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Abstract

We study the relationships between the properties of graphs: “of coloring

number > µ” and “of chromatic number > µ” for a regular cardinal µ in

terms of set-theoretic reflection of these properties.

We show that under certain conditions the non-reflection of the prop-

erty “of coloring number > µ” of graphs of bounded cardinality implies the

non-reflection of the property “of chromatic number > µ”. The implication

is proved by interpolating it by non-reflection of the properties which are

related to generalized and/or modified forms of Fodor-type Reflection Prin-

ciple, Strong Chang’s Conjecture, Rado’s Conjecture or Galvin’s Conjecture,

respectively.

As an application of this result, we show a non reflection theorem on

chromatic number > µ which partially covers the results in Shelah [11].

Further results in this line will be presented in Fuchino, Ottenbreit and

Sakai [9].

1 Introduction
intro

For regular cardinal µ and cardinals κ and λ with µ+ < κ ≤ λ, let

REFL col(µ,< κ, λ): For any graph G of cardinality λ, if G has coloring number

> µ then there is a subgraph H of G of cardinality < κ such that H also

has coloring number > µ.

Similarly, let

REFL chr(µ,< κ, λ): For any graph G of cardinality λ, if G has chromatic number

> µ then there is a subgraph H of G of cardinality < κ such that H also

has chromatic number > µ.

In this note we shall give a proof of the following Theorem:
main-Th

Theorem 1.1 Suppose that µ, κ, λ are cardinals such that

(1.1) µ<µ = µ, µ+ < κ, κ<µ = κ and λ < κ+ω. refl-a-0

If REFL col(µ,< κ, λµ) does not hold then REFL chr(µ,< κ, λµ) does not hold.

Note that the condition µ<µ = µ implies that µ is a regular cardinal since, by

Kőnig’s Theorem, we have κcf(κ) > κ for any cardinal κ.

Stress is put here on the cases where µ is uncountable. For µ = ω, µ<µ = µ and

κ<µ = κ hold automatically and the condition λ < κ+ω can also be dropped from

the assertion of Theorem 1.1. For more see [8].

Further results in this line for uncountable µ will be presented in Fuchino,

Ottenbreit and Sakai [9].
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2 Preliminaries
prelim

In this note (and in the further article [9] in preparation) the Roman letters G and

V are not going to denote a generic set and the ground model as it is usual the

case in set theory but rather they are used to denote a graph and its set of vertices.

We shall use V and G instead for the ground model and a generic set respectively.

We consider a graph as a structure of the form G = 〈V, E〉 where E ⊆ V 2 and

E is thought to be the symmetrical and non reflective binary relation representing

the adjacency of the graph G. We often identify G with the underlying set V of G

and even write G = 〈G, E〉. For X ⊆ G and p ∈ G (i.e. for X ⊆ V and p ∈ V ), we

denote

(2.1) Ep
X = {q ∈ X : q E p}. graph-0

Recall that the coloring number of a graph G = 〈G, E〉 is defined as the minimal

cardinal µ with the property that

(2.2) there is a well-ordering ⊳ on G such that for any p ∈ G, denoting the initial graph-1

segment below p with respect to the ordering ⊳ by I⊳p = {q ∈ G : q ⊳ p},

we have | Ep

I⊳p
| < µ.

The coloring number of a graph G is denoted by col(G).

For a graph G = 〈V, E〉 and X ⊆ V , G ↾ X denotes the induced subgraph

〈X, E ∩ X2〉 of G. For a set X a sequence F = 〈Xα : α < δ〉 of subsets of X

is said to be a filtration of X if F is continuously increasing (with respect to ⊆),

|Xα | < |X | for all α < δ and
⋃

α<δ Xα = X. Note that, for any set X, we have a

strictly increasing filtration of X of length δ = cf(|X |).

For a graph G = 〈V, E〉 a sequence 〈Gα : α < δ〉 of induced subgraphs of G

with Gα = G ↾ Vα for α < δ is said to be a filtration of G if 〈Vα : α < δ〉 is a

filtration of V .

The following Lemma is proved easily by (simultaneous) induction on the car-

dinality of G:
T-0

Lemma 2.1 (Erdős and Hajnal [3] see also [5]) (1) If µ = col(G) there is a

well-ordering ⊳ on G of order type |G | witnessing this.

(2) For any graph G, col(G) ≤ µ if and only if there is a filtration 〈Gα : α < δ〉

of G such that

(2.3) col(Gα) ≤ µ and graph-2

(2.4) | Ep
Gα

| < µ for all p ∈ Gα+1 \Gα graph-3

for all α < δ.
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Recall that, for a graph G = 〈G, E〉, the chromatic number chr(G) of G is

the minimal cardinal µ such that G can be partitioned into µ many pairwise non

adjacent (i.e. independent) subgraphs.
T-0-0

Lemma 2.2 Suppose that “ inv ” is one of “ col” or “ chr”. If REFL inv (µ,< κ, λ)

holds, κ′ ≥ κ and λ′ ≤ λ, then REFL inv (µ,< κ′, λ′) holds.

Proof. Suppose that REFL inv (µ,< κ′, λ′) does not hold and let G = 〈G, E〉 be

a graph of cardinality λ′ which is a witness of the failure of REFL inv (µ,< κ′, λ′).

Thus inv (G) > µ but inv (G0) ≤ µ for all G0 ∈ [G]<κ′

.

Let G′ be a set of cardinality λ disjoint from G and let G1 = G ∪ G′. Then

the graph G1 = 〈G1, E〉 is of cardinality λ. inv (G1) > µ but inv (G0) ≤ µ for all

G0 ∈ [G1]
<κ′

. (and hence this holds for all G0 ∈ [G1]
<κ). Thus G1 is a witness of

the failure of REFL inv (µ,< κ, λ).

