MISC

2004年12月

Phylogeny of protein-folding trajectories reveals a unique pathway to native structure

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  • M Ota
  • ,
  • M Ikeguchi
  • ,
  • A Kidera

101
51
開始ページ
17658
終了ページ
17663
記述言語
英語
掲載種別
DOI
10.1073/pnas.0407015102
出版者・発行元
NATL ACAD SCIENCES

To scrutinize how a protein folds at atomic resolution, we performed 200 molecular dynamics simulations (each of 50 ns) of the miniprotein Trp-cage on the computational grid. Within the trajectories, 58 folding and 31 unfolding events were identified and subjected to extensive comparison and classification. Based on an analogy with biological sequences, the folding and unfolding trajectories (arrays of sequential snapshots of structures) were aligned by dynamic programming allowing gaps. A phylogenetic tree derived from the alignments revealed four distinct groups of the trajectories, characterized by the Trp side-chain motions and the main-chain motions. It was found that only one group attained the native structure and that the other three led to pseudonative structures having the correct main-chain trace but different nonnative Trp side-chain rotamers, indicating that those four folded structures were each attained through a unique folding pathway.

リンク情報
DOI
https://doi.org/10.1073/pnas.0407015102
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000225951500018&DestApp=WOS_CPL
ID情報
  • DOI : 10.1073/pnas.0407015102
  • ISSN : 0027-8424
  • Web of Science ID : WOS:000225951500018

エクスポート
BibTeX RIS