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Abstract

This note concerns the model theoretic properties of logics extending the

first-order logic with monadic (weak) second-order variables equipped with

the stationarity quantifier. The eight variations of the Strong Downward

Löwenheim-Skolem Theorem (SDLS) down to < ℵ2 for this logic with the

interpretation of second-order variables as countable subsets of the structures

are classified into four principles. The strongest of these four is shown to be

equivalent to the conjunction of CH and the Diagonal Reflection Principle

for internally clubness of S. Cox. We show that a further strengthening of

this SDLS and its variations follow from the Game Reflection Principle of

B.König and its generalizations.

1 Introduction and preliminaries
intro

For a first-order structure A, we denote with |A| the underlying set and ‖A‖ the

cardinality of the underlying set. Nevertheless, if we are talking about a set A, we

continue to denote the cardinality of A with |A |.
In the following, we assume that the signature of the structures we consider is

always countable.

Lℵ0,II denotes the weak (monadic) second-order logic with second-order vari-

ables X, Y , Z etc. whose intended interpretation is that they run over countable

subsets of the underlying set of a structure. We shall call this type of second-order

variables weak second-order variables (in ℵ0-interpretation). In this logic, in ad-

dition to the constructions of the first-order logic, we have the element relation

symbol ε as a logical predicate and allow the expression “x ε X” for a first order

variable x and a weak second-order variable X to make an atomic formula. We

also allow the quantification of the form “∃X” (and its dual “∀X”) over the weak

second-order variables X.

The relation symbol ε is simply interpreted as the element relation and the

interpretation of the quantifier ∃X in Lℵ0,II is defined by

(1.1) A |= ∃Xφ(a0, ..., am−1, B0, ..., Bn−1, X) ⇔ intro-0

there exists a B ∈ [ |A| ]ℵ0 such that A |= φ(a0, ..., am−1, B0, ..., Bn−1, B)

for a first-order structure A, an Lℵ0,II-formula φ in the signature of the structure A

with φ = φ(x0, ..., xm−1, X0, ..., Xn−1, X) where x0, ..., xm−1 are first-order and X0,

..., Xn−1, X second-order variables, a0, ..., am−1 ∈ |A| , and B0, ..., Bn−1 ∈ [ |A| ]ℵ0 .
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If we allow the weak second-order variables in ℵ0-interpretation and the logical

relation symbol ε but no quantification over the weak second-order variables, the

resulting logic is called Lℵ0 .

Lℵ0
stat is the logic obtained from Lℵ0 by adding the stationarity quantifier “statX”

(and its dual “aaX” but neither the existential nor universal quantification over

second-order variables). The semantics of the logic is defined by

(1.2) A |= statXφ(a0, ..., am−1, B0, ..., Bn−1, X) ⇔ sdls-0

{B ∈ [ |A| ]ℵ0 : A |= φ(a0, ..., am−1, B0, ..., Bn−1, B)} is stationary

for a first-order structure A, an Lℵ0
stat-formula φ in the signature of A with φ = φ(x0,

..., xm−1, X0, ..., Xn−1, X), a0, ..., am−1 ∈ |A| and B0, ..., Bn−1 ∈ [A]ℵ0 .

The stationarity quantifier was introduced in [17] and has been studied inten-

sively mainly in connection with the questions about the completeness of deduction

systems and the compactness. The reader may consult e.g. [2] or [20] for further

reference.

Lℵ0,II
stat is the weak second-order logic in which both types of quantifiers “∃X”

and “statX” are allowed.

The dual quantifier to the stationarity quantifier expresses “there are club

many”: for L = Lℵ0
stat or Lℵ0,II

stat and L-formula φ, let aaX φ be the abbreviation of

¬statX¬φ. By (1.2), we have

(1.3) A |= aaXφ(a0, ..., am−1, B0, ..., Bn−1, X) ⇔ sdls-2

{B ∈ [A]ℵ0 : A |= φ(a0, ..., am−1, B0, ..., Bn−1, B)} contains a club set.
!!

The first order quantifier Q where Qxφ is to be interpreted as “there are un-

countably many x such that φ” is expressible using the stationarity quantifier as

(1.4) statX ∃x (x 6ε X ∧ φ). sdls-2-0

For one of the logics L as above, and structures A, B of the same signature !!

with B ⊆ A, we say that B is L-elementary submodel of A (notation: B ≺L A) if,

for any formula φ(x0, ..., X0, ...) in L of the signature where x0, ... are first order

and X0, ... weak second-order variables, for any b0, ... ∈ |B| and for any countable

subsets B0, ... of |B| , we have

(1.5) B |= φ(b0, ..., B0, ...) holds if and only if A |= φ(b0, ..., B0, ...). sdls-3

B is a weakly L-elementary submodel of A (notation: B ≺−
L A), if

(1.6) B |= φ(b0, ..., bn−1) holds if and only if A |= φ(b0, ..., bn−1) holds sdls-4
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for all formulas φ = φ(x0, ...) in L without free weak second-order variables, and

for all b0, ..., bn−1 ∈ |B| .
The Strong Downward Löwenheim-Skolem Theorem1) for (formulas of a lan-

guage) L down to <κ is the assertion defined by

SDLS(L, < κ): For any structure A of countable signature there is B ≺L A of

cardinality < κ.

We also consider the Strong Downward Löwenheim-Skolem Theorem with re-

spect to the weak L-elementary submodel relation:

SDLS−(L, < κ): For any structure A of countable signature, there is B ≺−
L A of

cardinality < κ.

We shall call the cardinal κ as above the reflection cardinal or Löwenheim-

Skolem cardinal of the respective Strong Downward Löwenheim-Skolem Theorem.

Since all logics considered here contain full first order logic, we may restrict

ourselves to structures of relational signature, i.e. of such a signature that con-

tains only constant and relation symbols. We shall call such structures simply as

relational structures.

With the four logics introduced above and the two types of Strong Downward

Löwenheim-Skolem theorems with reflection cardinal “<ℵ2”, we obtain 8 possible

principles:

SDLS(Lℵ0 , <ℵ2), SDLS(Lℵ0,II , <ℵ2), SDLS(Lℵ0
stat, <ℵ2), SDLS(Lℵ0,II

stat , <ℵ2),
SDLS−(Lℵ0 , <ℵ2), SDLS−(Lℵ0,II , <ℵ2), SDLS−(Lℵ0

stat, <ℵ2), SDLS−(Lℵ0,II
stat , <ℵ2).

In Theorem 1.1 below, we show that these principles are classified into 4 equiv-

alence classes (over ZFC) and each of them is equivalent to one of well known

principles.

Some of these Strong Downward Löwenheim Skolem Theorems are very strong

combinatorial principles: in [16], M. Magidor noticed that the reflection of un-

countable coloring number of a graph down to a subgraph of cardinality ℵ1 follows

from SDLS−(Lℵ0
stat, <ℵ2). Since this reflection statement about coloring number

of graphs is equivalent to Fodor-type Reflection Principle (FRP, see [7], [8]), we

actually have the implication

(1.7) SDLS−(Lℵ0
stat, <ℵ2) implies FRP. sdls-4-a-a

1)The adjective “strong” is added to indicate that B in the statement of the property is not
merely elementarily equivalent to but also elementary submodel of A.
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FRP implies the total failure of square principle ([7]). Thus this principle is placed

very high in the hierarchy of consistency strength measured by large large cardinals.

Actually, all the known consistency proofs of FRP require at least the existence of

a strongly compact cardinal.

FRP also implies SCH ([10]) and shown to be equivalent to many “mathemati-

cal” reflection statements ([7], [8], [9], [10]).

It is also easy to see that SDLS−(Lℵ0
stat, <ℵ2) is strictly stronger than FRP: it is

easy to see that SDLS−(Lℵ0
stat, <ℵ2) implies the reflection principle on stationarity

of subsets of [λ]ℵ0 which is called RP in [14]. RP implies FRP ([7]). This implication

is strict: FRP is known to be consistent with arbitrarily large continuum (see [7])

while RP implies 2ℵ0 ≤ ℵ2 (Todorčević, see Theorem 37.18 in [14]).

For the Diagonal Reflection Principle DRP(ICℵ0) mentioned in the next Theorem

see Section 3.
main-thm

Theorem 1.1 ( 1 ) SDLS−(Lℵ0 , <ℵ2) is a theorem in ZFC.

( 2 ) Each of SDLS(Lℵ0 , <ℵ2), SDLS−(Lℵ0,II , <ℵ2) and SDLS(Lℵ0,II , <ℵ2) is

equivalent to CH (over ZFC).

( 3 ) SDLS−(Lℵ0
stat, <ℵ2) is equivalent to DRP(ICℵ0) (over ZFC).

( 4 ) Each of CH + SDLS−(Lℵ0
stat, <ℵ2), SDLS−(Lℵ0,II

stat , <ℵ2), SDLS(Lℵ0
stat, <ℵ2)

and SDLS(Lℵ0,II
stat , <ℵ2) is equivalent to CH + DRP(ICℵ0) (over ZFC).

( 1 ) is trivial: SDLS−(Lℵ0 , < κ) is a reformulation of the usual Downward

Löwenheim Skolem Theorem for first-order logic down to an elementary structure

of cardinality < κ. In particular, SDLS−(Lℵ0 , <ℵ2) is also a theorem in ZFC.

( 2 ) of Theorem 1.1 is proved in the following Section 2. The rest of the proof

will be given in Section 3.

In Section 4, we consider a generalization of Game Reflection Principle by Bern-

hard König and show that this principle unifies the picture of reflection properties

(including the Löwenheim-Skolem-Theorem type statements considered here).

In the continuation of the present paper [13], we will discuss the possibility of

Strong Löwenheim-Skolem Theorems of stationary logics down to continuum (i.e.

with the reflection cardinal either “< 2ℵ0” or “≤ 2ℵ0”) under very large continuum.

Before finishing this section we cite some basic facts about club and stationary

sets used repeatedly in the following sections.
L-basics-a

Lemma 1.2 Suppose that κ is a regular uncountable cardinal and X, Y are sets

with X ⊆ Y . For A ⊆ [X]<κ, let !!

(1.8) Ã = {b ∈ [Y ]<κ : b ∩X ∈ A}. basics-0-0
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Then we have;

( 1 ) A contains a club in [X]<κ if and only if Ã contains a club in [Y ]<κ.

( 2 ) A is stationary in [X]<κ if and only if Ã is stationary in [Y ]<κ.

Proof. ( 1 ): Suppose that C ⊆ A is a club in [X]<κ. Then

(ℵ1.1) C̃ = {b ∈ [Y ]<κ : b ∩X ∈ C}

is a club in [Y ]<κ and C̃ ⊆ Ã.

Suppose now that C̃ ⊆ Ã is a club in [Y ]<κ. We show that A contains

a club in [X]<κ. Let θ be a sufficiently large regular cardinal and let

(ℵ1.2) A = 〈H(θ),∈, ◁,X, Y, κ, C̃〉 basics-1

where ◁ is a well-ordering on H(θ) (we shall denote the corresponding

relation symbol also with ◁) and X, Y , κ, C̃ are interpretations of constant

symbols X , Y , κ, C̃ respectively.

For a ∈ P(H(θ)), we shall denote with skA
∗ (a) the ⊆-minimal subset

c of H(θ) such that

(ℵ1.3) a ⊆ c; basics-1-0

(ℵ1.4) κ ∩ c < κ; basics-1-1

(ℵ1.5) c is closed with respect to all definable functions in A. basics-1-2

skA
∗ (a) is well-defined since κ is regular.

(ℵ1.6) A ↾ sk ∗
A(a) ≺ A basics-1-3

by (ℵ1.5) and since A has definable Skolem functions because of ◁.

Thus,

(ℵ1.7) b ⊆ skA
∗ (a) holds for all b ∈ skA

∗ (a) ∩ [H(θ)]<κ. basics-2

C-basics-0

Claim 1.2.1 For any a ∈ [H(θ)]<κ, Y ∩ skA
∗ (a) ∈ C̃.