(Lemma 2.2)

3 Reflection properties related to generalized Fodor-

type Reflection Principles
s-refl-3

For regular cardinals µ, κ, λ with µ+ < κ ≤ λ, let FRP(µ,< κ, λ) be the following

assertion:

FRP(µ,< κ, λ): For any stationary S ⊆ Eλ
µ and g : S → [λ]µ there is an α∗ ∈

Eλ
>µ ∩ Eλ

<κ such that α∗ is closed with respect to g and {x ∈ [α∗]µ :

sup(s) ∈ S, g(sup(x)) ∩ sup(x) ⊆ x} is stationary in [α∗]µ.

Using this notation, the Fodor-type Reflection principle (FRP) introduced in [4]

can be formulated as

FRP: FRP(ℵ0, < ℵ2, λ) holds for all regular uncountable λ.

FRP is known to be equivalent (over ZFC) to many known mathematical reflec-

tion statements like the one saying that a locally compact Hausdorff space X is

metrizable if and only if all subspace of X of size ≤ ℵ1 are metrizable. FRP also

implies many interesting consequences like SCH while it does not restrict the size

of the continuum unlike many other reflection principles like Rado’s Conjecture we

are going to discuss below which imply that the continuum is less than or equal to

ℵ2 or even CH.

By the following result of Hiroshi Sakai, this principle cannot be consistently

generalized by taking an uncountable µ in place of ℵ0 in FRP(ℵ0, < ℵ2, λ).

A cardinal κ is said to be λ-inaccessible if µλ < κ holds for all µ < κ. Similarly

we shall also say that κ is < λ-inaccessible if µ<λ < κ holds for all µ < κ.
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T-sakai

Theorem 3.1 (H. Sakai [9]) Let λ be a singular cardinal, and let µ and λ be

regular cardinals with µ+ < κ ≤ λ Suppose that every regular cardinal ν with

µ < ν < κ is cf(λ)-inaccessible. Then FRP(µ,< κ, λ+) fails.

This delimitation set by the theorem above explains the relevance of the con-

ditions on cardinals in the following Proposition.

In spite of Theorem 3.1, we can modify the property FRP(µ,< κ, λ) to obtain

a reasonable generalization of FRP for uncountable µ. This will be discussed in [9].
T-1

Proposition 3.2 For any cardinals µ, κ and λ∗ such that

(3.1) µ+ < κ ≤ λ∗ < κ+ω, refl-0

if FRP(µ,< κ, λ) holds for all λ < λ∗ then REFL col(µ,< κ, λ) holds for all λ < λ∗.

Proof. By induction of λ∗. If λ∗ ≤ κ then REFL col(µ,< κ, λ) trivially holds for

all λ < λ∗.

We assume that the Proposition holds for all κ ≤ λ∗
0 < λ∗ and show that the

Proposition also holds for λ∗. By (3.1), there is λ0 < λ∗ such that (λ0)
+ = λ∗.

Thus it is enough to show that REFL col(µ,< κ, λ0) holds.

Suppose that this is not the case. Then there is a graph G of cardinality λ0

such that col(G) > µ but all subgraphs H of G of cardinality < κ have coloring

number ≤ µ. Without loss of generality G = 〈λ0, E〉 for some adjacency relation E .

Let 〈ηα : α < λ0〉 be a continuously and strictly increasing sequence of ordinals

cofinal in λ0 and ξα ∈ ηα+1 \ ηα for α < λ0 are such that, for all α < λ0,

(3.2) If | Eξ
ηα

| ≥ µ for some ξ ∈ λ0 \ ηα, then | Eξα
ηα

| ≥ µ. refl-1

By induction hypothesis we have col(G ↾ ηα) ≤ µ for all α < λ0. Thus

(3.3) S = {α < λ0 : | Eξα
ηα

| ≥ µ} is stationary refl-2

(since otherwise we would obtain col(G) ≤ µ by Lemma 2.1. This is a contradiction

to the assumption on G).

Claim 3.2.1 S1 = S ∩ Eλ0
µ is stationary.

⊢ Suppose that S1 were non stationary. Then, at least one of S0 = S ∪ Eλ0
<µ

and S2 = S ∪ Eλ0
>µ would be stationary. Suppose that i ∈ {0, 2} is such that Si is

stationary. Then for each α ∈ Si there is να < ηα such that | Eξα
να

≥ µ |. By Fodor’s

Lemma, there is a stationary S4 ⊆ Si and ν∗ < λ0 such that να = ν∗ for all α ∈ S4.

It follows that Eλ0
µ \ sup(ν∗) ⊆ S. This is a contradiction since the left side of the

inclusion is stationary and it is thus a subset of S1 = S ∩ Eλ0
µ . ⊣ (Claim 3.2.1)
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For each α ∈ S1, let sα ∈ [Eξα
ηα
]µ and let g : S1 → [λ0]

µ be the defined by

g(α) = sα ∪ {ξα} for α ∈ S1.

By FRP(µ,< κ, λ0), there is α
∗ ∈ Eλ0

>µ∩Eλ0
<κ such that α∗ is closed with respect

to g and

{x ∈ [α∗]µ : sup(x) ∈ S1 and g(sup(x)) ∩ sup(x) ⊆ x}

is stationary. It follows that there is an I ∈ [α∗]cf(α
∗) with a filtration 〈Iξ : ξ <

cf(α∗)〉 such that each of Iξ, ξ < cf(α∗) is closed with respect to g and

S = {ξ < cf(α∗) : sup(Iξ) ∈ S1 and g(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ}

is stationary. But then, by Lemma 2.1, we must conclude col(G ↾ I) > µ. This is

a contradiction to the choice of G. (Proposition 3.2)

4 Reflection principles related to a variant of Strong

Chang’s Conjecture
s-refl-4

(4.1) Let θ be a regular cardinal large enough (compared with λ below). Let refl-2-0

M = 〈H(θ),∈,⊏〉 where ⊏ is a fixed well-ordering of H(θ).

The well-ordering ⊏ is included in the structure M here because of the built-in

Skolem functions it introduces.

The following principle CC
↓(µ,< κ, λ) is a generalized version of a principle

considered in [8]. These principles are inspired by a variant of Strong Chang’s

Conjecture in Doebler [2]; the Strong Chang’s Conjecture in its original form was

introduced in Todorčević [15].

