HARMONIC ANALYSIS WITH PROOFS

SHUICHI SATO

1. INTRODUCTION

We review some basic, classical results in harmonic analysis. Proofs will be given
for the results in detail.

We focus on results related to trigonometric series. In this note Z denotes the
set of integers and N stands for the set of positive integers.

2. SOME DEFINITIONS AND FORMULAE FOR TRIGONOMETRIC FUNCTIONS

Definition 2.1. The Dirichlet kernels D,,(z), n > 0, are defined as

1
D, (x) §+Cosx+cos2x+~~+cosmc, n>1; Dy(x) = =.

Definition 2.2. We define the conjugate Dirichlet kernels D, (z), n > 0, as

D, (z) =sinz +sin2x + --- +sinnz, n>1; Do(z) = 0.
Definition 2.3. The Fejér kernels K, (z), n > 0, are defined as

K, (z) = L > Dy (x).

n—l—lyzo

Definition 2.4. We define the conjugate Fejér kernels I?n(ac), n >0, as

Ru(2) = —— 3" Dy (a).

n+1y:0

Theorem 2.5. Letn > 1. We have

n n—1
1
540 + E A, COSMT = E D,(x)Aa, + a, Dy (z),
m=1 v=0

where Aa, = a,, — a,41 for v > 0.

Theorem 2.6. Let n > 2. We see that

n—1 n—2
(2.1) Z D,(x)Aa, = Z (m + 1)K (2)A%an, +nK, 1 (2)Aay,_1,
v=0 m=0
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2
where Aa, = A(Aay) = Aapy — Atme1 = G — ama1 — (Gma1 — Gpas) =
Ay — 2am+1 + Q425

1 n
(2.2) §ao + Z Ay, COSTNT

m=1

Z 7n )A A +nKn 1( )Aa'n—l +anDn(x)

Theorem 2.7. Let n > 2. We have

n—1

Zb smmx—ZD YAb,, + by, Dy, ().

Theorem 2.8. Let n 2 3. We see that

n—2
(2.3) ZD JAb, = > (m + 1) K (2) A2bpy + 1K1 () Aby_1;
m=1
(2.4) mesinmx
m=1
Z m + 1)K (2) A6y, + nKp_1(2)Aby_1 + by Dy ().

Proof of Theorem 2.5. Applymg summation by parts arguments (see [3, Theorem
3.41, p.70]), we have

1 - 1 "
§a0 + mz_: Gy, COSNT = §a0 + Z G (D () — Dpp—1(2))
1 n n
= 540 + Z am D () — mz::l D1 ()
n—1
= Z ay,D y + an n(z) - Zau+1Du(I)
v=0

= Z D,(x)Aa, + a, Dy, ().

]

Proof of Theorem 2.6. Proof of (2.1). We note that D, = (v + 1)K, — vK,_; for
v >1,and Dy = Ky. Thus

n—1 n—1 n—1

Z D, (z)Aa, = KoAag + Z 1)K, Aa, — Z vK,_1Aa,
v=1
n—2 n—2
= KOAGO + Z (m + 1)K’mAa'7n + nKn—l(x)Aan—l - Z (m + 1)K’mAaf’m+1
m=1 m=0
Z T)’L )A A + nKn 1( )Aa'n—L

m=0
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This proves (2.1). The formula (2.2) follows from Theorem 2.5 and (2.1). O

Proof of Theorem 2.7. We note that sinma = D, (z) — Dyy_1(z) for m > 1 and
Dy(x) = 0. Thus

Z by, sinmz = Z b Dm_l(:v))

m=1

—Zb D, ( ZbuHD

—ZD )Ab,, + b, Dy, ().

O

Proof of Thgoremg.& Proof of (2.3). We note that D, = (v+ 1)I~(y —vK,_, for
v > 1, and D() = KO = 0. Thus

3

1 n—1 n—1

Dy(z)Ab, = > (v+1)K,Ab, — Y vK, 1Ab,
v=1 v=1 v=1
n—2 N » n—2 N
= > (M4 1)Ky Dby + 1K1 (2)Aby_y = Y (m+ 1)K Abyi
m=1 m=1
n—2
=" (m+ 1)K (2) A%y, + 1K1 (2)Aby_1.
m=1

This completes the proof of (2.3). The equation (2.4) follows from Theorem 2.7
and (2.3). O

For the Dirichlet kernels and the conjugate Dirichlet kernels, we have the follow-
ing formulae.

