose that A is a structure and S ⊆ [ |A| ]<κ. Let α < δ be s.t.
| S | < κα. Since κα ∈ LSS(L), there is a B ≺L A s.t. S ⊆ |B|
and ∥B∥ < κα < κ. This shows that κ ∈ LSS(L). □□ (Lemma 2)

Back to p.3



















































































On the restriction to countable signatures
Lemma 1. For a logic L (with natural properties expected to a “logic”),

we have

LSS(L) = {µ ∈ Card : for any structure A with a signature of
size <µ, there is B ≺L A s.t. ∥B∥ < µ}.

Proof. “⊆”: Suppose that µ ∈ LSS(L) and let A be a structure
with a signature of size ν < µ. W.l.o.g., we may assume that A is a
relational structure and A = ⟨ |A| ,Rn,α⟩n∈ω,α<ν where Rn,α is an
n-ary relation on |A| for n ∈ ω and α < ν. We may also assume,
w.l.o.g., that ∥A∥ ≥ µ and ν ⊆ |A| .

▷ Let Rn :=
⋃

α<ν{α} × Rn,α for each n ∈ ω. Let A− := ⟨ |A| ,Rn⟩n∈ω.
Applying our assumption on µ, we find B− ≺L A− with
∥B−∥ < µ and ν ⊆ |B−| . By the last condition, we can
reconstruct a submodel B of A from B− with the same underlying
set and B ≺L A.



















































































On the restriction to countable signatures (2/2)
Lemma 1. For a logic L (with natural properties expected to a “logic”),

we have

LSS(L) = {µ ∈ Card : for any structure A with a signature of
size <µ, there is B ≺L A s.t. ∥B∥ < µ}.

Proof. “⊆”: Suppose that µ ∈ LSS(L) and let A be a structure
with a signature of size ν < µ. W.l.o.g., we may assume that A is
a relational structure and A = ⟨ |A| ,Rn,α⟩n∈ω,α<ν where Rn,α is an
n-ary relation on |A| for n ∈ ω and α < ν. We may also assume,
w.l.o.g., that ∥A∥ ≥ µ and ν ⊆ |A| .
Let Rn :=

⋃
α<ν{α} × Rn,α for each n ∈ ω. Let A− := ⟨ |A| ,Rn⟩n∈ω.

Applying our assumption on µ, we find B− ≺L A− with ∥B−∥ < µ
and ν ⊆ |B−| . By the last condition, we can reconstruct an L-
elementary submodel B of A from B− with the same underlying set.

“⊇”: Suppose now that µ is in the set on the right side of the
equality. Let A be a structure of size ≥ µ with a countable
signature, and S ∈ [ |A| ]<µ.
Let A+ = ⟨A, a⟩a∈S . Applying the assumption on µ, we obtain
B+ ≺L A+ of size <µ. Denoting by B the B+ reduced to the
original language, we have ∥B∥ < µ, S ⊆ |B| and B ≺L A.

□□ (Lemma 1)
Back to p.3