For a regular cardinal µ and cardinals κ, λ with µ<µ = µ and µ+ < κ ≤ λ, let

CC
↓(µ,< κ, λ) be the assertion defined as follows:

CC
↓(µ,< κ, λ): For any M ∈ [M]µ with M ≺ M, µ ⊆ M µ, κ, λ ∈ M and

[M ]<µ ⊆ M , we have that

(4.2) for any α ∈ λ, there is M∗ with M ≺ M∗ ≺ M and α∗ ∈ λ \ α refl-3

such that µ < cf(α∗) < κ and α∗ = min(λ ∩M∗ \ sup(λ ∩M)).

T-2

Proposition 4.1 Suppose that µ, κ, λ are cardinals such that

(4.3) µ and λ are regular; refl-3-0

(4.4) µ<µ = µ; refl-4

(4.5) µ+ < κ ≤ λ and refl-5

(4.6) λ is < µ-inaccessible. refl-6
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Then CC
↓(µ,< κ, λ) implies FRP(µ,< κ, λ).

Proof. Assume CC
↓(µ,< κ, λ) and suppose that S ⊆ Eλ

µ is stationary and g :

S → [λ]µ. Let M ∈ [M]µ be such that

(4.7) M ≺ M; refl-7

(4.8) µ, κ, λ, S, g ∈ M ; refl-7-0

(4.9) µ ⊆ M ; refl-7-1

(4.10) [M ]<µ ⊆ M ; refl-8

(4.11) M is closed with respect to g; refl-9

(4.12) sup(λ ∩M) ∈ S and g(sup(M)) ∩ sup(M) ⊆ M . refl-10

Note that there is such an M by (4.4) and (4.6). By CC
↓(µ,< κ, λ) there are α∗ ∈ λ

and M∗ ≺ M such that

(4.13) M ≺ M∗; refl-11

(4.14) µ < cf(α∗) < κ; and refl-12

(4.15) α∗ = min(λ ∩M∗ \ sup(λ ∩M)). refl-13

We show that this α∗ witnesses FRP(µ,< κ, λ) for our S and g.

α∗ is closed with respect to g since it is closed with respect to g in M∗ by (4.15).

Thus it is enough to show that

(4.16) Z = {x ∈ [α∗] : sup(x) ∈ S and g(sup(x)) ∩ sup(x) ⊆ x} refl-14

is stationary. By elementarity, it is enough to show that Z intersects with all club

sets of [α∗]µ in M∗.

Suppose that C ∈ M∗ is a club subset of [α∗]µ and let h ∈ M∗ be such that

h : ω>α∗ → α∗ and

(4.17) C ⊇ Ch = {x ∈ [α∗]µ : µ ⊆ x and x is closed with respect to h}. refl-15

Then we have

(4.18) α∗ ∩M ∈ Z ∩ Ch refl-16

[α∗ ∩M ∈ Z by (4.12) and α∗ ∩M ∈ Ch by (4.9) ]. Thus Z ∩C 6= ∅. (Proposition 4.1)

For a regular cardinal λ, a mapping f : λ → λ is said to be regressive if f(α) < α

holds for all α < λ. We denote with λ↓λ the set {f ∈ λλ : f is regressive}.

The game G↓
µ(< κ, λ) for Players I and II is defined as follows: A match in

G↓
µ(< κ, λ) is a sequence of length µ of the form:

M:
I f0 ∈

λ↓λ f1 ∈
λ↓λ · · · fξ ∈

λ↓λ · · ·

II δ0 ∈ λ δ1 ∈ λ · · · δξ ∈ λ · · ·
(ξ < µ)
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II wins in a match M of G↓
µ(< κ, λ) as above if

(4.19) BM = {α ∈ Eλ
>µ ∩ Eλ

<κ : fξ(α) < sup{δi : i < µ} for all ξ < µ}

is unbounded in λ.

Let us denote with WSI(G
↓
µ(< κ, λ)) ( WSII(G

↓
µ(< κ, λ)), resp.) the assertion

“the player I (the player II, resp.) has a winning strategy in the game G↓
µ(< κ, λ).

T-3

Proposition 4.2 Suppose that

(4.20) µ<µ = µ refl-16-0

holds. Then, for any cardinals κ, λ with µ+ < κ ≤ λ, WSII(G
↓
µ(< κ, λ)) holds if

and only if CC↓(µ,< κ, λ) holds.

Proof. Suppose first that WSII(G
↓
µ(< κ, λ)) holds. Let M be defined as in (4.1)

and let M ≺ M be such that

(4.21) |M | = µ; refl-17

(4.22) [M ]<µ ⊆ M ; refl-18

(4.23) µ, κ, λ ∈ M and µ ⊆ M . refl-19

Note that there is such M by (4.20).

Let σ ∈ M be a wining strategy of the player II in G↓
µ(< κ, λ). Let M =

〈fξ, δξ : ξ < µ〉 be a match in G↓
µ(< κ, λ) such that

(4.24) 〈fξ, δξ : ξ < γ〉 ∈ M for all γ < µ; refl-20

(4.25) II plays according to σ in M; refl-21

(4.26) 〈fξ : ξ < µ〉 enumerates λ↓λ ∩M . refl-22

Note that (4.24) is possible because of (4.22).

Since II wins in the match M, there is α∗ such that

(4.27) sup(λ ∩M) < α∗; refl-23

(4.28) α∗ ∈ Eλ
>µ ∩ Eλ

<κ and refl-24

(4.29) fξ(α
∗) < sup{δξ : ξ < µ} ≤ sup(λ ∩M). refl-25

Since all Skolem function f in M with parameters from M such that f ↾ λ is

a regressive function from λ to λ are among fξ, ξ < µ, it is readily seen that

M∗ = skM(M ∪ {α∗}) is as desired.