` By (ℵ1.7) and the elementarity (ℵ1.6), we have
⋃

(C̃∩skA
∗ (a)) =

⋃
C̃

skA
∗ (a) =

Y ∩ skA
∗ (a). Since C̃ ∩ skA

∗ (a) = C̃
skA

∗ (a)
is directed by the elementarity

(ℵ1.6): [ we have skA
∗ (a) |=“ C̃ is directed” since A |=“ C̃ is directed”],

we also have
⋃

(C̃ ∩ skA
∗ (a)) ∈ C̃. a (Claim 1.2.1)

Let

(ℵ1.8) C = {a ∈ [X]<κ : skA(a) ∩X = a}. basics-3
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Clearly C is a club ⊆ [X]<κ. Thus the following Claim concludes the

proof.
C-basics-1

Claim 1.2.2 C ⊆ A.

` For a ∈ C, we have a = skA(a)∩X = (skA(a)∩Y )∩X. skA(a)∩Y ∈ C̃ ⊆
Ã by Claim 1.2.1. Thus, by the definition (1.8) of Ã, it follows that

a ∈ A. a (Claim 1.2.2)

( 2 ): Suppose that A is not stationary in [X]<κ then there is a club

C ⊆ [X]<κ disjoint from A. C̃ = {c̃ ∈ [Y ]<κ : c̃ ∩X ∈ C} is then a club

disjoint from Ã. Thus Ã is not stationary in [Y ]<κ.

Suppose now that Ã is not stationary in [Y ]<κ and let C̃ be a club

disjoint from Ã. Let A be the structure defined as in (ℵ1.2) for this

C̃.

(ℵ1.9) C = {a ∈ [X]<κ : a = skA
∗ (a) ∩X} basics-4

is then a club ⊆ [X]<κ. For each a ∈ C, we have skA
∗ (a) ∩ Y ∈ C̃ by

Claim 1.2.1. Thus skA
∗ (a)∩Y 6∈ Ã. It follows that a = (skA

∗ (a)∩Y )∩X 6∈
A. Thus C is disjoint from A and A is not stationary. (Lemma 1.2)

L-basics-0

Lemma 1.3 Suppose that κ, X, Y are as in Lemma 1.2 with |X | ≥ κ. Suppose

A∗ ⊆ [Y ]<κ and let

(1.9) A = {a ∈ [X]<κ : a = b ∩X for some b ∈ A∗}. basics-4-0

( 1 ) If A∗ contains a club ⊆ [Y ]<κ then A also contains a club ⊆ [X]<κ.

( 2 ) If A∗ is stationary in [Y ]<κ then A is stationary in [X]<κ.

Proof.

Let Ã be defined by (1.8) for our A. Note that we have A∗ ⊆ Ã.

( 1 ): If A∗ contains a club in [Y ]<κ then Ã also contains a club.

By Lemma 1.2, ( 1 ), it follows that A contains a club in [X]<κ.

( 2 ): If A is not stationary in [X]<κ then Ã is not stationary in

[Y ]<κ by Lemma 1.2, ( 2 ). Thus A∗ is neither stationary in [Y ]<κ. (Lemma 1.3)

2 Proof of Theorem 1.1, (2)
prelim

Suppose that L is one of the four logics Lℵ0 , Lℵ0,II , Lℵ0
stat, L

ℵ0,II
stat . For a cardinal κ,

we also consider the following strengthenings of the Strong Downward Löwenheim-

Skolem Theorems introduced in the last section:
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SDLS+(L, < κ): For any structure A = 〈A, ...〉 of countable signature with |A | ≥
κ, there are stationarily many M ∈ [A]<κ such that A ↾M ≺L A.

SDLS−
+(L, < κ): For any structure A = 〈A, ...〉 of countable signature with |A | ≥

κ, there are stationarily many M ∈ [A]<κ such that A ↾M ≺−
L A.

For κ = ℵ2 the +-version of the Strong Downward Löwenheim-Skolem The-

orems are equivalent to the corresponding Strong Downward Löwenheim-Skolem

Theorems without +.
P-sdls-0

Lemma 2.1 Suppose L is one of the four logics as above. Then

( 1 ) SDLS+(L, <ℵ2) and SDLS(L, <ℵ2) are equivalent and

( 2 ) SDLS−
+(L, <ℵ2) and SDLS−(L, <ℵ2) are equivalent.

Proof. SDLS−
+(Lℵ0 , <ℵ2) is a consequence of corresponding Löwenheim-Skolem

Theorem for first-order logic and hence a theorem in ZFC as is the case with

SDLS−(Lℵ0 , <ℵ2).
In the following, we show the equivalences “SDLS+(Lℵ0 , <ℵ2) ⇔ SDLS(Lℵ0 , <ℵ2)”

and

“SDLS−
+(Lℵ0

stat, <ℵ2) ⇔ SDLS(Lℵ0
stat, <ℵ2)”. Other cases can be proved similarly.

In both of the cases, the direction “⇒” is clear. So we only show the implication

“⇐”.

To prove the implication “SDLS+(Lℵ0 , <ℵ2) ⇐ SDLS(Lℵ0 , <ℵ2)”, assume that

SDLS(Lℵ0 , <ℵ2) holds. Suppose that A = 〈A, ...〉 is a structure of countable signa-

ture and of cardinality ≥ ℵ2 and D ⊆ [A]ℵ1 is a club. We want to show that there

is B ∈ D such that A ↾ B ≺Lℵ0 A.

Without loss of generality, we may assume that A is relational.

Let λ be a regular cardinal such that A ∈ H(λ). Note that we have A ∈ H(λ)

and hence A ⊆ H(λ).

Let

(2.1) Ã = 〈H(λ), A,A, D, ∈〉 sdls-5

where we assume A = A Ã for a unary relation symbol A, A = A Ã and D = D Ã

for constant symbols A and D .

By SDLS(Lℵ0 , <ℵ2), there is a B̃ ≺Lℵ0 Ã such that | B̃ | ≤ ℵ1 for B̃ = |B̃| .
Cl-sdls-0

Claim 2.1.1 ω1 ⊆ B̃.

` By elementarity (in the first-order logic), we have ω1 ∩ B̃ ≤ ω1. For any

U ∈ [ω1 ∩ B̃]ℵ0 , we have
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(2.2) Ã |=“∃x (x ∈ ω1 ∧ ∀y (y ε U → y ∈ x))”. sdls-6

It follows that

(2.3) B̃ |=“∃x (x ∈ ω1 ∧ ∀y (y ε U → y ∈ x))”. sdls-7

Since U is an arbitrary countable set with U ∈ [ω1∩B̃]ℵ0 , this implies that ω1 ⊆ B̃.

a (Claim 2.1.1)

Let B = |A| ∩ B̃ and B = A ↾ B.
Cl-sdls-1

Claim 2.1.2 B ∈ D.

` For D ∈ D ∩ B̃, we have D ⊆ B by Claim 2.1.1 and elementarity. Also by

elementarity, D∩B̃ is directed and cofinal in [A]ℵ1 . It follows that B =
⋃

(D∩B̃) ∈
D. a (Claim 2.1.2)

Cl-sdls-0-0

Claim 2.1.3 ( 1 ) [B̃]ℵ0 ⊆ B̃.

( 2 ) For an Lℵ0-formula φ = φ(x0, ..., X0, ...) in the signature of A, a0, ... ∈ B
and U0, ... ∈ [B]ℵ0, we have

(2.4) B̃ |=“ A |= φ(a0, ..., U0, ...)” ⇔ B |= φ(a0, ..., U0, ...). sdls-8

` ( 1 ): Suppose U ∈ [B̃]ℵ0 . Then we have Ã |= “∃x∀y(y ε U ↔ y ∈ x)”. By

elementarity we also have B̃ |=“∃x∀y(y ε U ↔ y ∈ x)” this means that U ∈ B̃.

( 2 ): This follows from ( 1 ). a (Claim 2.1.3)

The following Claim together Claim 2.1.2 shows that our B is as desired.
Cl-sdls-0-1

Claim 2.1.4 B ≺Lℵ0 A.

` Suppose that φ = φ(x0, ..., X0, ...) is an Lℵ0-formula in the signature of A,

a0, ... ∈ B and U0, ... ∈ [B]ℵ0 . Then we have

(2.5) A |= φ(a0, ..., U,...) ⇔ Ã |=“ A |= φ(a0, ..., U,...)”

⇔ B̃ |=“ A |= φ(a0, ..., U,...)” ; by B ≺Lℵ0 A

⇔ B |= φ(a0, ..., U,...) ; by Claim 2.1.3, ( 2 ).

sdls-9

a (Claim 2.1.4)

To prove the implication SDLS−
+(Lℵ0

stat, <ℵ2)⇐ SDLS−(Lℵ0
stat, <ℵ2), assume that

SDLS−(Lℵ0
stat, <ℵ2) holds. Let A = 〈A, ...〉 be a structure of cardinality ≥ ℵ2 and

D ⊆ [A]ℵ1 is a club.
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We want to show that there is B ∈ D such that A ↾ B ≺−
Lℵ0
stat

A. Without loss

of generality, we may assume that A is relational.

Let Ã be defined as in (2.1). By SDLS−(Lℵ0
stat, <ℵ2), there is B̃ ≺−

Lℵ0
stat

Ã such

that | B̃ | ≤ ℵ1 for B̃ = |B̃| .
We can show again that ω1 ⊆ B̃ since ω1∩B̃ is uncountable by the elementarity

B̃ ≺−
Lℵ0
stat

Ã (remember (1.4)). Hence we can repeat the argument of Claim 2.1.2 to

show B ∈ D.

Thus the following Claim implies that our B is as desired.
Cl-sdls-2

Claim 2.1.5 For an Lℵ0
stat-formula φ = φ(x0, ..., X0, ...) in the signature of the

structure A, a0, ... ∈ B and U0, ... ∈ [B]ℵ0 ∩ B̃, we have

(2.6) B̃ |=“ A |= φ(a0, ..., U0, ...)” ⇔ B |= φ(a0, ..., U0, ...). sdls-10

` By induction on φ. The critical step is when

(2.7) φ(x0, ..., X0, ...) = statX ψ(x0, ..., X0, ..., X)

and (2.6) holds for ψ. (2.6) can be shown in this case by

A |= φ(a0, ..., U0, ...)

⇔ Ã |=“ A |= φ(a0, ..., U0, ...)”

⇔ B̃ |=“ A |= φ(a0, ..., U0, ...)”

⇔ B̃ |=“ A |= statX, ψ(a0, ..., U0, ..., X)”

⇔ B̃ |=“ statX ∃x (x ≡ X ∩ A ∧ A |= ψ(a0, ..., U0, ..., x))” ; (a)

⇔ {a ∈ [B]ℵ0 ∩ B̃ : B |= ψ(a0, ..., U0, ..., a)} is stationary ; (b)

⇔ B |= statX ψ(a0, ..., U0, ..., X)

⇔ B |= φ(a0, ..., U0, ...).

The equivalence of (a) and the line above it holds by the elementarity B̃ ≺−
Lℵ0
stat

Ã

and since the corresponding equivalence also holds in Ã. The equivalence of (b)

and the line above it holds by induction hypothesis. a (Claim 2.1.5)

(Lemma 2.1)

The following Proposition 2.2 together with Lemma 2.1 implies Theorem 1.1, ( 2 ):
P-sdls-1

Proposition 2.2 Suppose that κ is a cardinal with cf(κ) ≥ ω2. Then the following

are equivalent:

( a ) µℵ0 < κ for all µ < κ; ( b ) SDLS+(Lℵ0 , < κ); ( c ) SDLS−
+(Lℵ0,II , < κ);

( d ) SDLS+(Lℵ0,II , < κ).
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Proof. ( d ) ⇒ ( b ) and ( d ) ⇒ ( c ) are clear.

( b ) ⇒ ( a ): Assume SDLS+(Lℵ0 , < κ) and µ < κ. We want to show that

µℵ0 < κ. Let A = 〈κ ∪ P(µ), µ, E〉 where E = {〈α, a〉 : α ∈ µ, a ∈ P(µ), α ∈ a}
and, µ and E are interpretations of the unary and binary relation symbols µ

and E , respectively. Let B = 〈B, µB, EB〉 be an Lℵ0-elementary submodel of A of

cardinality< κ such that µ ⊆ B (there is such B since {D ∈ [A]<κ : µ ⊆ D} is club

in [A]<κ). Consider the Lℵ0-formula φ(X) = ∃x∀y(µ(y) → (y ε X ↔ E (y, x))).

