
ON DECOMPOSITION OF NEIGHBORHOOD OF A CIRCULAR

CONE RELATED TO PRINCIPAL CURVATURES

SHUICHI SATO

Abstract. We give an alternative proof of a result on the uniform overlap of
the algebraic sums of the sets arising from a decomposition of a neighborhood

of a circular cone in R3. It is known that the uniform overlap result can be
applied to make a unified approach for the proofs of a theorem on the maximal
Bochner-Riesz operator on R2 and a theorem on the maximal spherical means

on R2.

1. Introduction

Let

Tλ
Rf(x) =

∫
|ξ|<R

f̂(ξ)(1− |R−1ξ|2)λ+e2πi⟨x,ξ⟩ dξ

be the Bochner-Riesz operator of order λ on R2, where

f̂(ξ) =

∫
R2

f(x)e−2πi⟨x,ξ⟩ dx

is the Fourier transform and ⟨x, ξ⟩ = x1ξ1+x2ξ2, x = (x1, x2), ξ = (ξ1, ξ2), denotes
the inner product. Let

Tλ
∗ f(x) = sup

R>0
|Tλ

Rf(x)|

be the maximal Bochner-Riesz operator.
The following is known ([2]).

Theorem A. If λ > 0, Tλ
∗ is bounded on L4(R2) :

∥Tλ
∗ f∥4 ≤ Cλ∥f∥4.

The L4 boundedness for Tλ
1 is shown in [4]. See also [3] for related results.

Let

Stf(x) =

∫
S1

f(x− tθ) dσ(θ)

be the spherical mean on R2, where S1 = {x ∈ R2 : |x| = 1} is the unit circle and
σ denotes the Lebesgue arc length measure on S1, and let

S∗f(x) = sup
t>0

|Stf(x)|

be the maximal spherical mean.
The following result is known ([1]).
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Theorem B. The maximal operator S∗ is bounded on Lp(R2) for p > 2 :

∥S∗f∥p ≤ Cp∥f∥p.

We refer to [7] for a result analogous to Theorem B in Rn, n ≥ 3.
In [6, Chap. 2], a unified approach to the proofs of Theorems A and B are

presented. In the arguments, a geometric overlap theorem concerning a circular
cone in R3 plays a crucial role.

Let τ be a fixed large positive number. In this note we assume that τ > 106. Set

(1.1) Γµ = {ξ ∈ R2 \ {0} : µτ−1/2 ≤ arg ξ < (µ+ 1)τ−1/2},

where µ ∈ R with |µ| ≤ τ1/2(π/8)− 1. Let

(1.2) N = {µ ∈ Z : |µ| ≤ τ1/2(π/8)− 1},

where Z denotes the set of integers. Let J = [α, β] ⊂ [1, 2]. We assume that
|J | = β − α ≤ τ−1/2. For µ ∈ N , let

Uµ,J = {(ξ, |ξ|) ∈ R2 × R : ξ ∈ Γµ, |ξ| ∈ J}(1.3)

and

uµ,J = {(ξ, η) ∈ R2 × R : |η − |ξ|| ≤ τ−1, (ξ, |ξ|) ∈ Uµ,J}(1.4)

= ∪{{ξ} × [|ξ| − τ−1, |ξ|+ τ−1] : (ξ, |ξ|) ∈ Uµ,J}.

We note that Uµ,J ⊂ uµ,J .
We have the following result.

Theorem 1.1. Let [α1, β1], [α2, β2] ⊂ [1, 2]. Set Ji = [αi, βi] and suppose that
|Ji| ≤ τ−1/2, i = 1, 2. Let uµ,J1 , uµ,J2 be defined as in (1.4) with J1, J2 in place of
J . Then there exists a constant C independent of τ and the intervals J1, J2 such
that

I =
∑

(µ,ν)∈N 2

χuµ,J1
+uν,J2

≤ C,

where N is as in (1.2), uµ,J1 + uν,J2 = {(ξ, η) + (ξ′, η′) : (ξ, η) ∈ uµ,J1 , (ξ
′, η′) ∈

uν,J2} and χE denotes the characteristic function of a set E.