Suppose now that CC↓(µ,< κ, λ) holds. In a match M, the player II can choose

a continuously increasing sequence 〈Mξ : ξ < δ〉 of elementary submodels of M

such that, for all ξ < µ,

(4.30) |Mξ+1 | = µ; refl-26
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(4.31) [Mξ+1]
<δ ⊆ Mξ+1 refl-27

(4.32) δξ = sup(λ ∩Mξ). refl-28

ThenM =
⋃

ξ<µMξ is an elementary submodel ofM of cardinality µ with [M ]<µ ⊆

M and sup({δξ : ξ < µ}) = sup(λ ∩ M). Thus each α∗ as in the definition of

CC
↓(µ,< κ, λ) for this M is in BM. (Proposition 4.2)

Let θ and M be as in (4.1). For M ∈ [M]µ such that

(4.33) M ≺ M; refl-29

(4.34) µ ⊆ M , µ, κ, λ ∈ M ; and refl-30

(4.35) [M ]<µ ⊆ M , refl-31

let

(4.36) DM = {α ∈ Eλ
>µ ∩ Eλ

<κ : f(α) < sup(λ ∩M) for all f ∈ λ↓λ ∩M}. refl-32

Clearly we have DM ⊇ sup(λ ∩M) ∩ (Eλ
>µ ∩ Eλ

<κ).

Let

(4.37) B = {M ∈ [M]µ : M ≺ M,

M |= (4.34), (4.35) and DM is bounded in λ}.

refl-33

The following is immediate from the definition of DM .
L-game-0

Lemma 4.3 α∗ < λ is an upper bound of DM if and only if, for any α ∈ (Eλ
>µ ∩

Eλ
<κ) \ α

∗ there is some f ∈ λ↓λ ∩M such that f(α) ≥ sup(λ ∩M).

The following characterization of WSII(G
↓
µ(< κ, λ)) is going to play an impor-

tant role in the next section.
L-game-1

Lemma 4.4 Suppose that µ<µ = µ and µ+ < κ ≤ λ. Then, for any cardinal λ,

WSII(G
↓
µ(< κ, λ)) holds if and only if B is non-stationary in [M]µ.

Proof. If cf(λ) ≤ µ this is clear. Under this condition WSII(G
↓
µ(< κ, λ)) holds

since the player II can choose her moves δξ, ξ < µ such that {δξ : ξ < µ} is cofinal

in λ. B is non-stationary since there are end-segment many M ∈ [M]µ with (4.33),

(4.34) and (4.35) such that λ ∩M is cofinal in λ.

Thus we may assume cf(λ) > µ. Suppose first that WSII(G
↓
µ(< κ, λ)) holds.

We show that C = {M ∈ [M]µ : M ≺ M} is disjoint from B. Suppose M ∈ B∩C.

By the assumption, there is a wining strategy σ ∈ M of the player II in G↓
µ(< κ, λ).

Let M = 〈fξ, δξ : ξ < µ〉 be a match in G↓
µ(< κ, λ) satisfying (4.24), (4.25) and

(4.26). Since the player II wins in M

(4.38) {α ∈ Eλ
>µ ∩ Eλ

<κ : fξ(α) < sup({δi : i < ξ}) for all ξ < µ} refl-34
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is unbounded. By (4.26) it follows that DM is unbounded. This is a contradiction

to M ∈ B.

Suppose now that B is non-stationary. Let C ⊆ [M]µ be a club disjoint from

B. We may assume that

(4.39) M ≺ M holds for all M ∈ C. refl-35

In a match M = 〈fξ, δξ : ξ < µ〉, the player II can choose her moves δξ, ξ < µ in

such a way that, along with her moves, she also chooses elements Mξ of C which

should build a continuously increasing sequence 〈Mξ : ξ < µ〉 and such that

(4.40) µ ⊆ M0, µ, κ, λ ∈ M0; refl-36

(4.41) {fη : η ≤ ξ} ⊆ Mξ+1 for all ξ < µ; refl-36-0

(4.42) [Mξ]
<µ ⊆ Mξ+1 for all ξ < µ; and refl-37

(4.43) δξ = sup(λ ∩Mξ) for all ξ < µ. refl-38

Since C is a club M =
⋃

ξ<µMξ ∈ C and hence M 6∈ B. By (4.39), (4.40) and

(4.42), M satisfies (4.33), (4.34) and (4.35). Thus

(4.44) DM is unbounded. refl-39

Since {fξ : ξ < µ} ⊆ M by (4.41), it follows from (4.44) that the player II wins

in all such matches M. (Lemma 4.4)

5 Reflection properties related to a generaliza-

tion of Rado’s Conjecture
s-refl-5

In the following we assume that a tree is a partial ordering T = 〈T,<T 〉 such that

{s ∈ T : s <T} is well-ordered by <T . In particular, we do not assume that a tree

has a single root. By this convention any subset of a tree T can be considered as

a subtree of T .

A tree T is said to be µ-special if T can be partitioned into ≤ µ subsets Tα,

α < δ (δ ≤ µ) such that each Tα is pairwise incomparable (i.e. each Tα is an

antichain).

The following reflection property is related to a generalization of Rado’s Con-

jecture:

RC(µ,< κ, λ): For any tree T of cardinality λ, if T is not µ-special, then there is

a subtree T ′ of T of size < κ such that T ′ is not µ-special.

Note that, using this notation, Rado’s Conjecture (RC) can be reformulated as:

RC: RC(ℵ0, < ℵ2, λ) holds for all cardinal λ.

10



The following Proposition 5.4 for µ = ℵ0 together with Proposition 4.2 for

µ = ℵ0 and a slight extension of Proposition 4.1 for µ = ℵ0 proves that Rado’s

Conjecture implies Fodor-type Reflection Principle (see Fuchino, Sakai, Torres and

Usuba [8]).

In contrast to FRP the straightforward generalization of Rado’s Conjecture to

uncountable cardinals:

RCµ: RC(µ,< µ++, λ) holds for all cardinal λ

is consistent. We shall discuss more about this generalizaion in [9].

As mentioned before, RC implies that the cardinality of the continuum to be

≤ ℵ2. Starting from a supercompact cardinal we can force RC together with each

of 2ℵ0 = ℵ1 or 2ℵ0 = ℵ2 (see Todorčević [13], [15]).

