論文

査読有り
2017年4月

ANALYTIC EXTENSION OF JORGE-MEEKS TYPE MAXIMAL SURFACES IN LORENTZ-MINKOWSKI 3-SPACE

OSAKA JOURNAL OF MATHEMATICS
  • Shoichi Fujimori
  • ,
  • Yu Kawakami
  • ,
  • Masatoshi Kokubu
  • ,
  • Wayne Rossman
  • ,
  • Masaaki Umehara
  • ,
  • Kotaro Yamada

54
2
開始ページ
249
終了ページ
272
記述言語
英語
掲載種別
研究論文(学術雑誌)
出版者・発行元
OSAKA JOURNAL OF MATHEMATICS

The Jorge-Meeks n-noid (n = 2) is a complete minimal surface of genus zero with n catenoidal ends in the Euclidean 3-space R-3, which has (2 pi/ n)-rotation symmetry with respect to its axis. In this paper, we show that the corresponding maximal surface fn in Lorentz-Minkowski 3space R-1(3) has an analytic extension (f) over tilde (n) as a properly embedded zero mean curvature surface. The extension changes type into a time-like (minimal) surface.

Web of Science ® 被引用回数 : 7

リンク情報
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000405815400003&DestApp=WOS_CPL