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Lowenheim-Skolem Spectrum of a Logic L3Sko & compactess o, (3/24)

» Notation: A structure 2l is a (first-order) structure of
countable signature (if not mentioned otherwise).

> For a structure 2, we denote with |2(| the underlying set of 2, and
|2(|| the cardinality (of the underlying set) of 2.

Cf.. if X is a set, we denote with | X | the cardinality of X.

» Let £ be a logic with a notion <, of elementary substructure. The
Lowenheim-Skolem spectrum of the logic £ is defined as:

LSS(L) := {u € Card : for any structure 2 of a countable signature
and S C || with | S| < p,
there is B <, A s.t. S C |B| and ||B|| < p}.



Lowenheim-Skolem Spectrum of a Logic (2/2) 15k & comactes o, (4/24)
LSS(L) := {u € Card : for any structure 2 of a countable signature

and S C || with |S]| < u,
there is B <, A s.t. S C |*B| and ||B| < p}.

Lemma 1. For a logic £ (with natural properties expected to a “logic”),
we have

LSS(L) = {u € Card : for any structure 2 with a signature of
size < p, there is B <, A s.t. | B < p}.

Lemma 2. For any logic £, LSS(L) is a closed class of cardinals.



Stationary logic with two notions of elementary substructure Lho & compaces o (5/24)

» L5, is the monadic second order logic whose second-order variables
run over countable subsets of the underlying set of the structure,
with new quantifier with the quantification stat X whose interpretation

is “there are stationarily many X s.t...." second-order variable

B < Yo A:< B E (b, ..., bm—1, Ao, ..., An—1) holds if and only

stat

if A = o(bo, ... bm_1, Ao, ..., An_1) holds for all £X2 -formulas
e = o(x0, ..., Xo,...), for all bg,...,bp_1 € |B|, and for all
Aoy ...s A1 € [ |B] .

B < Yo 2A:< B = (b, ..., bm—1) holds if and only if

stat

A = o(by, ..., bm—1) holds for all £ -formulas ¢ = ¢(xg, .., Xm—1)
without free second-order variables, and for all by, ..., by;y—1 € |B].

» In the following, we consider the logic £, as equipped with < £Xo -
stat

The logic Estat equipped with <;N0 is denoted with Estat .

stat



Stationary logic with two notions of elementary substructure (2/2) sk oo (24)

» L2011 is like £X0. but the quantification 3X and VX of the second
order variables X is allowed in addition. These quantifiers are then
interpreted as: "there exists a countable subset X of the underlying
set of the structure s.t. ..." and "for all countable subsets X of the
underlying set of the structure ..." respectively.

> 4[:22;11 and <" 1 are defined as before.

stat

» Also, we regard the logic Estat as equipped with < xo.11.

stat

> The logic ﬁstat equipped with <;:N°’H is denoted with £~

stat
stat



Full second order |OgiC LdSko & compactess o, (7/24)

» L' denotes the (monadic, full) second-order logic with second-order
variables X, Y, Z etc. running over all subsets of the underlying set
of a structure. In addition to the constructs of the first-order logic,
we have the symbol ¢ as a logical binary predicate and allow the
expression “x ¢ X" for a first order variable x and a second-order
variable X as an atomic formula. We also allow the quantification
of the form “3X" (and its dual “VX") over the second-order variables X.

> The relation symbol ¢ is interpreted as the (real) element relation
and the interpretation of the quantifier 3X in £l is defined by:

A = IX(0, ) am—1, Boy ooy Bno1, X) =
there exists a B € P(|2]) s.t. A = (a0, .--» am—1, Bo, ..., Bn—1, B)

for a first-order structure 2, an £"-formula ¢ in the signature of
the structure 2 with ¢ = ¢(xo, ..., Xm-1, X0, ---, Xn—1, X) where
X0, .-y Xm—1 and Xg, ..., Xp—_1, X are first- and second-order vari-
ables, ag, ..., am—1 € ||, and By, ..., Bp—1 € P(|2]).



Full second order |OgiC (2/2) LdSko & compactess o, (8/24)

B < A & B E p(bo,..., bp—1) holds if and only if A =
©(bo, ..., ba—1) holds for all formulas ¢ = ¢(xo, ...) in LI without
free second-order variables, and for all by, ..., b,—1 € |*B]|.