Let us begin with some tools we need for the proof of Proposition 5.4. A tree is

said to be ≤ µ-Baire if the intersection
⋂

D of any open dense subsets of cardinality

≤ µ is again open dense where D ⊆ T is said to be open dense if it is upward closed

and for any t ∈ T there is t′ ∈ T with t <T t′ (i.e. D is open dense in the forcing

poset obtained by putting T upside down).

The following is easy to prove:
T-Baire

Lemma 5.1 (1) Let T be a tree without maximal elements. If T is ≤ µ-Baire

then T is not µ-special.

(2) If a tree T is of height < µ+ then T is µ-special.

(3) Any tree T is not µ-special if T has a branch of length ≥ µ+. In particular,

any tree of height > µ+ is not µ-special.

Proof. (1): Suppose that T is a µ-special tree without maximal elements

and let Tξ, ξ < µ be a partition of T into pairwise incomparable sets.

For each ξ < µ, let Dξ = {t ∈ T : {t′ ∈ T : t ≤T t′} ∩ Tξ = ∅}. Then Dξ

is open dense for ξ < µ but
⋂

ξ<µDξ ⊆ T \
⋃

ξ<µ Tξ = ∅.

(2): Let δ = ht(T ) < µ+. Then Tξ = {t ∈ T : ht(t) = ξ}, ξ < δ are

pariwise incomparable sets covering T and | δ | ≤ µ.

(3): If T has a branch B of length ≥ µ+ then for any partition Tξ,

ξ < µ of T there is ξ0 < µ such that |Tξ0 ∩ B | ≥ µ+. (Lemma 5.1)

For a subtree T0 of a tree T , a mapping f : T0 → T is said to be regressive if

f(t) <T t holds for all t ∈ T0 which is not minimal in T .

Todorčević [12] proves the following Theorem only for the case µ = ℵ0 but the

general case given below can be proved with exactly the same proof.

Theorem 5.2 (Pressing Down Lemma for Trees, Todorčević [12]) Suppose

that f : T → T is regressive and f−1 ′′{t} is µ-special for all t ∈ T then T is µ-

special.
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Proof. Suppose that f : T → T is a regressive function such that f−1 ′′{t}

is µ-special for all t ∈ T. We show that T is then also µ-special.

For each t ∈ T let gt : f
−1 ′′{t} → µ be such that

(ℵ5.1) g−1
t

′′{ξ} is pariwise incomparable for all ξ < µ. rado-0

For t ∈ T, let ut = 〈ut
0, u

t
1, ..., u

t
nt
〉 be the descending sequence of elements

of T defined by ut
0 = t, ut

n+1 = f(ut
n) for all n < nt and ut

nt
is a minimal

element in T. Note that we have ut
k ∈ f−1 ′′{ut

k+1} for all k < nt.

Let l : T → ω>µ be defined by

l(t) =

{

∅, if t is a minimal element of T ;

〈gut
1
(ut

0), gut
2
(ut

1), ..., gut
nt
(ut

nt−1)〉, otherwise.

Note that | ω>µ | = µ.

Claim 5.2.1 l witnesses that T is µ-special.

⊢ Suppose t, t′ ∈ T, t 6= t′ but l(t) = l(t′). It is enough to show that

t and t′ are then incomparable.

If l(t) = l(t′) = ∅ then t and t′ are two different minimal elements

of T and hence are incomparable. Otherwise both of t and t′ are not minimal

in T. If ut
nt

6= ut′

nt′
then ut

nt
and ut′

nt′
are incomparable as two different

minimal elements and hence t >T ut
nt

and t′ >T ut′

nt′
are also incomparable.

Thus we may assume that ut
nt

= ut′

nt′
. Let k = min{n < nt : ut

n+1 = ut′

n+1}.

Then we have gut
k+1

(ut
k) = gut′

k+1
(ut′

k ) = gut
k+1

(ut′

k ). By (ℵ5.1), ut
k and ut′

k are

incomparable. Since ut
k ≤T t and ut′

k ≤T t′, t and t′ are incomparable as

well. ⊣ (Claim 5.2.1)

(Lemma 5.2)

For a tree T , let Lim(T ) = {t ∈ T : htT (t) is a limit ordinal}.
Pressing-

down’Corollary 5.3 Suppose that f : Lim(T ) → T is regressive and f−1 ′′{t} is µ-special

for all t ∈ T then T is µ-special.

Proof. Let f̄ : T → T be defined by

(5.1) f̄(t) =

{

f(t ↾ α); if α is the largest limit ordinal below htT (t+ 1)

the minimal element below t; it there is no such α.
refl-40

Then f̄ is regressive. For t ∈ T ,

(5.2) f̄−1 ′′{t} =
⋃

n∈ω{u ∈ T : u is an n’th successor of an element of f−1 ′′{t}}

is µ-special since f−1 ′′{t} is µ-special. (Corollary 5.3)
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T-RC-CC

Proposition 5.4 Suppose that µ, κ, λ are cardinals such that µ<µ = µ < µ+ <

κ ≤ cf(λ). If WSII(G
↓
µ(< κ, λ)) does not hold then RC(µ,< κ, λµ) does not hold.

Proof. Assume that WSII(G
↓
µ(< κ, λ)) does not hold. By Lemma 4.4, B in (4.37)

is stationary in [M]µ.

Let

(5.3) T = {〈Mξ : ξ ≤ δ〉 : (a) δ < µ+, (b) 〈Mξ : ξ ≤ δ〉 is a continuously

increasing sequence of elementary submodels of M

of cardinality µ, (c) Mξ ∈ B for all successor ξ ≤ δ

and for all limit ξ ≤ δ of cofinality µ,

(d) Mξ ∈ Mξ+1for all ξ < δ}.

refl-41

For t, t′, let t <T t′ ⇔ t is an initial segment of t′.

We show that the tree T = 〈T , <T 〉 witnesses the non reflection of non µ-

specialness1) .
C-calT-0

Claim 5.4.1 All T ∈ [T ]<κ are µ-special.

