Papers

Peer-reviewed International journal
Feb 3, 2019

A Novel Combination Cancer Therapy with Iron Chelator Targeting Cancer Stem Cells via Suppressing Stemness.

Cancers
  • Yuki Katsura
  • Toshiaki Ohara
  • Kazuhiro Noma
  • Takayuki Ninomiya
  • Hajime Kashima
  • Takuya Kato
  • Hiroaki Sato
  • Satoshi Komoto
  • Toru Narusaka
  • Yasuko Tomono
  • Boyi Xing
  • Yuehua Chen
  • Hiroshi Tazawa
  • Shunsuke Kagawa
  • Yasuhiro Shirakawa
  • Tomonari Kasai
  • Masaharu Seno
  • Akihiro Matsukawa
  • Toshiyoshi Fujiwara
  • Display all

Volume
11
Number
2
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.3390/cancers11020177

Excess iron causes cancer and is thought to be related to carcinogenesis and cancer progression including stemness, but the details remain unclear. Here, we hypothesized that stemness in cancer is related to iron metabolism and that regulating iron metabolism in cancer stem cells (CSCs) may be a novel therapy. In this study, we used murine induced pluripotent stem cells that expressed specific stem cell genes such as Nanog, Oct3/4, Sox2, Klf4, and c-Myc, and two human cancer cell lines with similar stem cell gene expression. Deferasirox, an orally available iron chelator, suppressed expression of stemness markers and spherogenesis of cells with high stemness status in vitro. Combination therapy had a marked antitumor effect compared with deferasirox or cisplatin alone. Iron metabolism appears important for maintenance of stemness in CSCs. An iron chelator combined with chemotherapy may be a novel approach via suppressing stemness for CSC targeted therapy.

Link information
DOI
https://doi.org/10.3390/cancers11020177
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/30717462
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406536
ID information
  • DOI : 10.3390/cancers11020177
  • Pubmed ID : 30717462
  • Pubmed Central ID : PMC6406536

Export
BibTeX RIS