> Exclusion of second-order free variables and parameters in this
context is natural because of the following trivial example:

Example 3. Let B G 2. Let B = |B|. Then
2l = 3x (x & B) but B -3x (xB).

Theorem 4. (M. Magidor [1971])
LSS(£M) = {k : & is supercompact, or a limit of supercompact cardinals}.

» A cardinal x is supercompact if, for any A > k, there are transitive
class M and elementary embedding j : V — M s.t. k is the smallest
ordinal moved by j (critical point of j: we denote these conditions
asj:V i>,$ M), j(k) > X and [/\/l])‘ C M. Back to the proof of Proposition 12.

Back to the Example.


https://link.springer.com/article/10.1007/BF02771565

A slight modification of Magidor's theorem L3Sko & compactess o, (9/24)
Theorem 4. (M. Magidor [1971])

LSS(£LM) = {k : & is supercompact, or a limit of supercompact cardinals}.

> Let £HO denote the higher order logic that is the union of nth order
logics for all n € w.

> Note that, if £’ has more expressive power than £ then we have
LSS(L) C LSS(L).
Corollary 5. (M. Magidor [1971])
LSS(£'M) = LSS(£HO)
= {k : Kk is supercompact, or a limit of supercompact cardinals}.

Proof. LSS(£™) D LSS(£HC) D {k: ---}
N <~
by the remark above by a modification of the proof
S LSS(EH) of Theorem 4. "D"

[d] (Corollary 8)
Theorem 4. “C"


https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/article/10.1007/BF02771565

The spectrum of compactness numbers of a logic (5o & conpates o, (10/24)

» For a logic £, the compactness spectrum of L is defined as:

CS(L) :={k € Card : for any L-theory T (possibly of an uncountable
signature), of size x, T is satisfiable if and only if
all S € [T]=" are satisfiable}.

» The strong compactness number of a logic £ is defined as:

scn(£L) := min({x € Card : for any L-theory T (possibly of an uncountable

signature) of any size, T is satisfiable if and

only if all S € [T]<" are satisfiable)}.

Lemma 6. For any logic £,
(1) {rkecCard:sen(L) <k} CCS(L).
(2) min(CS(L)) < secn(L).



Strong compactness number of the infinitary second-order logics (5o & conpates o, (1/24)

Theorem 7. (M. Magidor [1971], see also Theorem 23.4 in [Kanamori])
For a cardinal k > N, the following are equivalent:

(a) kis extendible.

(b) k= scn([,g,w).

» A cardinal  is extendible if, for any n > 0, there is j : V., <—>,.C Ve
for some ¢ with n < j(k).

> In the definition above, the condition “n < j(k)" can be dropped:

(Proposition 23.15 in [Kanamori]). Also, if n > k, we may replace
k + n by n. If the condition above holds for an 1 we say that x is

n-extendible.
» For a cardinal &, EEM is the logic defined as £ but also allowing
conjunction and disjunction of < many formulas (with the re-
striction that the number of free variables in such conjunction or
disjunction is always kept finite).

Back to Theorem 8.


https://link.springer.com/article/10.1007/BF02771565
https://link.springer.com/book/10.1007/978-3-540-88867-3
https://link.springer.com/book/10.1007/978-3-540-88867-3

Strong compactness number of the infinitary second-order logics (2/4)  1iS b ometesn (12/24)

Proof of Theorem 7: “(a) = (b)": Suppose that x is extendible.

» We first show x > scn(L}],).

> Suppose that T is a set of sentences in ng of size \ >k sit. Tis
< k-satisfiable. We want to show that T is satisfiable.

> We may assume that all the symbols used in T are elements of A
and the coding of formulas is done in an appropriate way.

> Letj: V), iy V¢ for some ¢ and A < j(x). By Theorem 4 and since
K is supercompact (Proposition 23.6 in [Kanamori]), all To € [T]="
has a model of size < k. In particular V) [=“ T is < x-satisfiable”.

> V. =4"T € [j(T)]</)". By elementarity of j,

Ve =" T has a model (of size <j(k))".