⊢ For t ∈ T with t = 〈Mξ : ξ ≤ δ〉 we denote ℓ0(t) = δ while the length of the

sequence t is δ + 1. Mt denotes the last component Mδ of the sequence t and Mt,ξ

the ξ’th component Mξ for ξ ≤ δ. Let

(5.4) d(t) = λ ∩Mt refl-42

and

(5.5) d(T ) =
⋃

{d(t) : t ∈ T} refl-43

for T ⊆ T . Note that d(T ) ∈ [λ]<κ for T ∈ [T ]<κ. In particular, by the assumption

on λ, d(T ) for such T is bounded in λ.

We show by induction on η < κ that

(5.6) if T ∈ [T ]<κ and otp(d(T )) = η then T is a µ-special tree refl-44

holds for all η < κ. Clearly this implies the claim.

Suppose (5.6) holds for all η0 < η.

Case I: η < µ+. Suppose that T ∈ [T ]<κ and otp(d(T )) = η. By (5.3), (d), we

have ht(T ) < µ+. Thus T is µ-special by Lemma 5.1, (2).

Case II: η is a successor ordinal. This case cannot occur by definition of d(T ).

Case III: η is a limit ordinal of cofinality ≤ µ. Let δ = cf(η) ≤ µ. Suppose

that T ∈ [T ]<κ and otp(d(T )) = η. Then we can find an increasing sequence

1)This tree is not yet the final witness of the negation of RC(µ,< κ, λµ) we are looking for since

it has cardinality ≥ θ >> λ.
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〈ξα : α < δ〉 of ordinals with sup({ξα : α < δ}) = sup(d(T )). Let Tα = {t ∈

T : d(T ) ⊆ ξα} for α < δ. Each Tα is µ-special by induction hypothesis. Hence

T =
⋃

α<δ Tα is also µ-special.

Case IV: η is a limit ordinal of cofinality > µ. Suppose that T ∈ [T ]<κ and

otp(d(T )) = η. Note that by the assumption on λ we have sup(d(T )) < λ. Let

(5.7) T0 = T \ {t ∈ T : t is maximal in T}. refl-45

Since {t ∈ T : t is maximal in T} is an antichain in T it is enough to show that

T0 is µ-special.

If otp(d(T0)) < otp(d(T )) then by induction hypothesis T0 is special. Hence we

may assume that otp(d(T0)) = otp(d(T )) (and so sup(d(T0)) = sup(d(T ))). Let

ν = sup(d(T0)) (= sup(d(T ))) and δ = cf(ν). We have µ < δ < κ. Let 〈νβ : β < δ〉

be a continuously and strictly increasing sequence of ordinals cofinal in ν. Note

that ν > sup(DMt
) holds for all t ∈ Lim(T0) by the definition of T0 and (5.3), (d).

Thus, for all t ∈ Lim(T0) there is ft ∈
λ↓λ ∩Mt such that ft(ν) ≥ sup(λ ∩Mt) by

Lemma 4.3.

Noting that ℓ0(t) defined at the beginning of the proof is a limit ordinal for

t ∈ Lim(T0) and hence we have Mt =
⋃

ξ<ℓ0(t)
Mt,ξ, let

(5.8) h(t) = t ↾ (ξ0 + 1) where ξ0 = min{ξ < ℓ0(t) : ft ∈ Mt,ξ}. refl-46

Then we have h : Lim(T0) → T0 and h is regressive.

Subclaim 5.4.1.1 h−1 ′′{u} is µ-special for all u ∈ T0.

⊢ Suppose u ∈ T0. Since Mu is of cardinality µ, it is enough to show that

Tf = {t ∈ h−1 ′′{u} : ft = t} is µ-special for each f ∈ λ↓λ ∩Mu. Since f(ν) < ν,

there is β∗ < δ such that f(ν) < vβ∗ . For any t ∈ Tf , we have sup(d(t)) ≤ ft(ν) =

f(ν) ≤ νβ∗ . Thus Tf ⊆ {t ∈ T0 : d(t) ⊆ νβ∗}. The subtree of T on the right side of

the inclusion is µ-special by the induction hypothesis. Hence Tf is also µ-special.

⊣ (Subclaim 5.4.1.1)

By Corollary 5.3 it follows that T0 is µ-special. ⊣ (Claim 5.4.1)

C-calT-1

Claim 5.4.2 T is ≤ µ-Baire. Hence it is not µ-special by Lemma 5.1, (1).

⊢ Suppose that Dm, m < µ are open dense subsets of T and t ∈ T . We have

to show that there is t′ ∈ T such that t <T t′ and t′ ∈
⋂

m<µDm. Let M̃ be the

expansion of the structure M obtained by adding the unary relations Dm, m < µ.

Let M ≺ M̃ be such that

(5.9) t ∈ M ; and refl-47

(5.10) M ∈ B. refl-48

14



There is such M since B is stationary by Lemma 4.4.

Let xm, m < µ be an enumeration of M . Since M satisfies (4.35), 〈xm : m <

µ0〉 ∈ M for all µ0 < µ.

Let 〈tm : m < µ〉 be a continuously increasing sequence in T such that

(5.11) tm ∈ M for all m ∈ µ; refl-49

(so by the same reasoning as above 〈tm : m < µ0〉 ∈ M for all

µ0 < µ)

(5.12) t0 = t; refl-50

(5.13) tm+1 ∈ Dm ∩M for all m < µ refl-51

(this is possible since Dm is open dense and by the elementarity

of M);

and

(5.14) xm ∈ Mtm+1 for all m < µ. refl-52

Let

(5.15) t′ =
⋃

{tm : m < µ}⌢〈M〉.

Then t′ ∈ T by (5.14) and (5.10). t ≤T t′ by (5.12). t′ ∈ Dm for all m < µ by

(5.13). ⊣ (Claim 5.4.2)

Let N ≺ M be such that

(5.16) λ ⊆ N , | N | = λ<µ; refl-53

(5.17) [N ]<µ ⊆ N . refl-54

Let T0 = T ∩ N . Then | T0 | ≤ λµ and the proofs of Claim 5.4.1 and Claim

5.4.2 also apply to T0. Thus T0 witnesses that WSII(G
↓
µ(< κ, λ)) does not hold.

