Ohyauchi Nao

J-GLOBAL         Last updated: Apr 18, 2019 at 02:40
 
Avatar
Name
Ohyauchi Nao
Affiliation
University of Tsukuba
Section
Faculty of Pure and Applied Sciences
Job title
Assistant Professor

Research Areas

 
 

Published Papers

 
Akahira, M.;Ohyauchi, N.
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS   46(12) 6085-6097   2017   [Refereed]
Second Order Asymptotic Loss of the MLE of a Truncation Parameter for a Two-Sided Truncated Exponential Family of Distributions
Akahira,Masafumi;Ohyauchi,Nao
JOURNAL OF THE JAPAN STATISTICAL SOCIETY   46(1) 27-50   2016   [Refereed]
<p>For a one-sided truncated exponential family of distributions with a truncation parameter and a natural parameter as a nuisance parameter, it is shown by Akahira and Ohyauchi (2016) that the second order asymptotic loss of a bias-adjusted maxim...
Ohyauchi,Nao
Statistics   47(3) 590-604   Jun 2013   [Refereed]
In most cases, we use a symmetric loss such as the quadratic loss in a usual estimation problem. But, in the non-regular case when the regularity conditions do not necessarily hold, it seems to be more reasonable to choose an asymmetric loss than ...
Asymptotic comparison of estimators for a family of truncated distributions (Asymptotic Expansions for Various Models and Their Related Topics)
Ohyauchi,Nao;Akahira,Masafumi
RIMS Kokyuroku   1860 129-139   Nov 2013
Comparison of the Bayes risks of estimators for a family of truncated normal distributions
Ohyauchi, N.
Commun. Statist.-Theory and Meth.   31(5) 699-718   Jan 2002   [Refereed]

Conference Activities & Talks

 
Asymptotic comparison of location equivariant estimators for a family of truncated distributions
大谷内,奈穂;赤平 昌文
2014年度統計関連学会連合大会   15 Sep 2014   
Asymptotic loss of the MLE of a truncation parameter for a two-sided truncated exponential family of distributions
大谷内,奈穂;赤平 昌文
2015年日本数学会年会   23 Mar 2015   
Asymptotic loss of the MLE of a truncation parameter for a one-sided truncated exponential family of distributions
赤平 昌文;大谷内,奈穂
2015年日本数学会年会   23 Mar 2015   
The asymptotic expansion of the maximum likelihood estimator for a truncated exponential family of distributions
赤平昌文;大谷内奈穂
__1804__188-192   Aug 2012   
The amount of partial information and sufficiency
大谷内奈穂;赤平昌文
__1101__110-113   1999   

Association Memberships

 
 

Research Grants & Projects

 
Statistical non-regular theory