AOYAMA Koji

J-GLOBAL         Last updated: Dec 26, 2019 at 14:24
 
Avatar
Name
AOYAMA Koji
URL
http://bm.skr.jp/
Affiliation
Chiba University
Job title
Professor
ORCID ID
0000-0001-8245-8581

Published Papers

 
Koji Aoyama, Masashi Toyoda
Journal of Fixed Point Theory and Applications   21(1)    Mar 2019   [Refereed]
Parallel hybrid methods for relatively nonexpansive mappings
Koji Aoyama
Josai Mathematical Monographs   11 121-130   Mar 2018   [Refereed]
Aoyama K, Zembayashi K.
Journal of Nonlinear and Convex Analysis   19(10) 1655-1663   2018   [Refereed]
Cutter mappings and subgradient projections in Banach spaces
Aoyama Koji, Kohsaka Fumiaki
Linear and Nonlinear Analysis   3(3) 457-473   Dec 2017   [Refereed]
Uniformly nonexpansive sequences
Koji Aoyama
Linear and Nonlinear Analysis   3(2) 179-187   Oct 2017   [Refereed]
Aoyama Koji, Toyoda Masashi
ISRAEL JOURNAL OF MATHEMATICS   220(2) 803-816   Jun 2017   [Refereed]
Viscosity approximation method for quasinonexpansive mappings with contraction-like mappings,
Koji Aoyama
Nihonkai Mathematical Journal   27 168-180   Dec 2016   [Refereed]
Strongly quasinonexpansive mappings
Koji Aoyama
Proceedings of the 9th International Conference on Nonlinear Analysis and Convex Analysis   19-27   2016   [Refereed]
Aoyama Koji, Kohsaka Fumiaki
FIXED POINT THEORY AND APPLICATIONS   2014    Apr 2014   [Refereed]
Viscosity approximation method for quasinonexpansive mappings with contraction-like mappings,
Koji Aoyama, Yasunori Kimura
Cubo   16(1) 9-20   Mar 2014   [Refereed]

Misc

 
青山 耕治
数理解析研究所講究録   (2112) 213-222   Apr 2019
Koji Aoyama, Masashi Toyoda
   Apr 2018
The aim of this paper is to establish a strong convergence theorem for a
strongly nonexpansive sequence in a Banach space. We also deal with some
applications of the convergence theorem.
Koji Aoyama
   Sep 2017
In this paper, we give a simple proof and some generalizations of results in
Falset, Llorens-Fuster, Marino, and Rugiano (2016).
Koji Aoyama, Kei Zembayashi
   Mar 2017
This paper is devoted to the study of strongly quasinonexpansive mappings in
an abstract space and a Banach space.
青山 耕治
千葉大学経済研究 = Economic journal of Chiba University   30(4) 197-206   Mar 2016
奥本佳伸先生退職記念号