(Proposition 5.4)

6 Reflection properties related to generalizations

of Galvin’s Conjecture
s-refl-6

To interpolate the implication from REFL chr(µ,< κ, λ) to RC(µ,< κ, λ) we would

like to prove in this section, we introduce yet another reflection property which

stands in connection with a generalization of Galvin’s Conjecture.

For a partial ordering P = 〈P,<P 〉 a subordering P ′ = 〈P ′, <P ′〉 of P with

P ′ ⊆ P and <P ′ = <P ∩(P ′)2 is said to be a chain if <P ′ linearly orders P ′.
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GC(µ,< κ, λ): For any partial ordering P of cardinality λ, if P is not a union of

≤ µ-many chains, then there is a subordering P ′ of P of size < κ such

that P ′ is not a union of ≤ µ-many chains.

Galvin’s Conjecture ([15]) can be formulated as:

GC: GC(ℵ0, < ℵ2, λ) holds for all cardinal λ.

Unlike Rado’s Conjecture, the consistency of Galvin’s Conjecture is a long

standing open question.
T-tod

Proposition 6.1 Suppose that µ, κ, λ are cardinals such that µ+ < κ ≤ λ.

(1) GC(µ,< κ, λ) implies RC(µ,< κ, λ).

(2) REFL chr(µ,< κ, λ) implies GC(µ,< κ, λ).

Proof (Todorčević [16]). (1): Suppose that RC(µ,< κ, λ) does not hold and

let T = 〈T,<T 〉 be a tree of size λ witnessing this. Let ⊳ be an arbitrary linear

ordering on T and let ⊳T be the binary relation on T defined by

(6.1) t0 ⊳T t1 ⇔ t0 and t1 are incomparable with respect to <T and t′0 ⊳ t′1
where t′0 and t′1 are minimal elements below t0 and t1

respectively with respect to <T such that t′0 and t′1 are

incomparable

refl-55

It is easy to see that ⊳T is a partial ordering on T . By the definition of ⊳T , we

have that, for any X ⊆ T ,

(6.2) X is a chain in 〈T,⊳T 〉 ⇔ X is an antichain in 〈T,<T 〉. refl-56

Thus 〈T,⊳T 〉 is a counterexample to GC(µ,< κ, λ).

(2): Suppose that GC(µ,< κ, λ) does not hold and let 〈P,<P 〉 be a partial

ordering of size λ which is a counterexample to GC(µ,< κ, λ). Let EP be the

adjacency relation on P defined by

(6.3) p EP q ⇔ p and q are incomparable with respect to <P . refl-57

Then, for any X ⊆ P , we have

(6.4) X is a chain in P (with respect to <P ) ⇔ elements of X are pairwise refl-58

non adjacent.

Thus 〈P, EP 〉 is a counterexample to REFL chr(µ,< κ, λ). (Proposition 6.1)

16



7 A proof of Theorem 1.1 and some applications
s-refl-7

We can now put together the propositions we proved in the previous sections to

obtain a proof of Theorem 1.1.

Proof of Theorem 1.1: Suppose that REFL col(µ,< κ, λ) does not hold. Let

λ∗ ≤ λ be such that

(7.1) REFL col(µ,< κ, λ0) holds for all λ0 < λ∗ but REFL col(µ,< κ, λ∗) does not. refl-59

By (the proof of) Proposition 3.2, FRP(µ,< κ, λ∗) does not hold. By Proposi-

tion 4.1 it follows that CC
↓(µ,< κ, λ∗) does not hold. By Proposition 4.2, this

is equivalent to the assertion that WSII(G
↓
µ(< κ, λ∗)) does not hold. Proposi-

tion 5.4 now implies that RC(µ,< κ, (λ∗)µ) does not hold. Thus, by Proposition 6.1,

REFL chr(µ,< κ, (λ∗)µ) does not hold. Since (λ∗)µ ≤ λµ, it follows by Lemma 2.2,

that REFL chr(µ,< κ, λµ) does not hold. (Theorem 1.1)

A stationary subset S of a cardinal λ is said to be non-reflecting if S ∩ δ is not

stationary for any δ ∈ Lim(λ).
T-4

Lemma 7.1 Let µ, λ be regular cardinals with µ+ < λ. Suppose that there is a

non-reflecting stationary S ⊆ Eλ
µ. Then there is a graph G = 〈λ, E〉 such that

(a) col(G) = µ+ but (b) col(G ↾ X) ≤ µ for all X ∈ [λ]<λ. In particular

REFL col(µ,< λ, λ) does not hold.

Proof. Without loss of generality, we may assume that S ⊆ Lim(λ). Let 〈cξ :

ξ ∈ S〉 be such that, for all ξ ∈ S,

(7.2) cξ ⊆ ξ \ Lim(ξ) and cξ is cofinal in ξ; refl-60

(7.3) otp(cξ) = µ. refl-61

Let

(7.4) E = {〈α, β〉, 〈β, α〉 : α ∈ S, β ∈ cα}. refl-62

Since λ is regular, the following Claim implies (b).

Claim 7.1.1 For any η ∈ Lim(λ), col(G ↾ η) ≤ µ.

⊢ Let C ⊆ η be a club subset of η such that C ∩S = ∅. Let ⊳ be a well-ordering

on η such that ⊳ ∩C2 =∈ ∩c2 and, for any α, β ∈ C with (α, β)∩C = ∅ 2) ; (α, β)

is also an open interval between α and β with respect to ⊳; and S ∩ (α, β) is an

initial segment of (α, β) with respect to ⊳.

Then ⊳ witnesses that col(G ↾ η) ≤ µ. ⊣ (Claim 7.1.1)

By the definition of E (7.4), it is clear that col(G) ≤ µ+. So the following Claim

implies (a) and finishes the proof.

2)We denote here with (α, β) the open interval {ξ : α < ξ < β}.
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Claim 7.1.2 col(G) ≥ µ+.