Let A € V; be a structure s.t. V¢ =“2A =,"T and ||| < j(k)".
Then 2 |= j”T (V; interprets model relation of £}, correctly at
the structure 2 because of P(\)c = P(A\)Y etc.). By renaming the
interpretations of the non-logical symbols C j”\ by corresponding
symbols C A\ we obtain a model 2* of T from 2.

» Thus, T is satisfiable.


https://link.springer.com/book/10.1007/978-3-540-88867-3

Strong compactness number of the infinitary second-order logics (3/4)  1iS b ometesn (13/2)

» To show that x < scn(L],), note that scn(L}! ) exists by the
proof above.

> So it is enough to show that any 1 < x is not scn(L},).
Suppose i1 < k and consider the theory

T := {VX(\X/oc<uX =co)fU{d#cy : a<u}
Then T is not satisfiable but any subset of T of size <y is
satisfiable. In particular, ;¢ cannot be scn(L}).
“(b) = (a)": Suppose that x = scn(L},).
> Let ¢* be the £!-sentence in the language {g} of set theory s.t.
(|2, €™) E¢* & €% is well-founded and extensional binary
relation and mc(( ||, €¥)) = (V4, €) for some v

where mc denotes the Mostowski collapse function.



Strong compactness number of the infinitary second-order logics (4/4)  1iS b ometesno (14/2)
For regular A > x, let
T = {p*}U {c,p({"(go), ...) : @ is a first-order formula in the
language of set theory,
ag, ... € Vi and V) ): gp(ao,...)}
U {"a isanordinal’ : o <k 41}
U{Vx(x € o < \X/B<ax5§) Ca< K}
u{j(s)> g1
» It is easy to see that
T is < k-satisfiable.

> By the choice of &, it follows that T is satisfiable. A model of T
witnesses that r is \-extendible. Since this holds for arbitrary ), it
follows that x is extendible. [] (Theorem 7)



Strong compactness number of the full second-order logic (o & conpates o, (15/24)

Theorem 8. (M. Magidor [1971]) Suppose that x is the least ex-
tendible cardinal. Then we have scn(£M) = sen(L],) = &.

Proof. (1) scn(L},) = & follows from Theorem 7.
> (2) sen(LM) < sen(L}!,) since L}, extends £,
> Thus it is enough to show that x* := scn(£!) is extendible.

» By (1) and (2), there is no extendible cardinal below x*. Thus, for
each p < k¥, we can choose a cardinal A\, s.t. p is not
Au-extendible. Note that it follows that p is not {-extendible for
any £ > \,. Let A > k¥ be s.t.

A>sup({\, 0 p < K*}).

Back to the Examples. Back to the Examples (2/2).


https://link.springer.com/article/10.1007/BF02771565

Strong compactness number of the full second-order logic (2/2) 1Sk ometesn (16/24)

» Let

T :={¢"}U{v(j(ay), ) : ¢ is a first-order formula in the
language of set theory,
ag, ... € Vy and V), ): gp(ao,...)}

U {"o isanordinal” : o < k* + 1}
Uf{a<B :ra<f<r 41}
U{j(s") > £
» Again T is < k*-satisfiable. By the definition of s, it follows that
T has a model.

> A model 20 of T witnesses the A-extendibility of some u < x*. By
the choice of X\ however it is only possible that x* is A-extendible.
[0 (Theorem 8)



Examples showing non-trivial situations L6Sko & compactess . (17/24)

» Suppose that « is extendible and A (k < A) is the first

This is stronger than just one extendible cardinal.

supercompact cardinal above k. See [Kanamori] Exercise 23.9.
> Let u (A < ) be the first inaccessible above \. We have
V,, = ZFC.

> In V,, there is no extendible cardinal since an extendible cardinal
would imply cofinally many inaccessible cardinals. By Theorem 8,
we have

V,, =“scn(£M) does not exist”.

> By Theorem 4, sufficiently many witnesses for CS(£) N A survive
in V), € V,,. In particular

V, = ke CS(L£M).