Theorem 2.9 (Zygmund [5, p. 2]). Let n > 0. We have
sin(n + 1)z

1
2sin 5T

D, (x) =

Proof. The proof is needed only for the case n > 1. We express 2sin £zD,,(z) by a
telescoping series and see that

1 1 1 1 1
2 = —si _ -
sin — 5% + g sin — 5L COS VT = sin — 5% + 2 (sm v+ 2)x sin(v 2)x>
. 1
= sin(n + 5)36’

which implies the conclusion. O

Theorem 2.10 (Zygmund [5, p. 2]). Let n > 0. We have

1 1
~ cos s — cos(n + 5)z
Dn(a:) _ 2 : 2

2

2sin sx
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Proof. We may assume that n > 1. Similarly to the proof of Theorem 2.9, we have

n

n 1 1 1
VZ::I 2 sin 5% sinve = Z (cos(u - i)x —cos(v + 2)36)

v=1
= cos 3 —cos(n + )
= cos 2w cos(n 5 x,
from which we deduce the conclusion. O

Applying Theorem 2.9, we have the following.
Theorem 2.11 (Zygmund [5, p. 88]). Forn >0 we have
1 « 1 sin(v+ )t
Ku(t) = > D,(t) = > W+ )

n+1 T n+41 2sin%t

v=0 v=0

1 1—cos(n+1)t
n+1 (2sinit)?
2 {sin%(n—&-l)t}2

:n+1 2Sin%t

Proof. The second equality follows from Theorem 2.9. We note that

n

S 1 1
Z 2sin §t sin(v + i)t = Z (cosvt — cos(v + 1)t)

v=0 v=0
=1—cos(n+ 1)t,
which implies the third equality. The last equality follows by the formula 1—cosf =
25sin?(0/2). O
Using Theorem 2.10, we have the following.
Theorem 2.12 (Zygmund [5, p. 91]). Let n > 0. Then

n

~ 1 ~ 1 1 1 < cos(v+ 3t
Rat) > Dult) = oot b Lyt

n+1= 2 n+1i= QSin%t
1 1 1 i 1)t

= —cot =t — sm(‘n—t ) .
2 2 n+1 (2singt)?

Proof. The second equality follows from Theorem 2.10. We see that

n

& 1 1
Vz::o 2sin 515 cos(v + §)t = ; (sin(v + 1)t — sin vt)
= sin(n + 1),

which implies the last equality. O
3. SPECIAL TRIGOMOMETRIC SERIES WITH DECREASING POSITIVE COEFFICIENTS

For results in this section we refer to [2, III].
We consider the series of the form

(3.1) i Anein?,
1

n=
where A, > 0, A, > A\pqq for alln > 1.



HARMONIC ANALYSIS WITH PROOFS 5

Theorem 3.1. Let the series Y \,e™ be as in (3.1). We further assume that
An = 0 as n — oo. Then the series is uniformly convergent in any subset I
of R such that dist(I,27Z) > 0, where 2nZ = {2kn : k € Z} and dist(E, F) =
infrepyer | —y| for E,F CR.

Corollary 3.2. Let I be a subset of R as in Theorem 3.1. Then each of the two

series
oo oo

sin n# cosné
Z n Z n

converges uniformly on I.

This follows from Theorem 3.1 with A\, = 1/n.
To prove Theorem 3.1 we need the following lemmas.

Lemma 3.3. Let 0<p <gq,p,q €Z and 6 € R\ 2xZ. Then
q .
Z eznG

n=p

Lemma 3.4. Let 0 < p < q,p,q € Z and A\, > 0,\;; > Apy1 forn > 0,n € Z.
Then

1

S 1
| sin 50|

for 6 € R\ 27Z.
Proof of Lemma 3.3. Summing up a geometric series, we have

q q—p i(g—p+1)0
, , , 1 — eila—p+
E 61719 _ ezp@ § 61719 _ ezp@ i
1—ei®
n=0

n=p

We note that
. 0
11— €% = (1 — cosf)? +sin? 0 = 2(1 — cos ) = 4sin? 7

Thus
q

Z einG < 2 1

— 0 = . 1 N
= |1 —e®|  |sin 30|

Proof of Lemma 3.4. Let
Upn = Z en?,
n=p
Then by Lemma 3.3, |Up,| < 1/|sin(0/2)|.

q
Z A"eme = \pUp + )‘p+1(Up+1 - Up) +ot /\q(Uq - Uq—l)

n=p

Applying summation by parts, we write

= Up()‘p - )‘p+1) + Up+1()‘p+1 - )‘p+2) +eee Uqfl()‘qfl - )‘q) + AUy
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Thus, using |U,| < 1/|sin(8/2)] and A, > Ajpg1 > 0, we see that

q
Z Ane ’ < m (()‘p - )‘p+1) + (/\p+1 - >‘p+2) +ooet (/\q—l - /\q) + /\q)
n=p 2
_ 1
|sin26] """

Proof of Theorem 3.1. Let 6 = dist(I,27Z). Then

1
(3.2) sup ——— < w6 L.
ger | sin 50
Given € > 0, there exists pg € N such that A\, 70! < e. Thus, if py < p < g and

0 € I, by Lemma 3.4 and (3.2) we have
q

Z )\neiHG < 1

< = Ap
= | sin %9\

<A< AT <e

Therefore the series Y \,e?"? is uniformly convergent on I by the Cauchy criterion.
O

Theorem 3.5. Suppose that A\, > 0, A,y > Apy1 for alln > 1 and n, < Cy for all
n > 1 with a constant Cy. Then the series Y - A, sinnd is boundedly convergent
on R.