⊢ Suppose that⊳ is an arbitrary well-ordering ofG of order type λ (see Lemma 2.1,

(1)). By the stationarity of S there is ξ∗ ∈ S such that ξ∗ is an initial segment

with respect to ⊳. But then Eξ∗

ξ∗ = cξ∗ and hence | Eξ∗

ξ∗ | = µ. Thus there is no

well-ordering of G confirming that col(G) ≤ µ. ⊣ (Claim 7.1.2)

(Lemma 7.1)

The following Theorem covers some of the instances of the results in [11].

Theorem 7.2 If µ and λ are cardinals such that µ<µ = µ, µ+ < λ < µ+ω and

there is a non reflecting stationary set S ⊆ Eλ
µ then REFL chr(µ,< λ, λµ) does not

hold. That is, there is a graph G = 〈G, E〉 of cardinality λµ such that chr(G) > µ

but chr(G ↾ X) ≤ µ for all X ∈ [G]<λ.

Proof. By Lemma 7.1 REFL col(µ,< λ, λ) does not hold. Hence, by Theorem 1.1,

REFL chr(µ,< λ, λµ) does not hold. (Theorem 7.2)

8 Appendix. Generalized Rado’s Conjectures

For a cardinal µ, let RCµ be the following generalization of Rado’s Conjecture:

(8.1) RC(µ,< µ++, λ) holds for all cardinal λ > κ+. refl-63

Thus the original Rado’s Conjecture (RC) is RCω. s-refl-8

str-comp-

RadoProposition 8.1 Suppose that µ is a cardinal, κ > µ a strongly compact cardinal

and Pµ,κ = Col(µ+, < κ). Then we have ‖–Pµ,κ
“RCµ ”.

For the proof, we need the following lemma in Todorčević [13]:
Refl-3

Lemma 8.2 Suppose that T is a non µ-special tree and P a <µ+-closed p.o. Then

‖–P “T is a non µ-special tree ”.

Proof. If the Lemma were not true, then there would be a non µ-special tree T

and a <µ+-closed p.o. P such that ‖–P “T is a µ-special tree ”. Note that it follows

that

(8.2) ht(T ) ≤ µ+ and Tµ+ = ∅. a-refl-5

Let f
∼
be a P-name of a witness of the µ-speciality of T , that is, we assume that

(8.3) ‖–P “ f
∼
: T → µ and f

∼
(t) 6= f

∼
(t′)

for all t, t′ ∈ T such that t and t′ are comparable ”.

a-refl-6

For t ∈ T we can define pt ∈ P and ξt < µ by induction on ht(t) such that
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(8.4) pt desides f
∼
(t) to be ξt; and a-refl-7

(8.5) pt′ ≤P pt if t ≤T t′. a-refl-8

Note that this is possible by the <µ+-closedness of P and (8.2). The mapping

f ∗ : T → µ defined by

(8.6) f ∗(t) = ξt for t ∈ T

witnesses the µ-speciality of T (in the ground model). This is a contradiction to

our assumption. (Lemma 8.2)

Proof of Proposition 8.1: Let G be a (V ,Pµ,κ)-generic filter. Note that

(8.7) V [G] |= κ = µ++. a-refl-9

Suppose that T = 〈T,≤T 〉 ∈ V [G] be a tree of size λ > µ+ (so λ is a cardinal in V

with λ ≥ κ) such that

(8.8) V [G] |= T is non µ-special. a-refl-10

We have to show that, in V [G], there is a non µ-special T ′ ∈ [T ]µ
+
.

Let j : V
4
→ M be a λ-strongly compact embedding. That is, j is an elementary

embedding such that

(8.9) κ = crit(j); a-refl-11

(8.10) κM ⊆ M ; and a-refl-12

(8.11) for all X ∈ [M ]≤λ (in V) there is Y ∈
(

[M ]<j(κ)
)M

with X ⊆ Y . a-refl-13

Note that we have λ < j(κ) by (8.11).

Let P
′ = j(Pµ,κ). Then, by (8.10), we have P

′ = Col(µ+, < j(κ)) (in V). Let

G
′ ⊇ G be a (V ,P′)-generic filter. j can be extended to j̃ : V [G]

4
→ M [G′] by

defining j̃(a
∼

G) = (j(a
∼
))G

′

for all Pµ,κ-name a
∼
.

Without loss of generality, we may assume that the underlying set of T is just

λ. Since | j ′′λ | = λ (in V), there is Y ∈
(

[M ]<j(κ)
)M

such that j ′′λ ⊆ Y .

Let T ∗ = 〈j ′′T,≤T ∗〉 where ≤T ∗ is the copy of ≤T defined by

(8.12) j(α) ≤T ∗ j(β) ⇔ α ≤T β for all α, β ∈ λ.

Then T ∗ ∈ V [G], T ∗ is a sbutree of j̃(T ) and, since T ∼= T ∗, V [G] |= “T ∗ is non µ-special”.

Let T ∗∗ = Y ∩j̃(T ). Since T ∗ is a subtree of T ∗∗, we have V [G] |= “T ∗∗ is non µ-special”.

Thus, by Lemma 8.2, V [G′] |= “T ∗∗ is non µ-special” and henceM [G′] |= “T ∗∗ is non µ-special”.

It follows that

(8.13) M [G′] |= “there is a non µ-special T ′ ∈ [j̃(T )]<j(κ)”. a-refl-14

Since M [G′] |= “j(κ) = µ++” by the elementarity of j, this means
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(8.14) M [G′] |= “there is a non µ-special T ′ ∈ [j̃(T )]<µ++
”. a-refl-15

Thus, again by the elementarity of j̃, it follows that

(8.15) V [G] |= “there is a non µ-special T ′ ∈ [T ]<µ++
”. a-refl-16

(Proposition 8.1)
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[7] Sakaé Fuchino and Hiroshi Sakai, On reflection and non-reflection of countable

list-chromatic number of graphs, Kôkyûroku, No.1790, (2012), 31–44.
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[13] Stevo Todorčević, On a conjecture of Rado, Journal London Mathematical

Society Vol.s2-27, (1) (1983), 1–8.
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