For all U ∈ [µB]ℵ0 , we have A |= φ(U). By elementarity, it follows that B |= φ(U).

This implies that U ∈ |B| . Thus [µB]ℵ0 ⊆ |B| . Since µB = µ, µℵ0 ≤ ‖B‖ < κ.

( c ) ⇒ ( a ): Assume SDLS−
+(Lℵ0,II , < κ) and µ < κ. Let A be as in the proof

of “( b ) ⇒ ( a )” Consider the Lℵ0,II-sentence in L:

(2.8) ψ = ∀X(“X ⊆ µ”→ ∃x∀y (µ(y)→ (y ε X ↔ E (y, x))))

where “X ⊆ µ” is an abbreviation of ∀x (x ε X → µ(x)). Clearly we have A |= ψ.

Let B ≺−
Lℵ0,II

A be of cardinality < κ with µ ⊆ |B| . Since B |= ψ by the

elementarity, [µB]ℵ0 ⊆ |B| . Thus we again have µℵ0 ≤ ‖B‖ < κ.

( a ) ⇒ ( d ): Assume ( a ) and let A be structure in countable signature with

‖A‖ ≥ κ. Let A = |A| and let D ⊆ [A]<κ be a club in [A]<κ. We want to show

that there is M ∈ D such that A ↾M ≺Lℵ0,II A.

Without loss of generality, we may assume that the signature of the structure

is relational. Let θ be a regular cardinal such that A ∈ H(θ). Let

(2.9) Ã = 〈H(θ), A,A,∈〉 sdls-4-0

where we assume that A = A Ã for a unary predicate symbol A and A = A Ã for a

constant symbol A.

The following claim can be proved by induction on Lℵ0,II-formula φ:
C-sdls-a-0

Claim 2.2.1 Suppose that φ(x0, ..., xm−1, Y0, ..., Yn−1) is an Lℵ0,II-formula in L.

Suppose further that C̃ ≺ Ã with C = A C̃ = A ∩ |C̃| is such that [C]ℵ0 ⊆ |C̃| .
Then for any a0, ..., am−1 ∈ C and U0, ..., Un−1 ∈ [C]ℵ0,

(2.10) C̃ |=“ A |= φ(a0, ..., am−1, U0, ..., Un−1)”

⇔ A ↾ C |= φ(a0, ..., am−1, U0, ..., Un−1). a
Let B̃ ∈ [H(θ)]<κ be such that, letting B̃ = Ã ↾ B̃,

(2.11) B̃ ≺ Ã, sdls-11-a-0

(2.12) A ∩ B̃ ∈ D and sdls-11-a-1

(2.13) [B̃]ℵ0 ⊆ B̃. sdls-4-1
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Note that B̃ as above can be obtained as the union of increasing chain 〈Bα : α < !!

ω1〉 of (underlying sets of) elementary submodels of Ã of cardinality <κ together

with an increasing sequence 〈Dα : α < ω1〉 of elements of D such that A∩Bα ⊆ Dα,

and [Bα]ℵ0 , Dα ⊆ Bα+1 for all α < ω1. This is possible by ( a ) and cf(κ) ≥ ω2.

The union B̃ =
⋃

α<ω1
Bα =

⋃
α<ω1

Dα then satisfies (2.11), (2.12), (2.13). | B̃ | < κ

and B̃ ∈ D by cf(κ) ≥ ω2.

Let B = A ↾ AB̃ = A ↾ (A ∩ B̃). Then we have ‖B‖ < κ and thus X ⊆ |B| .
We claim B ≺Lℵ0,II A:

Let B = |B| and suppose φ = φ(x0, ..., xm−1, Y0, ..., Yn−1) is an Lℵ0,II-formula.

For a0, ..., am−1 ∈ B and U0, ..., Un−1 ∈ [B]ℵ0 , we have

(2.14) A |= φ(a0, ..., am−1, U0, ..., Un−1) sdls-4-3

⇔ Ã |=“ A |= φ(a0, ..., am−1, U0, ..., Un−1)” by Claim 2.2.1,

⇔ B̃ |=“ A |= φ(a0, ..., am−1, U0, ..., Un−1)” by elementarity,

⇔ B |= φ(a0, ..., am−1, U0, ..., Un−1) by Claim 2.2.1.

(Proposition 2.2)

3 Diagonal Reflection Principle
DRP

Let us first recall The Diagonal Reflection Principle introduced by S. Cox in [1].

Let κ be a regular uncountable cardinal. For a class C of sets of size < κ and

a cardinal θ > κ the Diagonal Reflection Principle for κ, θ, and C is the following

statement:

DRP(<κ, θ, C): There are stationarily many M ∈ [H((θℵ0)+)]<κ such that

( 1 ) M ∩H(θ) ∈ C; and

( 2 ) for all R ∈M such that R is a stationary subset of [θ]ℵ0 ,

R ∩ [θ ∩M ]ℵ0 is stationary in [θ ∩M ]ℵ0 .

We shall call M as above a reflection point of DRP(<κ, θ, C).
For a cardinal µ, let

(3.1) IUµ = {X : [X]µ ∩X is cofinal in [X]µ}; DRP-0

(3.2) ISµ = {X : [X]µ ∩X is stationary [X]µ}; DRP-1

(3.3) ICµ = {X : [X]µ ∩X contains a subset which is club in [X]µ}. DRP-3
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Elements of IUµ, ISµ, ICµ are said to be internally unbounded, internally stationary

and internally club (with respect to subsets of cardinality µ) respectively.

The Diagonal Reflection Principle with reflection cardinal κ for internally club-

ness is the statement:

DRP(<κ, ICℵ0): DRP(<κ, θ, ICℵ0) holds for all cardinals θ ≥ κ.

DRP(<κ, IUℵ0) and DRP(<κ, ISℵ0) are defined similarly. Finally if κ = ℵ2, we

drop the mention on κ and write DRP(IUℵ0), DRP(ISℵ0) and DRP(ICℵ0) instead of

DRP(<ℵ2, IUℵ0), DRP(<ℵ2, ISℵ0) and DRP(<ℵ2, ICℵ0), respectively.

DRP(ICℵ0) is one of the Diagonal Reflection Principles Cox considered in [1]2) .

We shall call DRP(IUℵ0) (DRP(ISℵ0) or, DRP(ICℵ0) respectively) the Diagonal Re-

flection Principle for internally unboundedness (for internally stationarity or, for

internal clubness, respectively).

We can also consider the following variations of the reflection principle which

is simply called RP in [14]:

For a class C as above and cardinals κ and λ, let

RP(<κ, θ, C): For any stationary S ⊆ [θ]ℵ0 there are stationarily many M ∈
[H(θ)]<κ such that

( 1 ) M ∈ C; and

( 2 ) S ∩ [θ ∩M ]ℵ0 is stationary in [θ ∩M ]ℵ0 .

Let

RPICℵ0
: RP(<ℵ2, θ, ICℵ0) holds for all regular θ ≥ ℵ2.

Let RCIUℵ0
and RCISℵ0

be defined similarly to RCICℵ0
. RCIUℵ0

is equivalent to the !!

principle known as Axiom R of Fleissner (see [12]).

The following implications are trivial possibly except the ones in left and right

ends; the leftmost implication is proved in [7] while the proofs of rightmost (hori-

zontal) implications are to be found in [1] and [14]:

DRP(IUℵ0) ← DRP(ISℵ0) ← DRP(ICℵ0) ← MA+ω1(σ-closed)

↓ ↓ ↓ ↓
FRP ← RPIUℵ0

← RPISℵ0
← RPICℵ0

← MA+(σ-closed)

The local versions DRP(<κ, θ, C) of the Diagonal Reflection Principles (as well

as Reflection Principles RP(<κ, θ, C)) enjoy the following type of downward transfer

property:
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P-DRP-0

Lemma 3.1 Suppose that C is one of IUℵ0, ISℵ0, ICℵ0, κ is a regular cardinal and

θ, θ′ are cardinals with κ ≤ θ < θ′. Then DRP(<κ, θ′, C) implies DRP(<κ, θ, C).

Proof. Assume that DRP(<κ, θ′, C) holds and suppose that D is a club set in

[H((θℵ0)+)]<κ. We have to show that there is M ∈ D such that

( 1 ) M ∩H(θ) ∈ C; and

( 2 ) for all R ∈M such that R is a stationary subset of [θ]ℵ0 , R ∩ [θ ∩M ]ℵ0 is

stationary in [θ ∩M ]ℵ0 .

Let

(3.4) D′ = {N ∈ [H((θ′ ℵ0)+)]<κ : ( a ) N ∩H((θℵ0)+) ∈ D, ( b ) κ, θ ∈ N,
and ( c ) N ≺ H((θ′ ℵ0)+)}.

DRP-4

ThenD′ contains a club set in [H((θ′ ℵ0)+)]<κ by Lemma 1.2. Thus, by DRP(<κ, θ′, C),
there is M ′ ∈ D′ such that

( 1 )′ M ′ ∩H(θ′) ∈ C; and

( 2 )′ for all R ∈M ′ such that R is a stationary subset of [θ′]ℵ0 , R ∩ [θ′ ∩M ′]ℵ0

is stationary in [θ′ ∩M ′]ℵ0 .

Let M = M ′ ∩ H((θℵ0)+). Then M ∈ D by (3.4), ( a ). By Lemma 1.2 and

Lemma 1.3, ( 2 )′ above implies that M satisfies ( 2 ).

By Lemma 1.3, the following Claim implies that M satisfies ( 1 ).
Cl-DRP-0

Claim 3.1.1 For any a ∈M ′, if | a | < θ, we have a ∩H(θ) ∈M .

` H(θ) is definable in H(θ′) with the parameter θ. Let χ(x, θ) be a formula

definingH(θ) inH(θ′). That is, for all a ∈ H(θ′) we haveH(θ′) |= χ(a, θ) if and only

if a ∈ H(θ). By (3.4), ( b ) and ( c ), and by elementarity, χ(x, θ) defines M ∩H(θ)

in M ′. Since H((θ′ℵ0)+) |= “∀x∃y∀z (z ∈ y ↔ z ∈ x ∧ χ(z, θ))”, it follows that

M ′ |=“∀x∃y∀z (z ∈ y ↔ z ∈ x∧χ(z, θ))”. Thus, for a ∈M ′ we have a∩H(θ) ∈M ′.

If | a | < θ, we have a ∩H(θ) ∈ H(θ) and hence a ∩H(θ) ∈M ′ ∩H(θ) ⊆M .

a (Claim 3.1.1)

(Lemma 3.1)

Let C be one of IUℵ0 , ISℵ0 , ICℵ0 . Let κ and λ be cardinals with κ ≤ λ. We later

show that the global version of following principle characterizes the (global version

of the) Diagonal Reflection Principles.

2) In [1], the definition of DRP refers only regular θ but by Lemma 3.1 this does not make any
difference.
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(∗)C<κ,λ: For any countable expansion Ã of 〈H(λ),∈〉 and sequence 〈Sa : a ∈ H(λ)〉
such that Sa is a stationary subset of [H(λ)]ℵ0 for all a ∈ H(λ), there is

an M ∈ [H(λ)]<κ such that

( 1 ) M ∈ C;
( 2 ) Ã ↾M ≺ Ã and

( 3 ) Sa ∩ [M ]ℵ0 is stationary in [M ]ℵ0 for all a ∈M .

In the following, we also consider two further variations of this principle. The

first one can be considered as the “internal” version of (∗)C<κ,λ. This variation will

play an important roll in the sequel [13] of the present paper. The relation of the

second variation to (∗)C<κ,λ parallels to the relation of SDLS−
+(· · · ) to SDLS−(· · · ).

(∗)int C
<κ,λ: For any countable expansion Ã of 〈H(λ),∈〉 and sequence 〈Sa : a ∈ H(λ)〉

such that Sa is a stationary subset of [H(λ)]ℵ0 for all a ∈ H(λ), there is

an M ∈ [H(λ)]<κ such that

( 1 ) M ∈ C;
( 2 ) Ã ↾M ≺ Ã and

( 3 )′ Sa ∩M is stationary in [M ]ℵ0 for all a ∈M .