Corollary 3.6. The series y ., n~*sinnf is boundedly convergent on R.

Proof of Theorem 3.5. Let Un(0) = 25:1 Ansinnd. We show that |[Un(6)] < C
for # € (0,7) with a constant C' independent of § and N. This implies that the
same holds for —m < 6 < 0 by the oddness of the function Uy. Also, we have
Un(—m) =Un(0) = Un(m) = 0. It follows that |[Un(0)| < C for 6 € [—m,n]|. Thus
the inequality is true for all § € R by the 27 periodicity of Uy, which is what we
need.

We split 25:1 Ap sinnf into two pieces:

N M N
Un(0) = Z A, sinnf = Z Ap, sinnf + Z Apsinnf = S; + S5, say.
n=1 n=1 n=M+1

By Lemma 3.4, we see that

N
A ein@
§ n

n=M+1

< AM 41 < Co 1 .
~ Isindf] = M +1|sin 16|

(3.3) |S2| <

On the other hand, since |sinnf| < n|6|, we have

M M
(3.4) 1S1] = D Ansinnb| <~ Aunb < CoM9.
n=1 n=1

If we choose M so that 07! < M < 0! + 1, then by (3.4)
(3.5) 1S1] < Co(0™ +1)0 = Co(1+6) < Co(1 + 7).
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Also, since sinx > (2/7)z (0 <z < 7/2), by (3.3)

s 1
. < — =< —Mr < .
(36) |S2|_CQM+19_CQM+1 71'_0071'
Combining (3.5) and (3.6), we have |Un(6)] < Co(1 + 27), which completes the
proof. O
Let A, >0,0n=0,1,2, ..., Ay > A\py1, n >0, A\, = 0. We consider

() fO)= %)\0 + i Ancosnd, (S) ¢(0) = i A sinnf.
n=1

n=1

By Theorem 3.1, each of the two series is uniformly convergent on any compact
subset of [—m, 7] \ {0} and so f, g are continuous on [—m, 7]\ {0}.

Theorem 3.7. Suppose that f € L'([—n,7]). Then the series in (C) is the Fourier
series of f. Also, if g € L'([—m, ), then the series in (S) is the Fourier series of

g.
Proof. Suppose that g € L*([—m, n]) and m € N. We note that the series - | A, sin nf sin mf

converges uniformly on [—7,7]. This can be seen through the Cauchy criterion by
using Lemma 3.4 as follows:

< )\7”1\ sin m|
| sin 50|
m|f| _
(2/m)|(1/2)0]

where the second inequality follows from the inequalities |sinz| < |z| and |siny| >
(2/m)|y| (Jyl < 7/2). Thus we can apply term by term integration and get

q
Z Ay, sin nd sin mé

n=p

<X Apmm,

us

I =1
— 0) sinmb df = Ap— innfsinmb di = A,
71_/_Trg( ) sinm ;::1 ﬂ_/_ﬂsmn sinm

for m € N. This is what we have claimed for (.5).
Next, let f € L'([—m,x]). As in the case of (S), the series

1 o0
5)\0(1 — cosmb) + Z An cosnf(1 — cosmb)

n=1
converges uniformly on [—, 7], since
- A
Z An cosnf(1 — cosmb)| < —L—|(1 — cosmd)|
= | sin 50|
1/2)(m#)?
S )\p ( / )(m ) )\pm2ﬂ'|9‘/2,

2/m)(1/2)6] ~

for m > 1, where for the second inequality the estimate |1 —cos x| < (1/2)2? is also
used. Thus, integrating term by term, for m > 1 we have

1" —, 1 [T
3.7) — 0 (1— 0)df = \o — An— 0 0df = Ao — A
(3.7 - 77rf( )(1 — cosm#@) 0 Z 7T/ cosnf cosm 0

n=1 -
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Letting m — oo and using the Riemann-Lebesgue lemma (see [4, p.103]) and our
assumption that A, — 0, we have 1 ffﬁ f(0)do = Xg. Using this in (3.7), we have
L ["_ f(6) cosmbdf = Ay, for all m > 1. This completes the proof. O

Theorem 3.8. Let {\,} be as in the definition of the series (C) and (S). Set
— A
A= =,