Fun Questions: Is it consistent that CS(£) = ()7 (Yes. Cf.: by
Theorem 4, it is very easy to obtain a model of LSS(L!) = )
> What is (or can be) CS(£M) inV =1L7



Examples showing non-trivial situations (2/2) L6S¥o & compectnes o, (18,/24)
> Let kg < K1 be two consecutive extendible cardinals. Let A, be a

supercompact cardinal strictly between kg and x1.

> Let G be (V,P)-generic for a sufficiently distributive p.o. P of size
< k1 forcing a square sequence for a k strictly between A\ and k7.

> In V]G], CS(LYM) N A survives (see Theorem 4). In particular
V[G] E“ min(CS(£M)) < ko”

Note that [J. does not hold

> k1 is now the smallest extendible cardinal
above a supercompact.

Thus, by Theorem 8,
V[G] = sen(LM) = ky”.



Generic large cardinals (5o & conpates o, (10/24)
» A cardinal k is said to be generically supercompact by o-closed p.o.s
(or o-closed gen. supercompact, for short) if, for any A\ > &, there

are o-closed p.o. P (V,P)-generic G, j, M C V[G] s.t.
VIG] =j:V 5. Mj(k) > Xand j"\ € M.
Lemma 9. (Easy) If s is o-closed gen. supercompact then & is regular
and > 2%o, Inj

Lemma 10. (Folklore 7) If x is supercompact and P = Col(y, )
for a regular 4 < k, Then P forces “x = u* is o-closed gen.
supercompact (actually < u-closed gen. supercompact)”. [

Ro,II
stat )

Theorem 11. If k is o-closed gen. supercompact, then k € LSS(L

Corollary 12. Suppose that (ZFC + ) “there is a supercompact
cardinal’ is consistent, then for each n > 2, N, € LSS(£:)
(C LSS(£E,)) is consistent.

Proof. By Lemma 10 and Theorem 11. (Corollary 12)



Generic Iarge cardinals (2/2) LSKo & compactness no. (20/24)

Theorem 11. If x is o-closed gen. supercompact, then x € LSS(La%:").

Proof.
» Assume that x is o-closed gen. supercompact. Suppose 2l is a structure
with ||| > xand S €[ |2 [<*. W.lLo.g., assume [2A| = ||| = \.
> Let P be a o-closed p.o. s.t. for a (V,P)-generic G, there are j,
M CV[G] st. j:V 5. M, j(k) > X and j”(A\%) € M.
> Then B := j(A) [ j”|A| € M. Since j | || € M we also have
AecMand MEjT [ ASB.
> By o-closedness of P we have ([ || ]*0)V = ([ |2] [Y)M. Also, all

stationary subsets (club subsets resp.) of ([ || ]*¢)V remain
stationary (club resp.) in M.

> Thus, M =B < o j(2), [B] < j(r). §(5) = "5  [%].
By elementarity, in V, there is € < pRo.t A st €| <k, SC|€f.
Thus k € LSS(ﬁNO’H). (Theorem 11.)

stat

Back to Generic view of ...



Strong compactness number of stationary logic (o & conpates o, (21/24)

Lemma 13. £, extends L(Q) (Qx: there are uncountably many x).
It follows that CS(£L2,) € CS(L(Q)) and sen(L(Q)) < sen(£32,).

Proof. stat X 3(x ¢ X A ...) replaces Qx(...). [ (Lemma 9)

Lemma 14. For all n € w none of X, (3,)" belongs to CS(L(Q)).
In particular, sen(£52,) > sen(L(Q)) > ..

Proof. We show this for Xy and (31)". The general case can be
proved by modifications of the theories below. Y1 ¢ CS(L(Q)) is

trivial.
» The following (non-satisfiable) theory witnesses 8o ¢ CS(L(Q)).

To := {"E is a linear ordering”, Vx—Q, (y E x)}
U{ca# g a<f <w}
» The following (non-satisfiable) theory witnesses (2%0)* ¢ CS(L(Q)).
Ty = {=Qx N(x), VxVy (Vz(N(z) — (zEx<zE£Y)) > x=y)}
UfcaZcs: a< B < (2M)F}



Generic view of the strong compactness number of stationary logic (5o & conpates . (22/24)

» Lemma 14 shows that a Compactness Spectrum analogue of
Theorem 11 is impossible.