(∗)+ C
<κ,λ: For any countable expansion Ã of 〈H(λ),∈〉 and sequence 〈Sa : a ∈ H(λ)〉

such that Sa is a stationary subset of [H(λ)]ℵ0 for all a ∈ H(λ), there are

stationarily many M ∈ [H(λ)]<κ such that

( 1 ) M ∈ C;
( 2 ) Ã ↾M ≺ Ã and

( 3 ) Sa ∩ [M ]ℵ0 is stationary in [M ]ℵ0 for all a ∈M . (3) modified
after the sub-
mission.

P-DRP-1

Lemma 3.2 Suppose that κ is a regular cardinal and λ a cardinals such that ℵ1 <
κ ≤ λ.

( 1 ) If C is one of IUℵ0, ISℵ0, then (∗)int C
<κ,λ implies (∗)C<κ,λ.

( 2 ) (∗)int ICℵ0
<κ,λ is equivalent to (∗)ICℵ0

<κ,λ.

( 3 ) If C is one of IUℵ0, ISℵ0, ICℵ0 then (∗)+C
<ℵ2,λ

is equivalent to (∗)C<ℵ2,λ
.

Proof. ( 1 ) is immediate from definitions.

( 2 ) follows from the fact that, if M is internally club, then for any stationary

S ⊆ [M ]ℵ0 , S ∩M is also stationary in [M ]ℵ0 .

( 3 ) can be proved similarly to Lemma 2.1. (Lemma 3.2)
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P-DRP-2

Lemma 3.3 Suppose that C is one of IUℵ0, ISℵ0, ICℵ0. For a regular κ and cardi-

nals λ, λ′ with ℵ1 < κ ≤ λ < λ′, (∗)C<κ,λ′ implies (∗)C<κ,λ, (∗)int C
<κ,λ′ implies (∗)int C

<κ,λ

and (∗)+C
<κ,λ′ implies (∗)+C

<κ,λ.

Proof. We prove the first implication. The other implications can proved

similarly.

Assume that κ, λ, λ′ are as above and (∗)C<κ,λ′ holds. Suppose that A

is a countable expansion of the structure 〈H(λ),∈〉 and 〈Sa : a ∈ H(λ)〉
a family of stationary subsets of [H(λ)]ℵ0.

Let Ã = 〈H(λ′), λ,H(λ), ...︸ ︷︷ ︸
=A

,∈〉 and let 〈S̃a : a ∈ H(λ′)〉 be defined by:

(ℵ3.1) S̃a =

{
{x ∈ [H(λ′)]ℵ0 : x ∩H(λ) ∈ Sa}, if a ∈ H(λ);

[H(λ′)]ℵ0 , otherwise.
sdls-6-0

Note that S̃a is stationary in [H(λ′)]ℵ0 for all a ∈ H(λ′) by Lemma 1.2.

By (∗)C<κ,λ′ there is N ∈ [H(λ′)]<κ such that N ∈ C, Ã ↾ N ≺ Ã and

S̃a ∩ [N ]ℵ0 is stationary in [N ]ℵ0 for all a ∈ N.

Let M = H(λ) ∩N. Then A ↾ N ≺ A and N ∈ C. The latter follows

from Lemma 1.3 and a claim corresponding to Claim 3.1.1.

For a ∈ M, S̃a ∩ [N ]ℵ0 is stationary by the choice of N. By Lemma

1.3, it follows that Sa ∩ [M ]ℵ0 = (S̃a ∩ [N ]ℵ0) ∩ [M ]ℵ0 is also stationary

in [M ]ℵ0.

This shows that (∗)C<κ,λ holds for the structure A. (Lemma 3.3)

L-sdls-0-1

Lemma 3.4 Suppose that C is one of IUℵ0, ISℵ0, ICℵ0. For a regular cardinal !!

κ > ℵ1, DRP(<κ, C) holds if and only if

(3.5) (∗)+ C
<κ,λ holds for all cardinal λ ≥ κ. sdls-11-0

Proof. By Lemma 3.1 and Lemma 3.3, it is enough to prove the following:

Claim 3.4.1 For a regular cardinal κ and a cardinal θ such that

(3.6) θ = 2<θ and sdls-12

(3.7) cf(θ) ≥ κ, sdls-13

(∗)+ C
<κ,θ is equivalent to DRP(<κ, θ, C).
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` Note that (3.6) and (3.7) imply that θ<κ = θ and θ = 2<θ = |H(θ) |.
Assume first that DRP(<κ, θ, C) holds. Let A be a countable expansion of

H(θ), 〈Sa : a ∈ H(θ)〉 a family of stationary subsets of [H(θ)]ℵ0 and D ⊆ [H(θ)]<κ

a club. Let g : H(θ)→ θ be a bijection. Let

(3.8) Ã = 〈H((θℵ0)+), H Ã, ...︸ ︷︷ ︸
=A

, S Ã, g Ã,∈〉

where H is a unary relation symbol and S , g unary function symbols with

(3.9) H Ã = H(θ),

(3.10) S Ã = {〈a, Sa〉 : a ∈ H(θ)} ∪ {〈a, ∅〉 : a ∈ H((θℵ0)+) \ H(θ)} and

(3.11) g Ã ⊇ g.

Let

(3.12) D̃ = {M ∈ [H((θℵ0)+)]<κ : ( 1 ) M ∩H(θ) ∈ D, ( 2 ) θ ∈M,

( 3 ) Ã ↾M ≺ Ã, ( 4 ) κ ∩M < κ}.
sdls-6-1-a

Then D̃ contains a club in [H((θℵ0)+)]<κ by Lemma 1.3. Thus, by DRP(<κ, θ, C),
there is

(3.13) M+ ∈ D̃ sdls-6-1-0

such that

(3.14) M+ ∩H(θ) ∈ C and sdls-6-2

(3.15) for all R ∈ M+ such that R is a stationary subset of [θ]ℵ0 , R ∩ [θ ∩M ]ℵ0
sdls-6-3

is stationary.

Let M = H(θ) ∩M+. By (3.13) and (3.12), ( 3 ), we have Ã ↾ M ≺ Ã. M ∈ D
by (3.12), ( 1 ), and M ∈ C by (3.14). By virtue of g Ã↾M+

and S Ã↾M+

, and by

elementarity, (3.15) implies that Sa ∩ [M ]ℵ0 is stationary in [M ]ℵ0 for all a ∈ M .

Thus, M witnesses (∗)+ C
<κ,θ for the structure A and the sequence 〈Sa : a ∈ H(θ)〉.

Assume now that (∗)+ C
<κ,θ holds and suppose that D ⊆ [H((θℵ0)+)]<κ is a club.

We have to find M ∈ D satisfying ( 1 ) and ( 2 ) in the definition of DRP(<κ, θ, C).
Let A = 〈H((θℵ0)+), DA,∈〉 where D is a unary predicate symbol and DA = D.

Let N ∈ [H((θℵ0)+)]θ be such that A ↾ N ≺ A H(θ) ⊆ N and [N ]<κ ⊆ N . We

can find such N by (3.6) and (3.7).

D ∩N is then a club in [N ]<κ.

Let g : N → H(θ) and h : H(θ)→ θ be bijections such that g ↾ [θ]≤ω = id[θ]≤ω .

Let
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(3.16) A0 = 〈H(θ),∈, ...︸︷︷︸
the structure A ↾ N

translated by g

, hA0〉 sdls-6-4

where h is a unary function symbol with hA0 = h and let

(3.17) Sa =


{x ∈ [H(θ)]ℵ0 : x ∩ θ ∈ g−1(a)},

if g−1(a) is a stationary subset of [θ]ℵ0 ;

H(θ),

otherwise

sdls-6-5

for a ∈ H(θ).

By (∗)+ C
<κ,θ, there is M0 ∈ [H(θ)]<κ such that M0 ∈ C, A0 ↾M0 ≺ A0, κ∩M0 < κ

and Sa ∩ [M0]
ℵ0 is stationary in [M0]

ℵ0 for all a ∈ M0. Let M = g−1 ′′M0. Then

M ∈ D (this can be shown similarly to Claim 2.1.2) and M satisfies ( 1 ) and ( 2 )

in the definition of DRP(<κ, θ, C). a (Claim 3.4.1)

(Lemma 3.4)

P-DRP-3

Lemma 3.5 Suppose that κ > ℵ1 is a regular cardinal.

( 1 ) SDLS−
+(Lℵ0

stat, < κ) ⇔ DRP(<κ, ICℵ0).

( 2 ) ( f ) SDLS+(Lℵ0,II
stat , < κ) ⇔ ( a ) DRP(<κ, ICℵ0) and µℵ0 < κ for all µ < κ !!

⇔ ( a′ ) DRP(<κ, IUℵ0) and µℵ0 < κ for all µ < κ

⇔ ( b ) DRP(<κ, ICℵ0) and 2ℵ0 < κ. (b′ ) DRP(<κ, IUℵ0) and 2ℵ0 < κ.

Proof. ( 1 ): Suppose first that SDLS−
+(Lℵ0

stat, < κ) holds. By Lemma 3.4, it is

enough to show that (∗)+ ICℵ0
<κ,λ holds for all λ ≥ κ. Let λ ≥ κ. Let Ã be a count-

able expansion of 〈H(λ),∈〉, 〈Sa : a ∈ H(λ)〉 a sequence of stationary subsets of

[H(λ)]ℵ0 and D ⊆ [H(λ)]<κ a club.

Let

(3.18) Ã∗ = 〈H(λ), ..., ∈︸ ︷︷ ︸
Ã

, S⃗
Ã∗

〉 sdls-13-0

where S⃗ is a binary relation symbol and

(3.19) S⃗
Ã∗

= {〈a, s〉 ∈ (H(λ))2 : s ∈ Sa}. sdls-13-1

Let M ∈ [H(λ)]<κ be such that

(3.20) M ∈ D and sdls-13-1-0

(3.21) Ã∗ ↾M ≺−
Lℵ0
stat

Ã∗. sdls-13-2

We have
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(3.22) Ã∗ ↾M |= aaX ∃y∀z (z ε X ↔ z ∈ y)
!!

by (3.21) and since apparently the same sentence holds in Ã∗. Thus M ∈ ICℵ0 .

Similarly Ã∗ ↾ M |= ∀x statX ∃y (S⃗ (x, y) ∧ ∀z (z ε X ↔ z ∈ y)) holds and

hence, for all a ∈M , Sa ∩M is stationary in [M ]ℵ0 .

Suppose now that (∗)+ ICℵ0
<κ,λ holds for all λ ≥ κ. Let A = 〈A, ...〉 be a structure

in countable signature and of cardinality ≥ κ, and D ⊆ [A]<κ a club. Without loss

of generality, we may assume that A is a relational structure. Let λ be a regular

cardinal such that A ∈ H(λ). In particular, we have A ⊆ H(λ).

Let Ã = 〈H(λ), A Ã, ...︸ ︷︷ ︸
=A

,∈〉 where A is a unary relation symbol and A Ã = A.

For each a ∈ H(λ), let

(3.23) Sa =



{U ∈ [H(λ)]ℵ0 : |U ∩ A | = ℵ0,
A |= ψ(a0, ..., am−1, U0, ..., Un−1, U ∩ A)},

if ψ = ψ(x0, ..., xm−1, Y0, ..., Yn−1, X) is an Lℵ0
stat-formula

in the signature of A, a0, ..., am−1 ∈ A, U0, ..., Un−1 ∈ [A]ℵ0 ,

A |= statX ψ(a0, ..., am−1, U0, ..., Un−1, X) and

a = 〈ψ, a0, ..., am−1, U0, ..., Un−1〉;

[H(λ)]ℵ0 ,

otherwise.

x-sdls-7

Let

(3.24) D̃ = {U ∈ [H(λ)]<κ : U ∩ A ∈ D}. x-sdls-7-0

D̃ contains a club in [H(λ)]<κ by Lemma 1.2.

By (∗)+ ICℵ0
<κ,λ , there is an internally club M ∈ [H(λ)]<κ such that

(3.25) M ∈ D̃, x-sdls-7-1-0

(3.26) Ã ↾M ≺ Ã and x-sdls-7-a

(3.27) Sa ∩ [M ]ℵ0 is stationary in [M ]ℵ0 for all a ∈M . x-sdls-7-a-0

Let B̃ = Ã ↾ M and let B = AB̃ = A ∩M and B = A ↾ B. Denoting the

underlying set of B̃ by B̃, we have B̃ = M .