A more general result is stated in [6, (2.4.23), p. 87], and a variant of it is also
given ([6, Lemma 2.4.5]). As in [6], in the arguments for the unified approach to
the proofs of Theorems A and B applying half wave operators, Theorem 1.1 can be
used to prove an orthogonality result through Fourier transform estimates, which
is crucial in the arguments, since the orthogonality result leads to an effective
application of sharp L2(R3)-L2(R2) estimates for the Kakeya maximal functions
defined by using rays on a light cone.

The result [6, (2.4.23)] includes Theorem 1.1 as a special case and the proof is
given in [6, pp. 87-88]. In this note we shall give an alternative proof of Theorem
1.1. Also, we shall consider a variant of Theorem 1.1 (Theorem 4.2 below), which
is a special case of [6, Lemma 2.4.5] and which is related to Theorem 1.1 as [6,
Lemma 2.4.5] is related to [6, (2.4.23)]. We shall give the proof of Theorem 4.2 by
applying Theorem 1.1.

A version of Theorem 1.1 on R2, where a cone is replaced with a circle, is given
in [5] and it follows from Theorem 1.1 as a corollary.
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Remark 1.2. If the condition on µ in the definition of N in (1.2) is replaced by
|µ| ≤ τ1/2a−1 with some π/2 < a < π, then a result analogous to Theorem 1.1 will
not exist. This can be seen by letting J1 = J2 =: J , b ∈ J and considering (µ, ν)
satisfying (ξ, |ξ|) ∈ Uµ,J and (−ξ, |ξ|) ∈ Uν,J for some ξ such that |ξ| = b and arg ξ
is sufficiently close to π/2. For such (µ, ν) we have (0, 2b) ∈ Uµ,J + Uν,J and we
note that the cardinality of the family of such (µ, ν) increases with τ unlimitedly.

Let

(1.5) I =

{
a : a =

µ+ ν

2
, µ, ν ∈ N

}
.

Set Z∗ = {k/2 : k ∈ Z}. Then we note that I is a subset of Z∗ and if a ∈ I, then
−(π/8)τ1/2 + 1 ≤ a ≤ (π/8)τ1/2 − 1. To prove Theorem 1.1, we write

I =
∑

(µ,ν)∈N 2

χuµ,J1+uν,J2
=

∑
a∈I

∑
(µ,ν)∈k−1

0 ({a})

χuµ,J1+uν,J2
,

where the surjection k0 : N 2 → I is defined by

k0(µ, ν) =
µ+ ν

2
.

Let I ′ ⊂ I be such that if a, a′ ∈ I ′ and a ̸= a′, then |a − a′| ≥ C0, where C0 is
sufficiently large. To prove I ≤ C, it suffices to show that

(1.6)
∑
a∈I′

∑
(µ,ν)∈k−1

0 ({a})

χuµ,J1
+uν,J2

≤ C ′,

by considering a suitable partition of I.
In the proof of (1.6), one result we apply is the following.

Lemma 1.3. Fix a ∈ I. Let µ+ν
2 = a, µ, ν ∈ N and

Ea(µ, ν) = uµ,J1 + uν,J2 .

Then {Ea(µ, ν)}(µ,ν)∈k−1
0 ({a}) is finitely overlapping uniformly in a ∈ I.

Let

J̃1 = [α1 − τ−1, β1 + τ−1], J̃2 = [α2 − τ−1, β2 + τ−1].

Let η ∈ J̃1 + J̃2 = [α1 + α2 − 2τ−1, β1 + β2 + 2τ−1] and define

Eη
a(µ, ν) =

{
ξ ∈ R2 : (ξ, η) ∈ Ea(µ, ν)

}
, (µ, ν) ∈ k−1

0 ({a}).

Then the following result implies Lemma 1.3.

Lemma 1.4. Fix a ∈ I. Let η ∈ J̃1 + J̃2. Then {Eη
a(µ, ν)}(µ,ν)∈k−1

0 ({a}) is finitely

overlapping uniformly in a and η.

To prove Lemma 1.4, we observe that

Eη
a(µ, ν) =

∪{
uη′

µ,J1
+ uη′′

ν,J2
: η′ + η′′ = η, η′ ∈ J̃1, η

′′ ∈ J̃2

}
,

where uη′

µ,J1
and uη′′

ν,J2
are defined from uµ,J1 and uν,J2 as

uη′

µ,J1
=

{
ξ ∈ R2 : (ξ, η′) ∈ uµ,J1

}
, uη′′

ν,J2
=

{
ξ ∈ R2 : (ξ, η′′) ∈ uν,J2

}
.