(1) If A < oo, then f,g € LY ([—m, ) and the series in (C) and (S) are Fourier
series of f and g, respectively.
(2) If g € LY([—m,7]) and the series in (S) is the Fourier series of g, then
A < oo.
Proof. Proof of part (1). Let Ay =S¥ _ A,. Then

n=1

3
ol
T
-

Il
M8
w
+
Hmw

Let f and g be as in (C) and (S) and define h = f +ig. Let k satisfy n/(k+ 1) <
0 < w/k, for 0 € (0,7). We write

S k—1 oo
= %)\0 + Z Apein? = %)\0 + Z Anein? 4 Z A etm?
n=1 n=1 n=k

and by Lemma 3.4 we see that

k-1

1 Ak oy 1
h| < )\ An < )\ A < =\ A k+ 1)\
|| 0+Z +— s 10 o+ AL+ — 7 <5M+ g+ (B + 1)
Thus
Ih(6)) do = / 0)|do
/0 g /<k+1>
> 1 > ’/T)\k
< R
72(2)‘0"‘/\1@ +Z 3
=1 =1
1

Thus, if A < oo, then f,g € L'([—m, 7]). Therefore, Theorem 3.7 implies part (1).
Proof of part (2). Suppose that g € L'([—m,7]) and Ay, = = ["_g(6) sinm8 d6.
Then

T

N N .
(3.8) Z Hm _1 / 96> S”;nma o,

- m=1
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Since Y, sinmf .onyerges boundedly by Theorem 3.5, letting N — oo in (3.8),

we have "
> i >, sinmé
—m = - 0 do .

—T

Here we recall some results on numerical series.

Lemma 3.9. Let {v,}22 be a sequence of complex numbers. Let Avy,, = vy, — Upt1
and A%v, = A(Av,), n > 0.
(1) Ifv, — 0, then Y "  Av, = vg.
(2) If nv, — 0 and either > v, or Y .- (n + 1)Auv, is convergent, then
Yoo o Un = Dono(n+1)Auv,.
(3) If vy > Ung1, vy >0 forn >0 and Y.~ v, < o0, then nv, — 0.
(4) If v, — 0 and {v,} is convez, which means that A?v,, > 0 for n >0, then
Av, >0, n >0, nAv, — 0 and

(3.9) Z(n + 1A%, = Z Av,, = v.
n=0 n=0

Proof. Proof of part (1). We see that ZLVZO Avy, = vy — vnt1. So letting N — oo,
we get the conclusion.

Proof of part (2). We note that

N N N+1 N
Z(nJrl)Avn:ZnJrl Zm}anvnf(NJrl)vN_H,
n=0 n=0 n=0

which implies the claim.

Proof of part (3). We have

Z v > (n—[n/2] 4+ Do, > ((n/2) + 1)v, > (n/2)v, > 0.
k=[n/2]
It follows that nv,, — 0.

Proof of part (4). Since {Aw,,} is decreasing and converges to 0, we have Av,, > 0.
Since v, — 0, by part (1) > Aw, is convergent. Thus by part (3) we see that
nAv, — 0. Therefore we can apply part (2) and have the first equality of (3.9);
the second equality follows from part (1). O

Theorem 3.10. Suppose that {\,} is convex. Then f in (C) is non-negative and
integrable; further the series in (C) is the Fourier series of f.

Proof. By (2.2) of Theorem 2.6, Theorem 2.9 and Theorem 2.11 we have for 0 <
0<m

1 n
5)\0 + Z A, COS B

Z m + 1 m )A A'rrL + nKn 1(0)AA7L—1 + )\nDn(e)

1 2 sin(n + )6
=S Z(l —cos(v+ 1))A%N, + (1 — cosn®)Alp_1 | + N\y——2—.
sin” =

1
= 2sin 50
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Since A\, — 0 and A\,,_1 — 0 as n — oo, letting n — oo, we have

o0

1 2
Obviously, f(6) > 0 and by foﬂ K, (0)df = w/2, applying Lemma 3.9 (4), we have
/ 60 d0 = (7/2) 3 (v + DA%, = (m/2)ho
v=0
Thus by Theorem 3.7 the series in (C) is the Fourier series of f. O

Corollary 3.11. We have the following results.
(1) The series

Z COsS nx

log (2+mn)
1s a Fourier series.

(2) The series

is not a Fourier series.

Proof. Since the sequence {(log(2 + n))~!'} is convex, by Theorem 3.10 we have
part (1).

To prove part (2), let g(x) = > -, sinnz/log(2 + n) (the series is convergent
pointwise). We recall the fact that > - 1/(nlog(2 + n)) = oo. If there exists
h € L*([—n,7]) such that the series > - | sinnz/log(2 4+ n) is the Fourier series
of h, then it is known that h = g. Thus g € L*([—m,n]), which would imply by
Theorem 3.8 (2) that > -, 1/(nlog(2 + n)) < co. Thus we reach a contradiction.
This completes the proof of part (2). O

The series in Corollary 3.2 can be expressed as follows.