B ∈ D by (3.25) and the definition (3.24) of D̃.

By the elementarity B̃ ≺ Ã (3.26), the following Claim implies B ≺−
Lℵ0
stat

A.

Claim 3.5.1 For any Lℵ0
stat-formula φ(x0, ..., xm−1, Y0, ..., Yn−1) in the signature of

the structures A, a0, ..., am−1 ∈ B and U0, ..., Un−1 ∈ [B]ℵ0 ∩ B̃, we have
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(3.28) B̃ |=“A |= φ(a0, ..., U0, ...)” ⇔ B |= φ(a0, ..., U0, ...). x-sdls-8

` By induction on φ. The crucial step in the induction is when φ is of the form

statXψ and (3.28) holds for ψ:

Suppose first that B̃ |= “A |= φ(a0, ..., U0, ...)” holds. Then, by elementarity

and by the definition of Ã, we have A |= statXψ(a0, ..., U0, ..., Un−1, X). Thus,

letting a = 〈φ, a0, ..., am−1, U0, ..., Un−1〉, we have a ∈ B̃ and

(3.29) Sa = {U ∈ [H(λ)]ℵ0 : |U ∩ A | = ℵ0, A |= ψ(a0, ..., U0, ..., Un−1, U ∩ A)} x-sdls-10

by the definition (3.23) of Sa.

By (3.27), Sa ∩ [B̃]ℵ0 is stationary in [B̃]ℵ0 . By the choice of B̃, [B̃]ℵ0 ∩ B̃
contains a club. Thus Sa ∩ [B̃]ℵ0 ∩ B̃ is stationary. It follows that

(3.30) {U ∩B : |U ∩B | = ℵ0, U ∈ Sa ∩ [B̃]ℵ0 ∩ B̃} x-sdls-11

= {U ∩B : |U ∩B | = ℵ0, B ∩ U ∈ B̃,
B̃ |=“A |= ψ(a0, ..., am−1, U0, ..., Un−1, U ∩B)”}

(by (3.29))

⊆ {V ∈ [B]ℵ0 : B |= ψ(a0, ..., am−1, U0, ..., Un−1, V )}
(by induction hypothesis)

is stationary. Thus B |= statX ψ(a0, ..., am−1, U0, ..., Un−1, X), that is,

B |= φ(a0, ..., am−1, U0, ..., Un−1).

Suppose now that B̃ 6|=“A |= φ(a0, ..., am−1, U0, ..., Un−1)”. Then we have

(3.31) B̃ |=“ there is a club C ⊆ [A]ℵ0 such that A |= ¬ψ(a0, ..., U0, ..., Un−1, x)

for all x ∈ C”.
x-sdls-12

By elementarity, there is a C0 ∈ B̃ such that C0 is a club ⊆ [A]ℵ0 and

(3.32) B̃ |=“A |= ¬ψ(a0, ..., am−1, U0, ..., Un−1, V )” for all V ∈ C0 ∩ B̃. x-sdls-13

Since [B]ℵ0 ∩ B̃ contains a club by the choice of B̃,

(3.33) {V ∩B : |V ∩B | = ℵ0, V ∈ C0 ∩ ([B]ℵ0 ∩ B̃) = C0 ∩ B̃} x-sdls-14

contains a club. By (3.32), this means that there are club many V ∈ C0 ∩ B̃
such that B̃ |= “A |= ¬ψ(a0, ..., am−1, U0, ..., Un−1, V )” which in turn means by

induction hypothesis that

(3.34) there are club many V ∈ C0∩ B̃ such that B |= ¬ψ(a0, ..., U0, ..., Un−1, V ). x-sdls-16
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Thus B |= ¬statX ψ(a0, ..., U0, ..., Un−1, X), i.e. B 6|= φ(a0, ..., U0, ...). a (Claim 3.5.1)

( 2 ): ( f ) ⇒ ( a ) holds by ( 1 ) and Proposition 2.2. The implications ( a ) ⇒ !!

(a′ ) ⇒ (b′ ) and ( a ) ⇒ ( b ) ⇒ (b′ ) are obvious.

To show the implication (b′ ) ⇒ ( f ), suppose that (∗)+ IUℵ0
<κ,λ holds for all λ ≥ κ

(see Lemma 3.4) and µ = 2ℵ0 < κ.

For a structure A in countable signature and of cardinality ≥ κ, let λ, Ã,

〈Sa : a ∈ H(λ)〉 be as in the proof of ( 1 ). By (∗)+IUℵ0
<κ,λ , there is an internally

unbounded M ∈ [H(λ)]<κ such that

(3.35) µ ⊆M , x-sdls-17

(3.36) Ã ↾M ≺ Ã and x-sdls-18

(3.37) Sa ∩ [M ]ℵ0 is stationary in [M ]ℵ0 for all a ∈M . x-sdls-19

Let B̃ = Ã ↾M and let B = AB̃ = A ∩M and B = A ↾ B.

Since M is internally unbounded, (3.35) and (3.36) imply that

(3.38) [M ]ℵ0 ⊆M . x-sdls-20

We have B ≺−
Lℵ0
stat

A (this can be seen as in the proof of ( 1 )). Since all

weak second-order objects are internal in B by (3.38), this implies B ≺Lℵ0,II
stat

A.

(Lemma 3.5)

Theorem 1.1, ( 3 ) follows from Lemma 3.5, ( 1 ) and Lemma 2.1. Theorem 1.1, ( 4 )

follows from Corollary 3.6 below and Lemma 2.1.
P-DRP-4

!!Corollary 3.6 Suppose that κ is a regular cardinal > ℵ1. Then the following are

equivalent:

( a ) DRP(<κ, ICℵ0) + µℵ0 < κ for all µ < κ;

(a′ ) DRP(<κ, IUℵ0) + µℵ0 < κ for all µ < κ;

( b ) DRP(<κ, ICℵ0) + 2ℵ0 < κ;

(b′ ) DRP(<κ, IUℵ0) + 2ℵ0 < κ;

( c ) SDLS−
+(Lℵ0

stat, < κ) + 2ℵ0 < κ;

( d ) SDLS−
+(Lℵ0,II

stat , < κ);

( e ) SDLS+(Lℵ0
stat, < κ);

( f ) SDLS+(Lℵ0,II
stat , < κ).

Proof. The equivalence “( a ) ⇔ (a′ ) ⇔ ( b ) ⇔ (b′ ) ⇔ ( f )” holds by Lemma

3.5, ( 2 ). “( b ) ⇔ ( c )” follows from Lemma 3.5, ( 1 ). Clearly ( f ) implies ( d )

and ( e ), Each of ( d ) and ( e ) implies ( c ) by Proposition 2.2. (Corollary 3.6)
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4 Game Reflection Principle and Rado’s Conjec-

ture
GRP

In this section, we consider generalizations (GRP<µ(<κ) for uncountable regular

cardinals µ < κ) of the Game Reflection Principle introduced by B. König [15] 3) .

We show that the Downward Löwenheim-Skolem theorems SDLS+(Lℵ0,II
stat , < κ) for

uncountable regular κ follow from a weakening GRPω(<κ) of GRP<µ(<κ) — under

certain cardinal arithmetical assumptions on κ if κ > ℵω (Theorem 4.7) see also

the remark before Theorem 4.7, Lemma 4.1 and Lemma 4.8.

At first glance, it might seem that these generalized Game Reflection Principles

are rather artificial requirements, while Downward-Löwenheim-Skolem-theorem-

type reflection statements are natural generalizations of the Downward Löwenheim-

Skolem theorem of the first-order logic. However, the characterization of the Game

Reflection Principles in terms of generically large cardinals (Theorem 4.13) sug-

gests that the naturalness of the Game Reflection Principles can be also discussed,

and that these principles are among the strongest possible reflection statements

available. In the sequel [13] of the present paper, we continue the line of research

we begin in this section, and show that existential statements of certain type of

generically large cardinals serve as a delimitation for various reflection principles

including variations of Downward Löwenheim-Skolem theorems for stationary log-

ics.

Most of the ideas in this section are (at least implicitly) present in [15]. However,

there are some technical details explained only here (in particular, Lemma 4.1 as

well as (4.29) and (4.33), ( 3 ) and their usage in the proof of Theorem 4.13). We

do not know if the proof of Theorem 4.13 below or the proof of the corresponding

theorem in [15] goes through without the details around (4.29) and (4.33), ( 3 ).

The Game Reflection Principle of B. König [15] (Strong Game Reflection in his

terminology and denoted here as GRP<ω1(<ℵ2)) is a reflection statement concern-

ing the non-existence of winning strategy for one of the players in the following

game:

For any uncountable set A and A ⊆ ω1>A, G ω1>A(A) is the following game of

length ω1 for players I and II. A match in G ω1>A(A) looks like:

I a0 a1 a2 · · · aξ · · ·
II b0 b1 b2 · · · bξ · · ·

(ξ < ω1)

3)GRP<ω1(<ω2) in our notation is what König calls the Strong Game Reflection Principle in
[15].
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where aξ, bξ ∈ A for ξ < ω1.

II wins this game if

(4.1) 〈aξ, bξ : ξ < η〉 ∈ A and 〈aξ, bξ : ξ < η〉⌢〈aη〉 6∈ A for some η < ω1;

or 〈aξ, bξ : ξ < ω1〉 ∈ [A]

where 〈aξ, bξ : ξ < η〉 denotes the sequence f ∈ 2·ηA such that f(2 · ξ) = aξ and

f(2 · ξ + 1) = bξ for all ξ < η and

(4.2) [A] = {f ∈ ω1A : f ↾ α ∈ A for all α < ω1}.

For a regular cardinals µ < κ and a set A, C ⊆ [A]<κ is µ-club if

(4.3) C is cofinal in [A]<κ with respect to ⊆ and we have
⋃

α<ν cα ∈ C for any grp-a-a-0

⊆-increasing sequence 〈cα ∈ C : α < ν〉 in C with µ ≤ cf(ν) < κ.

For a regular cardinal κ > ℵ1, let

GRP<ω1(<κ): For any set A of regular cardinality ≥ κ and ω1-club C ⊆ [A]<κ, if

the player II has no winning strategy in G ω1>A(A) for some A ⊆ ω1>A,

there is B ∈ C such that II has no winning strategy in G ω1>B(A∩ ω1>B).

We also consider the following weakening of GRP<ω1(<κ):

For uncountable set A and A ⊆ ω≥A, G ω≥A(A) is the game of length ω played

between players I and II. A match in G ω≥A(A) looks like :

I a0 a1 a2 · · · an · · ·
II b0 b1 b2 · · · bn · · ·

(n < ω)

where an, bn ∈ A for n < ω.

II wins this game if 〈an, bn : n < m〉 ∈ A and 〈an, bn : n < m〉⌢〈am〉 6∈ A for

some m ∈ ω; or 〈an, bn : n < w〉 ∈ A for all w ≤ ω.

For a regular cardinal κ > ℵ1, let

GRPω(<κ): For a set A of regular cardinality ≥ κ and ω1-club C ⊆ [A]<κ, if the

player II has no winning strategy in G ω≥A(A) for some A ⊆ ω≥A, then

there is B ∈ C such that II has no winning strategy in G ω≥B(A ∩ ω≥B).

The difference between the games Gω1>A(Ã) for Ã ⊆ ω1>A and the games

Gω≥A(A) for A ⊆ ω≤A is quite subtle. In Gω1>A(Ã), the player II wins if the !!

outcome of the game as an ω1-sequence is a branch in Ã, while the player II wins

in Gω≥A(A) if the outcome of the game as an ω-sequence is an element of A. The

symbol ‘<’ in the superscript of the notation GRP<ω1(<κ) and its absence in the
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superscript of GRPω(<κ) allude this subtle difference of the games involved. In

spite of this difference, we can prove that GRPω(<κ) is a special case of the reflec-

tion GRP<ω1(<κ). This fact for the case κ = ℵ2 was used several times in König

[15] without any explicit mention:
L-sdls-a

Lemma 4.1 For a regular cardinal κ > ℵ1, GRP<ω1(<κ) implies GRPω(<κ).