Thus Lemma 1.4 is restated as follows.
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Lemma 1.5. Let a ∈ I and η ∈ J̃1 + J̃2. The family of the sets
∪

η′+η′′=η,

η′∈J̃1,η
′′∈J̃2

(
uη′

µ,J1
+ uη′′

ν,J2

)
(µ,ν)∈k−1

0 ({a})

is finitely overlapping uniformly in a ∈ I and η ∈ J̃1 + J̃2.

To prove (1.6) another result we need is the following.

Lemma 1.6. For a ∈ I, let

Ea =
∪

(µ,ν)∈k−1
0 ({a})

Ea(µ, ν).

Then there exists C0 > 0 such that if |a− a′| ≥ C0, a, a
′ ∈ I, then Ea ∩ Ea′ = ∅.

Lemma 1.6 follows from the following.

Lemma 1.7. Let η ∈ J̃1+ J̃2. Then there exists C0 > 0 independent of η such that
Eη

a ∩ Eη
a′ = ∅ if |a− a′| ≥ C0, a, a

′ ∈ I, where

Eη
a = {ξ ∈ R2 : (ξ, η) ∈ Ea}.

By Lemmas 1.3 and 1.6 we have (1.6), from which Theorem 1.1 will follow. As we
have seen above, Lemmas 1.3 and 1.6 follow from Lemmas 1.5 and 1.7, respectively.
So, to prove Theorem 1.1 it suffices to show Lemmas 1.5 and 1.7.

In Section 2, we shall prove Lemma 1.5 by applying arguments using principal
curvatures of a circular cone. The proof of Lemma 1.7 will be given in Section 3.
When J1 = J2, we can prove Lemma 1.7 by observing that Eη

a is contained in a

cτ−1/2 neighborhood ℓ̃a of a line segment ℓa for some positive constant c, where

ℓa = {ξ ∈ R2 : arg ξ = aτ−1/2, 1/2 ≤ |ξ| ≤ 9/2}, ℓ̃a = {ζ ∈ R2 : d(ζ, ℓa) < cτ−1/2},

with d(ζ, ℓa) = infξ∈ℓa |ζ−ξ|. The proof for the general case is slightly less straight-
forward. We shall provide a detailed proof. In Section 4, we shall state a variant
of Theorem 1.1 (Theorem 4.2) and give the proof.

2. Proof of Lemma 1.5

We need the following.

Lemma 2.1. Let η′ ∈ J̃1, µ ∈ N .

(1) if ξ ∈ uη′

µ,J1
, then

ξ = η′(cos θ, sin θ) + ζ, ζ = σ(cos θ, sin θ)

for some θ, σ ∈ R such that µτ−1/2 ≤ θ < (µ+ 1)τ−1/2 and |σ| ≤ τ−1;
(2) if µτ−1/2 ≤ θ < (µ+ 1)τ−1/2, there exists σ ∈ R such that |σ| ≤ τ−1 and

η′(cos θ, sin θ) + σ(cos θ, sin θ) ∈ uη′

µ,J1
.

Similar results hold for uη′′

ν,J2
with η′′ ∈ J̃2, ν ∈ N .
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Proof. If ξ ∈ uη′

µ,J1
, then (ξ, η′) ∈ uµ,J1 , which implies that (ξ, |ξ|) ∈ Uµ,J1 and

|η′ − |ξ|| ≤ τ−1. Since (ξ, |ξ|) ∈ Uµ,J1 , there exists θ ∈ R such that µτ−1/2 ≤ θ <

(µ+ 1)τ−1/2 and ξ = |ξ|(cos θ, sin θ). We write

ξ = η′(cos θ, sin θ) + (|ξ| − η′)(cos θ, sin θ).

Putting σ = |ξ| − η′, we get the conclusion of part (1).
Proof of part (2). We take η′0 ∈ J1 such that |η′0−η′| ≤ τ−1. Then (η′0(cos θ, sin θ), η

′
0) ∈

Uµ,J1 . Thus (η′0(cos θ, sin θ), η
′) ∈ uµ,J1 . It follows that η′0(cos θ, sin θ) ∈ uη′

µ,J1
.