Theorem 3.12. Let 0 < 0 < 2m. Then
1 1 0
(3.10) cos 6 + 3 cos(20) + 3 cos(30) + ... = —log (2 sin 2) ,

T™—0
5

Definition 3.13. Let w € C\ (—o00,0]. Then we have a unique 6 € (—m, ) such
that

1 1
(3.11) sin 6 + 3 sin(26) + 3 sin(36) +... =

W e
|w]

We define Argw = 6.

Definition 3.14. For x > 0, Inz is defined as

1
lnx:/ —dy.
1 Y

Definition 3.15. For w € C\ (—o00,0], logw is defined as
logw = In|w| + i Argw.
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We note that logz = Inx for x > 0.
To prove Theorem 3.12 we need the following two lemmas.

Lemma 3.16. Let z € C, |z| <1, z# 1. Then

1 1
—log(l—z):z+§z2+§23+...,

where log is as in Definition 3.15 (we note that 1 —z € {w € C: Jw—3| < $}\{0}).
Lemma 3.17. LetT : (—7/2,7/2) — R be the bijection defined by T = tan |(—7/2,7/2)
(the restriction of tan to (—m/2,7/2)). Suppose that z = x + iy, * = Rez > 0.

Then
Argz =T71 (%) ,

where T~ : R — (—7/2,m/2) is the inverse mapping of T.

Proof of Lemma 3.16. We use the equation

1 anrl
—(l+z+a2*+ +2") = , 0<z <l

1—2z

Integration of both sides gives

/ ~d (x4 La? g T /wyan
——dy—(z+ =z —= =
4 2 n+1 o 1-y %

for 0 <z < 1. By changlng variables and Definition 3.14, we see that

11—z
/ 7dy——/ 1dy:—ln(l—ac):—log(l—az).
1 Y

Thus
1 1 I 11
“log(1l — ) — R R <7/ mHdy = .
’ og(l @) = (w+ a7t Dmma™ ) S g | vy = T
Letting n — oo, we see that
1 1
(3.12) —log(l—x):x—i—ixz—i—'--—i—fx”—i—..., 0<z<l
n

Let
F(z)—z+1z2+~-~+lz”+
= 5 - e

for |z] < 1. Then F' is holomorphic in |z|] < 1 and it is known that —log(l — z) is
also holomorphic in |z| < 1. Thus by the uniqueness of analytic continuation and
(3.12), we have —log(1 — z) = F'(z) for |z| < 1.

The series defining F'(z) is also convergent if |z] = 1 and z # 1 (see Corollary 3.2
and also [3, Theorem 3.44, Chap. 3]). Thus by Abel’s theorem (see [3, Theorem
8.2, Chap. 8)), if z = €%, 0 < 6 < 27, we can define F(e'’) by continuity as

, . ) 1 5, 1 ..
F(e?y= lim F(re®)=e? 4 —e20 4 ... 4 —em0
r—1,r<1 2 n
Since —log(1 — z) = F(z) for |z| < 1 and —log(1l — 2) is continuous at z = e,
0 < 0 < 27, we have F(e’?) = —log(1 — ¢'?) for 0 < @ < 2. This completes the
proof of Lemma 3.16. (]
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Proof of Lemma 3.17. We have —7w/2 < Argz < 7/2, since Rez > 0. If Argz =0,
by Definition 3.13 we have |z| 71z = € = cos @ + isin §, which can be rewritten as

x .y
+1

/12 +y2 /12 +y2

It follows that tan@ = sinf/cos = y/x. Since —7/2 < § < 7/2, we have tanf =

T(6). Thus T(0) = y/x and hence Argz =0 = T~ 1(y/x). O

= cosf + isin6.

Proof of Theorem 3.12. Let z = €' with 0 < § < 27. Then by Lemma 3.16 we see
that

ni

— (log |1 — €| + i Arg(1 — & Z

o0 oo .
cosnf . sin nd
= +iy, ——
n n
n=1 n=1

Comparing real and imaginary parts, we have

) > cosnb
3.13 —log|l — €| =
(3.13) og |l —e"] n; s
(3.14) ~Arg(l-e?) =Y B
n
n=1

We note that
- 0
11— e = (1 - cosf)? +sin? 0 = 2(1 — cos ) = 4sin? 7

Using this in (3.13), we have (3.10).
Next, since Re(1 — e) > 0 and 1 — ¢ =1 — cos — isin6, by Lemma 3.17 we
have Arg(1 — e?) = T~!(—sin#/(1 — cosf)). We note that

. 0 0 0 T _ 0 _
sinf  2singcosg cos3 sin(% 2):‘5 <9 w)

26 .0

= : —2
1 —cosf 2sin” 5 sin 5 cos(§ — 5)

Since 0 < 6 < 2w, we have —7/2 < (0 —7)/2 < 7w/2. Thus tan(d — 7)/2 =
T((0 — m)/2). Therefore

1 (_ sin ¢ _ -1 tane_ﬂ _ -l 0—m :9—71'.
1—cosf 2 2 2

Thus we have Arg(1 — e?) = (§ — 7)/2. Applying this in (3.14), we have (3.11).
This completes the proof of Theorem 3.12. O

For the continuity of the function g in (S) we have the following result.
Theorem 3.18. Let g(6) =77 | A\, sin(nd) be as in (S); we recall that the series
is convergent for every 8 € R. Then the following three statements are equivalent.