Proof. For an arbitrary set A and A ⊆ ω≥A, let

(4.4) ÃA
= {t ∈ ω1>A : t ↾ α ∈ A for all α < min{ω + 1, ℓ(t)}}. sdls-4-a

The following is obvious:
Cl-sdls-a

Claim 4.1.1 The player II has a winning strategy in G ω≥A(A) if and only if he

has a winning strategy in G ω1>A(ÃA
). a

Assume GRP<ω1(<κ) holds. Suppose that A is uncountable and A ⊆ ω≥A is

such that the player II does not have any winning strategy in G ω≥A(A). By Claim

4.1.1, the player II does not have any winning strategy in G ω1>A(ÃA
).

Let C ⊆ [A]ℵ1 be an ω1-club.

By GRP<ω1(<κ) there is B ∈ C such that the player II does not have any

winning strategy in G ω1>B(ÃA ∩ ω1>B). Since ÃA ∩ ω1>B = ˜A ∩ ω≥B
B

, it follows,

again by Claim 4.1.1, that the player II does not have any winning strategy in

G ω≥B(A ∩ ω≥B). (Lemma 4.1)

L-sdls-a-0

Lemma 4.2 For a regular cardinal κ > ℵ1, GRPω(<κ) implies 2ℵ0 < κ.

Proof. Assume that GRPω(<κ) holds and, toward a contradiction, assume also

that 2ℵ0 ≥ κ. Let B ⊆ ω2 be a Bernstein set4) of cardinality 2ℵ0 and let B∗ be an !!

arbitrary subset of B of cardinality κ. Note that B∗ is also a Bernstein set. Let

〈rξ : ξ < κ〉 be a 1-1 enumeration of B∗.

Let A = ω>2 ∪ κ and let A ⊆ ω≥A be defined by A = A0 ∪ A1 where

(4.5) A0 = {〈an, bn : n < k〉, 〈an, bn : n < k〉⌢〈ak〉 : k < ω, ak ∈ κ} sdls-14-0

(4.6) A1 = {〈an, bn : n ∈ ω〉 : an ∈ κ for all n ∈ ω, 〈bn : n ∈ ω〉 is an

increasing sequence in ω>2, and⋃
n∈ω bn = rξ for some ξ > sup{an : n ∈ ω}}.

sdls-4-a-0

4)A set B ⊆ ω2 is a Bernstein set if it does not contain any perfect set. Since there are only
2ℵ0 many perfect subsets of ω2, a Bernstein set of cardinality 2ℵ0 can be obtained easily by a
diagonal construction.
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Let C = {C ∈ [A]<κ : ω>2 ⊆ C}. C is an ω1-club ⊆ [A]<κ. The player II has a

winning strategy in G ω≥C(A ∩ ω≥C) for any C ∈ C (he can play 〈bn : n ∈ ω〉 such

that
⋃

n∈ω bn = rξ for a ξ > sup(κ ∩ C)). By GRPω(<κ) it follows that the player

II has a winning strategy σ in G ω≥A(A).

Now let 〈ℓn : n ∈ ω〉 and 〈ts : s ∈ ω>2〉 be sequences such that

(4.7) 〈ℓn : n ∈ ω〉 is a strictly increasing sequence in ω; sdls-4-a-1

(4.8) ts ∈ 2ℓnA for all s ∈ n2; sdls-4-a-2

(4.9) for each s ∈ n2, ts = 〈ak, bk : k < ℓn〉 is a partial match in G ω≥A(A) in sdls-4-a-3

which player II’s moves are chosen according to σ, and player I chooses

her moves avoiding her sudden death;

(4.10) for s, s′ ∈ ω>2 with s ⊆ s′ we have ts ⊆ ts′ ; sdls-4-a-4

For s ∈ n2 and ts = 〈ak, bk : k < ℓn〉, let us = 〈bk : k < ℓn〉. By (4.10), we

have us ⊆ us′ for any s, s′ ∈ ω>2 with s ⊆ s′, and,

(4.11) for all s ∈ ω>2, us⌢ 0 and us⌢ 1 are distinct (hence incompatible by (4.8)). sdls-4-a-5

The condition (4.11) is realizable since σ is a winning strategy: if σ would suggest

the same outputs, from some partial match on, independently of the moves of the

player I, the player I would be able to predict the outcome
⋃

n∈ω bn and could

choose her move easily so that she should win.

Now since
⋃

n∈ω tf↾n for each f ∈ ω2 is a match in G ω≥A(A) in which player II’s

moves are chosen according to σ, we have
⋃

n∈ω uf↾n ∈ B∗. This is a contradiction

since {
⋃

n∈ω uf↾n : f ∈ ω2} is a perfect set by the construction of ut’s. (Lemma 4.2)

Recall that Rado’s Conjecture (RC) can be formulated in terms of reflection of

non-specialty of trees ([19]): A tree is special if T is a union of countably many

antichains; an antichain of a tree is a pairwise incomparable subset of T (which

is an antichain in the sense of the forcing p.o. T with the reverse tree ordering).

Thus T is special if and only if there is a mapping f : T → ω such that f−1 ′′{n}
is pairwise incomparable for all n ∈ ω. We shall call such a mapping f a good

coloring of T .

RC: For any tree T , if T is not special then there is B ∈ [T ]<ℵ2 such that B is

not special.

We consider here the following generalization of RC: For a regular cardinal

κ > ℵ1,

RC(<κ): For any tree T , if T is not special then there is B ∈ [T ]<κ such that B

is not special.
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Thus the original Rado’s Conjecture (RC) is RC(<ℵ2).

Theorem 4.3 ([15]) Suppose that κ > ℵ1 is a regular cardinal. Then, GRP<ω1(<κ) T-sdls-a

implies RC(<κ).

The theorem above will be proved after the following two lemmas. ( 2 ) of the

second lemma will play an essential roll in the characterization theorem and in

the consistency proof of GRP<ω1(<κ) where κ is a successor of a regular cardinal

(modulo a supercompact cardinal).

Lemma 4.4 ([19]) If T is a non-special tree and P is a σ-closed p.o., then L-sdls-a-0-a-0

‖–P “T is not special ”.

Proof. See [https://fuchino.ddo.jp/notes/math-notes-11.pdf], Section

12. (Lemma 4.4)

L-sdls-a-0-a-1

Lemma 4.5 Suppose that P is a σ-closed p.o., A a set and A ⊆ ω1>A.

( 1 ) If σ is a winning strategy of the player II in Gω1>A(A), then ‖–P “ σ̌ is a

winning strategy of the player II in Gω1>Ǎ(Ǎ) ”.

( 2 ) If ‖–P “ the player II has a winning strategy in G ω1>Ǎ(Ǎ) ”, then the player

II has a winning strategy in G ω1>A(A) (in V).

Proof. ( 1 ): In VP, the initial segment of any match is a ground model set by the

σ-closedness of P. Thus, the player II can apply σ to remain in A in a match (as

far as the player I does not throw up). Thus σ is still a winning strategy for the

player II in VP.

( 2 ): Let σ
∼

be a P-name of a winning strategy of the player II. For each initial

segment m = 〈aα, bα : α < ξ〉⌢〈aξ〉 of a match in G ω1>A(A) we assign pm ∈ P and

bm such that

(4.12) If m ⊆ m′ then pm′ ≤P pm for any initial segments m m′ of a match; grp-a

(4.13) for m = 〈aα, bα : α < ξ〉⌢〈aξ〉, pm ‖–P “σ
∼

(〈aα, bα : α < ξ〉⌢〈aξ〉) = bm ”. grp-a-0

Then the strategy σ of the player II defined by σ(m) = bm is a winning for the

player II. (Lemma 4.5)

Proof of Theorem 4.3: Assume that GRP<ω1(<κ) holds. Suppose that T is a

non special tree.

Let A = T ∪ ω and A ⊆ ω1>A be defined by A = A0 ∪ A1 where

(4.14) A0 = {〈aα, bα : α < ξ〉⌢〈aξ〉 : ξ < ω1,

〈aα, bα : α < ξ〉 ∈ ξA and aξ ∈ T}, and

grp-a-1-0
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(4.15) A1 = {〈aα, bα : α < ξ〉 : ξ < ω1, aα ∈ T, bα ∈ ω,
and aα 7→ bα is a good coloring}.

grp-a-1-1

Cl-grp-0-0

Claim 4.3.1 For any T ′ ⊆ T , if T ′ is special then the player II has a winning

strategy in Gω1>B(A ∩ ω1>B) for B = T ′ ∪ ω.

` Suppose that T ′ is special and let f : T ′ → ω be such that f−1 ′′{n} is pairwise

incomparable for all n ∈ ω. Then the player II wins if he simply chooses bα = f(aα)

answering the α-th move aα of the player I as far as aα ∈ T . a (Claim 4.3.1)

Cl-grp-0-1

Claim 4.3.2 The player II does not have any winning strategy in Gω1>A(A).

` Suppose otherwise and let σ be a winning strategy of the player II. Let P be a σ-

closed p.o. collapsing the cardinality of T to ℵ1. By Lemma 4.5, σ is still a winning

strategy for the player II in Gω1>A(A) in VP. In VP the player I can enumerate all

elements of T in her moves aα, α < ω1. Hence if the player II apply σ to such moves

of the player I, the match delivers a good coloring of T . This is a contradiction

since, by the choice of T and by Lemma 4.4, we have VP |=“T is non-special”.

a (Claim 4.3.2)

Note that {B ∈ [A]<κ : ω ⊆ B} is ω1-club. By GRP<ω1(<κ), there is T ′ ∈
[T ]<κ such that, for B = T ′ ∪ ω, the player II does not have any winning strategy

in Gω1>B(A ∩ ω1>B).

By Claim 4.3.1, T ′ is non-special. (Theorem 4.3)

L-grp-2

Proposition 4.6 Suppose that κ is an uncountable regular cardinal such that

(4.16) µℵ0 < κ for all µ < κ holds. grp-a-2

Then GRPω(<κ) implies (∗)+ ICℵ0
<κ,λ for all λ ≥ κ.

Proof. Let 〈Sa : a ∈ H(λ)〉 be as in the statement of (∗)+ ICℵ0
<κ,λ . Let A = H(λ)

and let A ⊆ ω≥A be such that

(4.17) ω>A ⊆ A and grp-0

(4.18) 〈an, bn : n ∈ ω〉 ∈ A if and only if {an : n ∈ ω} ∪ {bn : n ∈ ω \ 1} 6∈ Sb0 . grp-17

Cl-grp-1

Claim 4.6.1 The player II does not have any winning strategy in G ω≥A(A).

` Suppose that σ is a strategy of the player II. We show that σ is not a winning

strategy for the player II.

For an arbitrary a0 ∈ A let b0 ∈ A be player II’s answer to a0 according to

σ. Let N ≺ H(λ) be countable such that a0, b0, σ ∈ N and N ∈ Sb0 (there is
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such an N since Sb0 is stationary in [H(λ)]ℵ0). Let 〈an, bn : n ∈ ω〉 be a match in

G ω≥A(A) where a0 and b0 are just the a0 and the b0 chosen above, player II’s moves

are chosen according to σ and {an : n ∈ ω} enumerates N . Since σ ∈ N , we have

(4.19) {an : n ∈ ω} ∪ {bn : n ∈ ω \ 1} = N ∈ Sb0 . grp-18

Thus the player II loses this match.

This shows that σ is not a winning strategy for the player II. a (Claim 4.6.1)

Now let Ã be an arbitrary countable expansion of 〈H(λ),∈〉 and D be a club

subset of [H(λ)]<κ. Let

(4.20) D∗ = {M ∈ [H(λ)]<κ : M ∈ D, Ã ↾M ≺ Ã, [M ]ℵ0 ⊆M}. grp-19

Since we have 2ℵ0 < κ (4.16), D∗ is an ω1-club. By GRPω(<κ) there is an M ∈
D∗ such that the player II does not have any winning strategy in G ω≥M(A∩ ω≥M).

We show that this M is as in the assertion of (∗)+ ICℵ0
κ,λ .

By the definition of D∗, we have M ∈ D, Ã ↾M ≺ Ã and M is internally club.

Thus the following Claim finishes the proof of ( 1 ):
Cl-grp-2

Claim 4.6.2 Sa ∩ [M ]ℵ0 is stationary in [M ]ℵ0 for all a ∈M .