» For a class P of p.o.s, let
scn” (L) := min{x € Card : for any L-theory T, if T is < k-satisfiable, then

there is P € P s.t. |Fp“ T is satisfiable in an
inner model contianing T}

» For a class P of p.o.s, a cardinal « is said to be generically
supercompact by P (or P-gen. supercompact, for short) if, for any
A > Kk, there are P € P, (V,P)-generic G, j, M C V[G] s.t.

VIG] =j:V 5. Mj(k) > Xand j"\ € M.

Theorem 15. If x is P-gen. supercompact, then x > scn”(£HO).



Generic view of the strong compactness number of stationary logic (2/2)  1iS b ometesno (23/2)

Theorem 15. |If x is P-gen. supercompact, then x > scn?(£HO).

Proof. Suppose that T is an £HO-theory with | T| = X and T is
< k-satisfiable. W.l.o.g., we assume that all non-logical symbols
appearing in T are elements of A and the coding of the formulas is
done in an appropriate way.

» Let P € P bes.t., for a (V,P)-generic G, there are j, M C V[G]
with j: V55, M, j(k) > X and (¥) j/X € M.

> By elementarity, we have M =“all Ty € [j(T)]</**) has a model”.
By the closure property (*) of M, j”T € M. Since
M E=“|j"T|=X<j(k)” and T is obtained from j” T by renaming
of non-logical symbols, we have T € M and M =“ T has a model”.

(] (Theorem 15)
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LSS(L) is closed

Lemma 2. For any logic £, LSS(L) is a closed class of cardinals.

Proof. Suppose that (k. : « < J) is a strictly increasing sequence
in LSS(L) and k = sup,_s ko. We want to show that k € LSS(L).

» Suppose that 2l is a structure and S C [ || ]=". Let o < 6 be s.t.
|S| < Kq. Since ko € LSS(L), thereisa B <, A s.t. S C |B|
and [|B]| < ko < k. This shows that x € LSS(£). [ (Lemma 2)

Back to p.3



On the restriction to countable signatures

Lemma 1. For a logic £ (with natural properties expected to a “logic”),
we have

LSS(L) = {u € Card : for any structure 2 with a signature of
size < p, there is B <, A s.t. | B < u}.

Proof. “C": Suppose that ;1 € LSS(L) and let 2 be a structure
with a signature of size v < . W.l.o.g., we may assume that 2l is a
relational structure and A = (||, Rp.a)ncw o<y Where R, o is an
n-ary relation on |2| for n € w and @ < v. We may also assume,
w.l.o.g., that ||| > pand v C |2|.

> Let R, := Uy {a} X Rpq for each n € w. Let A~ := (|A], Ry)new.
Applying our assumption on p, we find B~ <, 2~ with
B~ <pandv C |B7|. By the last condition, we can
reconstruct a submodel B of 2 from B~ with the same underlying
set and B <, 2.



On the restriction to countable signatures (2/2)

Lemma 1. For a logic £ (with natural properties expected to a “logic”),
we have

LSS(L) = {u € Card : for any structure 2 with a signature of
size < i, thereis B <, Ast. |B| < p}.

Proof. “C": Suppose that ;1 € LSS(L) and let 2 be a structure
with a signature of size v < . W.l.o.g., we may assume that 2 is
a relational structure and A = (||, Ry o) ncw,a<v Where Ry is an
n-ary relation on || for n € w and a < v. We may also assume,
w.l.o.g., that ||| > pand v C |2|.

Let Ry := Uy fa} X Rno for each n € w. Let A~ := (|2, Rn)new
Applying our assumption on i, we find B~ <, A~ with || B~ < p
and v C [B~|. By the last condition, we can reconstruct an L-
elementary submodel B of 2 from B~ with the same underlying set.

“D" Suppose now that s is in the set on the right side of the
equality. Let 2 be a structure of size > u with a countable
signature, and S € [ || [<H.

Let A" = (2, a),c5. Applying the assumption on 1, we obtain
Bt <, AT of size < 1. Denoting by B the BT reduced to the
original language, we have ||B|| <, S C |B] and B <, 2.

[0 (Lemma 1)