(1) The function g is continuous on [0, 27].
(2) The series Y .o | A sin(nf) is uniformly convergent on [0, 27].
(3) limy 00 A, = 0.

Lemma 3.19. We consider g(8) = >_," | A, sin(nf) as in (S). Suppose that g €
LY([0,27]). Then

/O / Ap sin(nt) dt = Z An (I_ZOS(W)).



HARMONIC ANALYSIS WITH PROOFS 13

Proof. We note that
2m 2m
/ g(z + 6)sinnzdr = / g(z)sinn(x — 0) dz
0 0

2m 2m
= cosnf / g(x)sinnx dz — sinnd / g(x) cosnz dx
0 0

= T, cosnb,

where the last equality follows from Theorem 3.7. Let G(z fo t)dt. Then
G is 27 periodic, which can be seen from G(z + 27) — G(x) = ff+27r (t)dt =

o "g(t)dt = 0. Since the series Y - n~!sinnz is boundedly convergent to (7 —
x)/2 by Corollary 3.6 and (3.11), we have

27

> 1/2” . / >, sinnz
- z+0)sinnxdr = z+0 dx
S s oy

n=1

—A%gw+w”‘

2m 21

- 1

[G(m+6‘)ﬂ2w} +§/ Gz + ) dz
0 0

xdx

27
——rG(0)+ 5 [ Gl

where the penultimate equality follows by integration by parts and

L[ ewan= o7 [T om T
2/, x)dr = r)—5 ) ; 9(x)—5—dz
27 _
:/ g(x)ﬂ L dz
O 2
o 1 27 oo 1
— dr = —TAn-
Z;n/ psinnrds =3 n
Thus
=1 =1
Zf Zf n cosnd,
—n —mn
which implies the conclusion. O

Proof of Theorem 3.18. We first prove that (3) implies (2) then we prove (1) implies
(3). This will conclude the proof of the theorem since it is well known that (2)
implies (1).

Suppose that we have (3). Then for any € > 0 there exists a positive integer N
such that n)\, < eif n > N. For p > N and g > p by Lemma 3.4 we have

for 0 < 6 < 7. Letting ¢ — oo, if 8 € [1/p, 71|, we see that

i A, sin né

n=p

(3.15) < 7pAp < Te.
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Ifo<1l/pand 0 <0 <m,let p<qg<1/0 < q+ 1. Then using (3.15) we have

o0 q o0
Z A, sin né Z A, sinnf Z A, sin né
=p n=p

n=q+1

<

+

a
< Z)\nnﬁ—i—ew <elg+em < (1+7e.
n=p
Since 3,2, Apsinnf = 0 for § = 0, we have for 6 € [0,1/p]
(3.16) Z)\n sinnf| < (14 7)e
=p

if p> N. By (3.15) and (3.16) we see that for 6 € [0, 7]

Z Apsinnd| < (1+m)e
=p

whenever p > N, which implies that the series E;’il Ap sinné is uniformly con-
vergent on [0,7]. By this we see that ) .-, A\, sinnf is uniformly convergent on
[—, 7] since Yo A, sinnd is odd, which implies (2) since > oo | A, sinnf is 27
periodic.

We now prove that (1) implies (3). Suppose that g is continuous on [0, 7]. Then
g(0) = g(0) =0 as § — 0. By Lemma 3.19 we have

6 o0
lim % g(t) dt = lim w

6—0
0 n=1

Taking 0 = 7m/(2k) and using the inequality: 1 —cosz > (2/7%)z2, 0 < z < 7, we
see that

2k 2k
, An(1 = cos(nm/(2k))) . 2k 2 2
=1 > 1 — o — —
0 hroo Z nm/(2k) = hoeo Azk w2 n:kn(2k)2
2k 2
> i R T
= kl;n;o T Azk w2 (2k)?
k
= lim 7/\2k~
k—oco T
It follows that limy_, o 2kAg, = 0, which also implies that limy 00 (2k+1)Agg11 = 0
on account of the monotonicity of \;. Altogether, we have limy_, o, kA = 0. ([

4. CHARACTERIZATION OF FOURIER COEFFICIENTS FOR CONTINUOUS
FUNCTIONS OF BOUNDED VARIATION

A variant of the following result will be used in proving Theorem 4.6 below.

