論文

査読有り
2018年

An analytical solution for the axisymmetric problem of a penny-shaped crack in an elastic layer sandwiched between dissimilar materials

MECHANICAL ENGINEERING JOURNAL
  • Miura Kotaro
  • ,
  • Sakamoto Makoto
  • ,
  • Kobayashi Koichi
  • ,
  • Pramudita Jonas A
  • ,
  • Tanabe Yuji

5
3
開始ページ
18
終了ページ
00125-18-00125
記述言語
英語
掲載種別
DOI
10.1299/mej.18-00125
出版者・発行元
一般社団法人 日本機械学会

<p>Herein, we consider the axisymmetric problem of a penny-shaped crack in an elastic material sandwiched between other materials. It is assumed that the central substance is composed of an elastic layer held between two semi-infinite bodies with different elastic constants, and that the crack is situated in the central plane of the elastic layer and subjected to uniform pressures on its internal surfaces. We consider two contact conditions; perfectly bonded and frictionless contact at the interfaces with the dissimilar materials. Dual integral equations are reduced to an infinite system of simultaneous equations by expressing normal displacements on the crack surfaces as an appropriate series function. Numerical results were obtained to examine the effects of the elastic constants of the layer and semi-infinite bodies and contact conditions on the stress intensity factor at the tip of the penny-shaped crack, the distribution of normal displacement, and stress on the crack plane. Based on the results of these numerical calculations, several conclusions can be made, as follows. 1) The distributions of normal displacement and stress at the crack plane and the stress intensity factor at the tip of the crack become larger than the results for an infinite solid when the ratio of the shear modulus of the layer to that of the semi-infinite bodies is larger than 1. 2) The numerical results for normal displacement and stress, and for stress intensity factors, in the frictionless case are higher than for the perfectly bonded case regardless of the shear modulus ratio and layer thickness ratio. The difference between the perfectly bonded and frictionless cases becomes greater as the layer thickness ratio becomes smaller. 3) There is a slight difference in the stress intensity factor values obtained from the present work and the corresponding results previously reported in the literature.</p>

リンク情報
DOI
https://doi.org/10.1299/mej.18-00125
CiNii Articles
http://ci.nii.ac.jp/naid/130007397269
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000438952500009&DestApp=WOS_CPL
ID情報
  • DOI : 10.1299/mej.18-00125
  • ISSN : 2187-9745
  • CiNii Articles ID : 130007397269
  • Web of Science ID : WOS:000438952500009

エクスポート
BibTeX RIS