` Suppose that Sa∗ ∩ [M ]ℵ0 were not stationary in [M ]ℵ0 for some a∗ ∈M . Then

the player II would have the following winning strategy in G ω≥M(A ∩ ω≥M): Let

C ⊆ [M ]ℵ0 be a club disjoint from Sa∗ . II can win if he chooses b0 = a∗ and

an increasing sequence 〈Ck : k ∈ ω〉 in C along with his moves bn such that

{an, bn : n < k} ⊆ Ck and organizes his moves bn, n ∈ ω such that they gradually

enumerate the set
⋃

k∈ω Ck ∈ C. a (Claim 4.6.2)

(Proposition 4.6)

Note that, by Lemma 4.2, the condition (4.16) below holds under GRPω(<κ) if

we have e.g. κ < ℵω.
T-grp-a

Theorem 4.7 Suppose that κ is a regular uncountable cardinal such that

(4.16) µℵ0 < κ for all µ < κ holds.

Then GRPω(<κ) implies SDLS+(Lℵ0,II
stat , < κ).

Proof. By Corollary 3.6, Lemma 3.4 and Proposition 4.6. (Theorem 4.7)

Instead of games in Gω1>A(A) of length ω1, we can also consider the same kind of

games of length µ for arbitrary regular uncountable cardinal µ and corresponding

game reflection principles.
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For any set A and A ⊆ µ>A, G µ>A(A) is the following game of length µ for

players I and II. A match in G µ>A(A) looks like:

I a0 a1 a2 · · · aξ · · ·
II b0 b1 b2 · · · bξ · · ·

(ξ < µ)

where aξ, bξ ∈ A for ξ < µ.

II wins this match if

(4.21) 〈aξ, bξ : ξ < η〉 ∈ A and 〈aξ, bξ : ξ < η〉⌢〈aη〉 6∈ A for some η < µ; or

〈aξ, bξ : ξ < µ〉 ∈ [A]

where 〈aξ, bξ : ξ < η〉 and [A] are defined similarly as before.

For uncountable regular cardinals µ, κ with µ < κ,

GRP<µ(<κ): For any set A of regular cardinality ≥ κ and µ-club C ⊆ [A]<κ, if the

player II has no winning strategy in G µ>A(A) for some A ⊆ µ>A, there is

B ∈ C such that the player II has no winning strategy in G µ>B(A∩ µ>B).

Note that the original definition of GRP<ω1(<κ) coincides with the GRP<µ(<κ)

for µ = ω1 in the sense of the extended game reflection given above.

For uncountable regular cardinals µ, κ and an ordinal α with α ≤ µ < κ, let

GRPα,<µ(<κ): For any set A of regular cardinality ≥ κ and µ-club C ⊆ [A]<κ, if

the player II has no winning strategy in G µ>A(A) for some A ⊆ µ>A such

that t ∈ A, for all t ∈ µ>A with α ≤ ℓ(t) ≤ µ, there is B ∈ C such that

the player II has no winning strategy in G µ>B(A ∩ µ>B).

The proof of Lemma 4.1 shows that GRPω(<κ) is equivalent to GRPω+1,<ω1(<κ).

More generally, we have the following:
L-grp-3

Lemma 4.8 ( 1 ) For any uncountable regular cardinals µ, κ with µ < κ,

GRPµ,<µ(<κ) is equivalent to GRP<µ(<κ).

( 2 ) For any uncountable regular cardinals µ, κ and a ordinal α with α ≤ µ < κ,

GRP<µ(<κ) implies GRPα,<µ(<κ).

( 3 ) For any uncountable regular cardinals µ0 µ, κ with µ0 ≤ µ < κ GRP<µ(<κ)

implies GRPµ0,<µ(<κ) and GRPµ0,<µ(<κ) implies GRP<µ0(<κ).

Proof. ( 1 ), ( 2 ): Clear by definition.

( 3 ): The first implication is just a special case of ( 2 ). For the second one,

note that, if D ⊆ [A]<κ is µ0-club then it is also µ-club (see the definition (4.3)).

(Lemma 4.8)

Lemma 4.5 can be straight-forwardly generalized to the following:
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L-grp-4

Lemma 4.9 Suppose that κ is an uncountable regular cardinal, A a set, A ⊆ κ>A

and P a <κ-closed p.o.

( 1 ) If σ is a winning strategy of the player II in Gκ>A(A) then ‖–P “ σ̌ is a winning

strategy of the player II in G κ̌>Ǎ(Ǎ) ”.

( 2 ) If ‖–P “ the player II has a winning strategy in G κ̌>Ǎ(Ǎ) ”, then the player

II has a winning strategy in G κ>A(A) (in V).

A cardinal κ is said to be generically supercompact by < µ-closed forcing for

a regular cardinal µ < κ, if, for any regular λ, there is a <µ-closed p.o. P such

that, for any (V,P)-generic filter G, there is an inner model M of V[G] and an

elementary embedding j : V
≼→ M such that crit(j) = κ, j(κ) > λ and j ′′λ ∈ M .

The following can be proved similarly to Theorem 11 in [15].
L-grp-6

Lemma 4.10 If κ is a supercompact and µ < κ is an uncountable regular cardinal

then for P = Col(µ, κ) and (V,P)-generic filter G, we have V[G] |= κ = µ+ and κ

is generically supercompact by <µ-closed forcing.

Proof. Note that we are using here Kanamori’s notation:

Col(λ, S) = {p : p is a function ∧ dom(p) ⊆ S × λ ∧ |p | < λ

∧ for all 〈α, ξ〉 ∈ dom(p), p(〈α, ξ〉) = 0 or p(〈α, ξ〉 ∈ α)}

For a regular λ > κ, let j : V
≼→ M be such that crit(j) = κ, j(κ) >

λ and

(ℵ4.1) [M ]λ ⊆M. grp-19-a-3

Let P∗ = j(P). By elementarity we have M |= P∗ = Col(µ, j(κ)). By

(ℵ4.1), it follows that P∗ = Col(µ, j(κ))V. Hence V[G] |= P∗ = Col(µ, j(κ))

by <µ-closedness of P.

We have P ⩽◦ P∗ and P∗/G ≈ Col(µ, j(k))V[G]. Let G∗ be (V[G],P∗/G)-generic

filter. We have M [G ∗ G∗] ⊆ V[G ∗ G∗] = (V[G])[G∗]. The mapping

(ℵ4.2) j∗ : V[G]→M [G ∗ G∗]; a
∼
[G] 7→ j(a

∼
)[G ∗ G∗] grp-19-a-4

is then an elementary embedding witnessing the λ-generically supercompactness

of κ by <µ-closed forcing in V [G]. (Lemma 4.10)

P-GRP-0

Lemma 4.11 For a regular uncountable cardinal κ, if κ+ is generically supercom-

pact for <κ-closed forcing then GRP<κ(< κ+) holds.

30



Proof. Suppose that θ ≥ κ+ is a regular cardinal and A ⊆ κ>θ. Suppose further

that D ⊆ [θ]<κ+
is a κ-club such that,

(4.22) for every B ∈ D, the player II has a winning strategy in Gκ>B(A ∩ κ>B). grp-19-a

We have to show that the player II then has a winning strategy in Gκ>θ(A).

Let P be a <κ-closed p.o. such that, for (V,P)-generic G, there are classes j,

M in V[G] such that

(4.23) V[G] |=“M is a transitive class”, grp-19-0

(4.24) V[G] |=“ j : V
≼→M” and grp-19-1

(4.25) V[G] |=“ crit(j) = (κ+)V, j((κ+)V) > θκ and j ′′θκ ∈M”. grp-19-2

Let

(4.26) B = j ′′θ. grp-19-3

Note that we have B ∈M by (4.25) and B = j ′′θκ ∩ sup(j ′′θ).
Cl-grp-3

Claim 4.11.1 In V[G], we have: ( 1 ) ([B]<κ)V[G] = ([B]<κ)M and (κ>B)V[G] =

(κ>B)M ,

( 2 ) j ′′A = j(A) ∩ (κ>B)M and

( 3 ) j ′′D = j(f) ′′(j ′′θκ) where f ∈ V with f : θκ → D is a surjection.

` ( 1 ): Since ([B]<κ)V[G] ⊇ ([B]<κ)M is trivial, we prove the other inclusion.

In V[G], suppose that s ∈ ([B]<κ)V[G]. Then V[G] |= “ j−1 ′′s ∈ [θ]<κ”. By <κ-

closedness of P, it follows that j−1 ′′s ∈ V and s = j(j−1 ′′s) ∈M .

The second equation can be also proved similarly.

( 2 ): For t ∈ A, j(t) ∈ j(A) by elementarity. Let µ = dom(t). Since µ < κ <

κ+, we have j(µ) = µ. Thus, by elementarity, we have j(t) : µ → j(θ). For each

ξ < µ, since t(ξ) ∈ θ, j(t)(ξ) = j(t(ξ)) ∈ j ′′θ. Thus M |= “ j(t) : µ → j ′′θ”. This

proves j ′′A ⊆ j(A) ∩ (κ>B)M .

Suppose now that t∗ ∈ j(A) ∩ (κ>B)M . By <κ-closedness of P, t∗ ∈ V . Let

µ = dom(t∗). Then µ < κ < κ+ and hence µ = j(µ). For each ξ < µ, t∗(ξ) ∈
B = j ′′θ. Hence there is a (unique) ηξ ∈ θ such that j(ηξ) = t∗(ξ). Let t : µ → θ;

ξ 7→ ηξ. Note that j−1 ↾ range(t∗) ∈ V by < κ-closedness of P, and hence we can

actually construct such t in V . Thus t ∈ V and j(t) = t∗. By elementarity t ∈ A.

This proves j ′′A ⊇ j(A) ∩ (κ>B)M .

( 3 ): Trivial. a (Claim 4.11.1)

Note that, by (4.25), Claim 4.11.1, ( 2 ) and ( 3 ), we have
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(4.27) j ′′A ∈M and grp-19-4

(4.28) j ′′D ∈M . grp-19-5

This can be seen much easier by using Lemma 2.5 in [13].

Cl-grp-4

Claim 4.11.2 B ∈ j(D).

` We have M |= “κ ≤ |B | = | θ | < j((κ+)V) = κ+”. Thus M |= “ |B | = κ”.

Since M |= “
⋃
j ′′D = B”, we can construct an increasing sequence 〈uα : α < κ〉

in M with uα ∈ j ′′D such that
⋃

α<κ uα = B (note that all initial segments of the

sequence has j−1 image by the <κ-closedness of P and hence we can continue the

inductive construction in M at limit steps).

By elementarity, we have M |=“ j(D) is κ-club”. Hence M |=“B =
⋃

α<κ uα ∈
j(D)”. a (Claim 4.11.2)

Now by elementarity and (4.22), we have

M |=“ the player II has a winning strategy in Gκ>B(j(A) ∩ κ>B)”.

By Claim 4.11.1, ( 1 ), it follows that

V[G] |=“ the player II has a winning strategy in Gκ>B(j(A) ∩ κ>B)”.

Since V[G] |= “ 〈j(A) ∩ κ>B︸ ︷︷ ︸
=j ′′A

, κ>B︸︷︷︸
κ(j ′′θ)

〉 ∼= 〈A, κ>θ〉” by Claim 4.11.1, ( 2 ), ( 3 ), it

follows that V[G] |=“ the player II has a winning strategy in Gκ>θ(A)”.

By Lemma 4.9, ( 2 ), it follows that V |=“ the player II has a winning strategy in Gκ>θ(A)”.

(Lemma 4.11)

A cardinal κ is said to be generically measurable by <µ-closed forcing for a

regular cardinal µ < κ if there is a <µ-closed p.o. P such that for any (V,P)-generic

G, there are an inner model M ⊆ V[G] and elementary embedding j : V →M such

that crit(j) = κ. Clearly, every generically supercompact cardinal by <µ-closed

forcing is generically measurable by <µ-closed forcing. The following is easy to

prove:
L-grp-7

Lemma 4.12 Suppose that κ+ is a generically measurable by <κ-closed forcing.

Then 2<κ = κ holds.

Proof. Suppose otherwise. Let µ < κ be such that 2µ > κ and let λ =

2µ. We have λ ≥ κ+.