Theorem 4.1. Let {A;}72, be a sequence of non-negative real numbers such that
A < 1/k for all k € N. Then the following three conditions are equivalent:

(1)
lim n i A? sin? kr) _ 0
novoo k 2n ’



HARMONIC ANALYSIS WITH PROOFS 15
1 n
lim — § k2A2 =0,
n—,oo N
k=1

1L
nll_}IIOloﬁkZIkAk—O.

Proof. Part (2) implies part (3). We assume part (2). Then By the Schwarz
inequality, we have

n n 1/2
1 1
fE kA, < fE k2Ai —0 asn— oo.
= "=

This implies part (3). Here we do not use the condition A, < 1/k.
Part (2) follows from part (3). Applying the condition Ay < 1/k and using part
(3), we see that

1 « 1 «
EZkZAI%SEl;kAk%O as n — o0,

which is part (2).
Part (1) implies part (2). Using the inequality sinx > (2/7)z, 0 < z < 7/2, we
see that

TLZAkbln< )>nZAksm( ) ZA2 (i;;)
:E;k2Ai,

from which we see that part (1) implies part (2). Here we do not use the condition
A, < 1/E.
Part (2) implies part (1). We write k = 2nm + ¢, 0 < £ < 2n. Then

sin® ((an—i_@ﬂ) = sin? (mﬂ + éw) = sin? (eﬂ') .
2n 2n 2n

Using this and the inequality, sinz < x, x > 0, we have, letting Ag = 0,

oo 2n—1
nZAksm < > nz Z A3, e sin® (52)

m=0 £=0

oo 2n—1 2
7T/2 Z Z A2mn+f ( )
m=0 (=0

co 2n—1

> 7T/2 2n Z Z €2A2mn+€

m=0 £=0

00
77/2 2 Z Pm,n,

=0

| N
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where
2n—1

1 2 42
Pmn = n Z ¢ A2mn+£'
=0

We see that
2n—1
Pm,n < ﬁ Z (2mn + e)zAganrl
{=0
1 2(m+1)n
LS e
n
k=2mn
1 2(m+1)n
2 42
i) S

k=1

IA

IN

2(m+1)n

2n(m+1) 1 9 (o
< k*A

where the convergence to 0 in the last line follows if we assume part (2). Also,
using the inequality Ax < 1/k, we have

2n—1
1
Pmn < = Y @mn+0)72 < C(m+1)72

n
(=1

for m > 0. Here C is a constant independent of n. Thus by the dominated
convergence theorem of Lebesgue we have

m=0
This implies part (1) under the condition in part (2). O

Definition 4.2. Let f : [0,27] — C. Let P = {z;}7", with 0 = 2o < 21 <
-+ <y = 27 be a partition of the interval [0, 27]. We say that f is a function of
bounded variation if

£l Bv ([0,27]) = S%PZ |f(x;) — fzj-1)] < o0,
=1

where the supremum is taken over all partitions P of [0, 27]. (See [1, p.97].)

For a integrable function f and k € Z, let
1 2 .
(4.1) Celf)= o= | f()e ™" at
2 0
be the Fourier coefficient.

Theorem 4.3. If f is a 27 periodic function on R which is of bounded variation
on (0,27, then for all k € Z\ {0} we have

1
ICL(f)] < m”fHBv([o,zw])-
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Proof. Let k be a positive integer. We easily see that

A = [gr [ (4G = Dm/b) = St m/k) e ] 1< < 2k

Thus, summing over j, 1 < 5 < 2k, we have

or 2k

KON < = [ DI+ G = Dm/fk) = S+ /)] e < | F oo,
j=1

which implies that |Ci(f)| < ﬁ||f||,3v([0’2,r]). The result for the case k& < 0 follows

f}:om this if we observe that C_(f) = Cx(f) and Hﬂ|BV([0,2w]) = | fllBv(j0,2+]) With
f(@) = f(==). 0

It is known that there exists a continuous function f of bounded variation with
period 27 for which we do not have |[kCy(f)] — 0 (Jk] — o0). Cantor’s function
can be used to construct an example (see [2, p.27]). On the other hand we have
the following results (Theorems 4.4, 4.6) of Wiener (see [2, pp.27-28]).

Theorem 4.4. Let f be a 2m-periodic function on R. Suppose that f is of bounded
variation on [0,2x]. Then we have the following.
(1) If f is continuous on R, then

(4.2) lim n > ICk(f))? sin® (’;:) =0,

k=—o00

where Ci(f) is as in (4.1).
(2) If (4.2) holds, then f(x +0) = f(z —0) for all z € R; and hence the
discontinuities of f should be of the first kind and removable.

Let

2n

(4.3) Fu(z)=>_

m=1

f(x+T:7r)f<x+m;17r)‘2.

To prove Theorem 4.4 we need the following.

Lemma 4.5. Let Ci(f) be as in (4.1) and F,, as in (4.3). Then

2 ']
/0 Fu(o) dz = 1670 3 |Ch(f)? sin? (’;Z)

k=—o00

Proof. We have
27 2n 2
m m—1
/0 Fn(x)dxmz::l/o f(m+n7r>—f(x+ - 7r>

2 2
:271/0 f<x+21n7r>—f<x—21n7r)

dx
=4mn Z |Ch k%,

k=—o00

2
dz
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where the last equality follows by the Parseval theorem (see [3, Theorem 11.40, p.
328]) with

g ] (v )1 =)
= Ci(f) (eﬂm/@n) - e—ikw/@n))
= Ci(f)2isin(kn/(2n)).
Collecting the results, we get the conclusion of the lemma. O
Proof of Theorem 4.4. Let

we(r) = sup |f(z+y)— f(2)]
z€ER,|y|<7

Then F,,(z) < ws(m/n)||fl|Bv(jo,2+])- Thus, if f is continuous, Fy,(z) — 0 uniformly,

SO fo% F,(z)dx — 0 as n — oo. This implies part (1) by Lemma 4.5.
Proof of part (2). Since f is 2m-periodic, we may assume that = € [0, 2x] in the
conclusion. Suppose that there exists xy € [0, 27] such that

|f(zo+0) = f(xog—0)| >d for some d > 0.
Then there exists § > 0 such that if |y — zo| < 6, |z — 20| < d and y < x¢ < z, then
|f(2) — f(y)| > d/2. Suppose that 27 /n < 4. For x € [0, 27] we have either
(i) zo € [z, + 27]
or
(ii) zo + 27 € [z, + 27).
First we consider the case (i). We deal with the following three cases separately:
(a) zo € (x4 (mo — 1)w/n,z + (mo + 1)m/n) for some 1 < mgy < 2n — 1;
(b) g € (x —7/n,x + 7w/n);
(¢) o€ (z+ (2n—)m/n,x+ 2n+ 1)7/n).
We now handle the case (a). We have | f(x+(mo+1)7/n)—f(x+(mo—1)7/n)| > d/2
and hence
|f(z +mom/n) — f(x+ (mo —1)m/n)| > d/4
or
|f(x + (mo + 1) /n) — f(x +mon/n)| > d/4.
Next, we treat the case (b). Then |f(x 4+ 7/n) — f(x —7/n)| > d/2, which implies
that we have

[f(x) = f(z —m/n)| > d/4
[f(x+m/n) = f(z)] > d/4.
Since f is 2m-periodic, it follows that
[f(z+ 2nm)/n) = f(z+ 2n —1)m/n)| > d/4
or
|f (@ +7/n) = f(z)| > d/4.
Finally, in the case (c) we have |f(z + (2n + 1)n/n) — f(x + (2n — )7 /n)| > d/2
and so
|f(x+ (2n+ Dn/n) — f(z+ (2nm)/n)| > d/4
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or

[f(x + (2nm)/n) — f(x + (2n — D)7 /n)| > d/4,
which implies that

Fa+m/n) — F(@)] > d/4

or

[f(z + (2nm)/n) = f(x + (2n — )7 /n)| > d/4.
Collecting results in the cases (a), (b) and (c), we see that F,,(x) > (d/4)? for all
x € [0,27] and n > 27/§ in the case (i).

The same holds also in the case (ii). This can be seen as follows. Let yg = xzo+27.

Then yo € [z, + 27] and

[f(yo+0) = fyo — 0)| = [f(z0 + 0) — f(zo — 0)[ > d.
Thus we can apply the arguments in the case (i) with yo in place of xg.
Combining results, we have F,(x) > (d/4)? for all x € [0,27] and n > 27/6.
Therefore, if ||F,|l1 — 0 as n — oo, which holds if we have (4.2) by Lemma 4.5,
then we have f(xz+40) = f(2—0) for all . This completes the proof of part (2). O

By Theorems 4.3, 4.4 and by applying Theorem 4.1 suitably, we have the follow-
ing.

Theorem 4.6. Let f be a 2mw-periodic function on R which is of bounded variation
on [0,27]. Then we have the following.

(1) If f is continuous on R, then we have

RS
(4.4) nhl%oﬁk; kCi(f)| =0,
where Ci(f) is as in (4.1).
(2) Suppose that (4.4) holds. Then f(xz +0) = f(z —0) for all x € R.

We note that (4.4) holds if lim| o [ECk(f)| = 0.
Let f: R — R be 27 periodic such that

1, =0,
J(@) = {0, x € [—m 7] \0.

Then f is of bounded variation and Cy(f) = 0 for all k£ € Z and so we have (4.4)
for this f, but f is not continuous at x = 0.
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