Let P be a <κ-closed p.o. such that, for a (V,P)-generic G, there

are an inner model M ⊆ V[G] and an elementary embedding j : V
≼→ M

with crit(j) = κ+.
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In V, let f : λ→ P(µ) be a bijection. By elementarity, M |=“ j(f) :

j(λ)→ P(µ) is a bijection”.

We have P(µ)V = P(µ)V[G] ⊇ P(µ)M by <κ-closedness of P.

Thus

(ℵ4.3) M |=“ j(f) : j(λ)→ P(µ)V is a bijection”.

Since j ′′λ $ j(λ) (κ+ ∈ j(λ) \ j ′′λ) and j(f) ′′(j ′′λ) = f ′′λ = P(µ)V, this is

a contradiction. (Lemma 4.12)

For regular cardinals κ, λ with κ ≤ λ, let

(4.29) Dκ,λ = {u ∈ [λ]κ : κ ⊆ u}, grp-19-6

(4.30) Fκ,λ = {f : f : Dκ,λ → λ, f(A) ∈ A for all A ∈ Dκ,λ}, grp-20

(4.31) Aκ,λ = Fκ,λ ∪ λ grp-21

and let Aκ,λ ⊆ κ>Aκ,λ be defined as Aκ,λ = A0
κ,λ ∪ A1

κ,λ where

(4.32) A0
κ,λ = {〈aα, bα : α < ξ〉⌢〈aξ〉 ∈ κ>A : aξ ∈ Fκ,λ}, and grp-22

(4.33) A1
κ,λ = {〈aα, bα : α < ξ〉 ∈ κ>A : ξ < κ, ( 1 ) aα ∈ Fκ,λ,

( 2 ) bα ∈ λ and

( 3 )
⋃
aα

−1 ′′{bα} = λ

for all α < ξ, and

( 4 ) |
⋂

α<ξ aα
−1 ′′{bα} | > 2}.

grp-23

In the game Gκ>Aκ,λ(Aκ,λ), the player II tries to construct a filter base {a−1 ′′{bα} :

α < κ} over Dκ,λ while the player I challenges by demanding the normality of the

filter for the regressive functions aα, α < κ. The role of the condition ( 3 ) in (4.33)

will become clear in the proof of Claim 4.13.2 below.
T-grp-0

Theorem 4.13 For a regular uncountable κ, the following are equivalent:

( a ) 2<κ = κ and GRP<κ(<κ+) holds.

( b ) The player II has a winning strategy in Gκ>Aκ,λ(Aκ,λ) for all regular λ.

( c ) κ+ is generically supercompact for <κ-closed forcing.

Proof. ( c ) ⇒ ( a ) follows from Lemma 4.11 and Lemma 4.12.

( a ) ⇒ ( b ): Assume that GRP<κ(<κ+) holds and κ<κ = κ.

Let θ be a sufficiently large regular cardinal and

(4.34) C ⊆ {Aκ,λ ∩M : M ≺ H(θ), |M | = κ, [M ]<κ ⊆M,κ, λ ∈M} grp-24
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be κ-club. Note that the assumption 2<κ = κ is needed here for the existence of

such C.
For Aκ,λ ∩M ∈ C, the player II wins in a game 〈aα, bα : α < κ〉 if he chooses

bα = aα(λ ∩ M) as his αth move for all α < κ. Note that bα ∈ λ ∩ M by

regressiveness of aα ∈ Fκ,λ (4.30) and hence bα ∈ Aκ,λ ∩M . Note also that the

conditions ( 3 ), ( 4 ) in (4.33) are satisfied by elementarity.

By GRP<κ(<κ+), it follows that the player II has a winning strategy in Gκ>Aκ,λ(Aκ,λ).

( b ) ⇒ ( c ): Let λ ≥ κ be a regular cardinal and let σ be a winning strategy

of the player II in Gκ>Aκ,λ(Aκ,λ). Let

(4.35) P = Fn(κ, | Fκ,λ |, < κ) grp-25

and let G be a (V,P)-generic filter. Note that P is<κ-closed and V[G] |= | (Fκ,λ)V | =
κ.

In V[G], let

(4.36) {fξ : ξ < κ} be an enumeration of (Fκ,λ)V. grp-26

By Lemma 4.9, ( 1 ), σ is still a winning strategy of the player II in Gκ>(Aκ,λ)
V
((Aκ,λ)V)

in V[G]. Let αξ, ξ < κ be the moves of the player II in a match where the player I

takes fξ, ξ < κ as her moves and the player II chooses his moves according to σ:

I f0 f1 f2 · · · fξ · · ·
II α0 α1 α2 · · · αξ · · ·

(ξ < κ)

Let U0 = {fξ−1 ′′{αξ} : ξ < κ}. The player II wins the match since he played

according to σ, U0 has the finite intersection property. Let U ⊆ (P(Dκ,λ))V be the

upward closure of U0 (with respect to ⊆).
Cl-grp-5

Claim 4.13.1 Dκ,λ ∈ U .

` f0
−1 ′′{α0} ⊆ Dκ,λ. a (Claim 4.13.1)

Cl-grp-5-0

Claim 4.13.2 For any β ∈ λ, we have {u ∈ Dκ,λ : β ∈ u} ∈ U .

` (In V) let δ ∈ 2 be such that δ 6= β and f ∈ Fκ,λ be defined by

f(u) =

{
β, if β ∈ u;

δ, otherwise

for u ∈ Dκ,λ. In V [G], there is ξ < κ such that fξ = f . At his ξth move, the player

II is forced to take β as his move because of ( 3 ) in (4.33). a (Claim 4.13.2)
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Cl-grp-6

Claim 4.13.3 For any U , V ∈ U we have U ∩ V ∈ U

` (In V) let f ∈ Fκ,λ be defined by

f(u) =


0, if u 6∈ U ;

1, if u ∈ U \ V ;

2, if u ∈ U ∩ V

for u ∈ Dκ,λ. (In V[G]) let ξ < κ be such that f = fξ. Since U0 should have

intersection property, we should have αξ = 2. Thus U ∩ V ∈ U0 ⊆ U .

a (Claim 4.13.3)

The following two Claims can be proved with arguments similar to those of

previous Claims:
Cl-grp-7

Claim 4.13.4 For any U ∈ V with U ⊆ Dκ,λ, either U ∈ U or Dκ,λ \ U ∈ U .

` Consider f ∈ Fκ,λ defined by

f(u) =

{
1, if u ∈ U ;

0, otherwise

for u ∈ Dκ,λ. a (Claim 4.13.4)

By the Claims above, it follows that U is a V-ultrafilter over Dκ,λ.

Cl-grp-8

Claim 4.13.5 For any sequence 〈Uα : α < κ〉 (∈ V), if {Uα : α < κ} ⊆ U then⋂
{Uα : α < κ} ∈ U .

` Re-enumerate 〈Uα : α < κ〉 as 〈Uα : α < κ \ 1〉 and consider f ∈ Fκ,λ defined

by

f(u) =

{
0, if u ∈

⋂
α<κ Uα;

min{α < κ : u 6∈ Uα}, otherwise

for u ∈ Dκ,λ. a (Claim 4.13.5)

By Claim 4.13.5, U is V-κ-complete filter. From Claim 4.13.5, it follows that U is

<κ-complete in the sense of V[G], since, by the <κ-closedness of P, every sequence

in V[G] of elements of V are actually in V. Note that this stronger completeness is

needed in the proof of the well-foundedness of ∈U in Claim 4.13.6 below.

Let

(4.37) Dκ,λV/U = {[f ]U : f ∈ V, f is a mapping with dom(f) = Dκ,λ} grp-27
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where [f ]U denotes the equivalence class of f with respect to the equivalence relation

(4.38) f ∼U g ⇔ {u ∈ Dκ,λ : f(u) = g(u)} ∈ U . grp-28

For [f ]U , [g]U ∈ Dκ,λV/U

(4.39) [f ]U ∈U [g]U ⇔ {u ∈ Dκ,λ : f(u) ∈ g(u)} ∈ U . grp-29

Since U is a filter, it is easy to show by a standard argument that ∼U is an equiv-

alence relation5) and ∈U is well-defined.

The following is also easy and can be shown by standard arguments:
Cl-grp-8-0

Claim 4.13.6 ( 1 ) ∈U is a set-like, extensional and well-founded class relation on
Dκ,λV/U .

( 2 )  Loś’s Theorem (see e.g. [3]). a
By Claim 4.13.6, ( 1 ), there is the Mostowski collapse

(4.40) m : 〈Dκ,λV/U ,∈U〉
∼=→ 〈M,∈〉

for a uniquely determined transitive class M . By  Loś’s Theorem,

(4.41) j : V →M ; a 7→ m([ia]U)

is an elementary embedding where ia : Dκ,λ → V; u 7→ a. As usual we identify

[f ]U ∈ Dκ,λV/U with m([f ]U) and simply write [f ]U to denote its value by m.

For α < κ+ we have j(α) = α by Claim 4.13.5. Since j(κ+) > [dκ+ ]U > j(α)

for all α < κ+ where dκ+ : Dκ,λ → V; u 7→ sup(u ∩ κ+). crit(j) = κ+. [Since

{u ∈ Dκ,λ : κ+ = iκ+(u) > dκ+(u)} = Dκ,λ ∈ U, j(κ+) = [iκ+ ]U > [dκ+ ]U by

 Loś’s Theorem.

{u ∈ Dκ,λ : sup(u∩κ+) > α} ⊇ {u ∈ Dκ,λ : α + 1 ∈ u} ∈ U︸ ︷︷ ︸
by Claim 4.13.2

. This implies

[dκ+ ]U > [idα]U = j(α) by  Loś’s Theorem. ]

j ′′λ ∈M follows from the next Claim:
Cl-grp-9

Claim 4.13.7 [id]U = j ′′λ where id : Dκ,λ → V; u 7→ u.

` Suppose β < λ. Then Claim 4.13.2 and the definition of ∈U imply j(β) =

[iβ]U ∈ [id]U .

Suppose now [f ]U ∈ [id]U . Without loss of generality, we may assume that

f(u) ∈ u for all u ∈ Dκ,λ. But then, in V[G], there is a ξ < κ such that fξ = f . For

β = αξ, we have [f ]U = [iβ]U = j(β). a (Claim 4.13.7)

(Theorem 4.13)

5) Strictly speaking, we have to insert here a modification of the definition of the ultrapower to
make equivalence classes of ∼U sets, but we simply drop this well-known detail.
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5 Conclusion
summary

As we have seen in the previous sections, Strong Downward Löwenheim-Skolem

Theorems for stationary logic (in ℵ0 interpretation of the weak second-order vari-

ables) and its variations fit nicely in the web of implications of reflection axioms.

In case of statements with the reflection cardinal <ℵ2, this can be summarized in

the following diagram:

Fodor-type Reflection Principle (FRP)Semi-stationary Reflection (SSR)

Axiom R ⇔ RPIUℵ0

Rado Conjecture (RC(<ℵ2))

RPICℵ0

MA
+(σ-closed)

SDLS
−(Lℵ0

stat, <ℵ2) ⇔ DRP (ICℵ0
)

MA
+ω1(σ-closed) MM

MM
+ω1

SDLS (Lℵ0,II
stat , <ℵ2)

⇔ DRP (ICℵ0
) + CH

Game Reflection Principle (GRP<ω1(<ℵ2))

⇔ ω2 is generically supercompact

by σ-closed forcing

[14], see also 
Theorem 4.3

[4]

    [14],
see also 
Theorem 4.13 and
Lemma 4.2

Theorem 4.7, 
Lemma 4.1 and Lemma 4.2

Lemma 2.1,(2) and
Lemma 3.5,(1)

Lemma 2.1,(1) and
Lemma 3.5,(2)

[7]

[1]

[6]

[11]

Note that GRP<ω1(<ℵ2) implies CH while MM implies 2ℵ0 = ℵ2. In the sequel

[13] of the present paper, we shall show among other things that there is a natural

Löwenheim-Skolem theorem type statement with reflection cardinal < 2ℵ0 which

implies that the continuum is very large (e.g. weakly Mahlo and more).
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[13] Sakaé Fuchino, André Ottenbreit Maschio Rodrigues and Hiroshi Sakai, Strong
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