Therefore, setting σ = η′0 − η′, we reach the conclusion. �

Proof of Lemma 1.5. We first assume that a = 0. Let (µ, ν) ∈ k−1
0 ({0}), η′ ∈ J̃1,

η′′ ∈ J̃2. Suppose that µ = ℓ+m, ν = −ℓ−m, with ℓ,m ≥ 0. By Lemma 2.1 (2),

there exist p ∈ uη′

µ,J1
and q ∈ uη′′

ν,J2
such that

|η′(cos(µτ−1/2), sin(µτ−1/2))− p| ≤ τ−1,(2.1)

|η′′(cos(ντ−1/2), sin(ντ−1/2))− q| ≤ τ−1.(2.2)

Also, we have

η′(cos(ℓ+m)τ−1/2, sin(ℓ+m)τ−1/2) + η′′(cos(ℓ+m)τ−1/2,− sin(ℓ+m)τ−1/2)

(2.3)

= (η cos(ℓ+m)τ−1/2, (η′ − η′′) sin(ℓ+m)τ−1/2).

We note that

cos ℓτ−1/2 − cos(ℓ+m)τ−1/2 = 2 sin
(
ℓ+

m

2

)
τ−1/2 sin

m

2
τ−1/2.

By this it follows that∣∣∣cos ℓτ−1/2 − cos(ℓ+m)τ−1/2
∣∣∣ ≤ 2

(
ℓ+

m

2

) m

2
τ−1(2.4) ∣∣∣cos ℓτ−1/2 − cos(ℓ+m)τ−1/2

∣∣∣ ≥ 2(2/π)2
(
ℓ+

m

2

) m

2
τ−1,(2.5)

where we have used well-known inequalities sinx ≤ x, x ≥ 0, and sinx ≥ (2/π)x,
0 ≤ x ≤ π/2.

If ξ ∈ uη′

µ,J1
, ξ = (ξ1, ξ2), µ = ℓ+m, by Lemma 2.1 (1) and the estimate |η′| ≤ 3

and by using (2.4) suitably, we have

|η′ cos(ℓ+m)τ−1/2 − ξ1| ≤ |η′ cos(ℓ+m)τ−1/2 − η′ cos θ|+ |ζ1|

≤ η′| cos(ℓ+m)τ−1/2 − cos(ℓ+m+ 1)τ−1/2|+ τ−1

≤ 3(ℓ+m+ 1)τ−1.

Also, if ξ′ ∈ uη′′

ν,J2
, ξ′ = (ξ′1, ξ

′
2), ν = −(ℓ+m),

ξ′ = η′′(cos θ′, sin θ′) + ζ ′, ζ ′ = σ′(cos θ′, sin θ′),

with ντ−1/2 ≤ θ′ < (ν + 1)τ−1/2, |σ′| ≤ τ−1, then

|η′′ cos(ℓ+m)τ−1/2 − ξ′1| ≤ η′′| cos(ℓ+m)τ−1/2 − cos(ℓ+m− 1)τ−1/2|+ |ζ ′1|
≤ η′′|ℓ+m− 1/2|τ−1 + τ−1

≤ 3(ℓ+m+ 1)τ−1
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for ℓ,m ≥ 0. Thus we have diamP1(u
η′

µ,J1
) ≤ 6(ℓ + m + 1)τ−1, diamP1(u

η′′

ν,J2
) ≤

6(ℓ +m + 1)τ−1, where P1 is the projection mapping defined by P1(ξ) = ξ1 when
ξ = (ξ1, ξ2).

Therefore

(2.6) diamP1(u
η′

µ,J1
+ uη′′

ν,J2
) ≤ 12(ℓ+m+ 1)τ−1.

Let η̃′ + η̃′′ = η, η̃′ ∈ J̃1, η̃
′′ ∈ J̃2. By (2.1), (2.2) and (2.3), there exist A ∈

uη′

ℓ,J1
+ uη′′

−ℓ,J2
and B ∈ uη̃′

ℓ+m,J1
+ uη̃′′

−ℓ−m,J2
such that

|η cos ℓτ−1/2 − P1(A)| ≤ 2τ−1, |η cos(ℓ+m)τ−1/2 − P1(B)| ≤ 2τ−1.

Thus if
P1(u

η′

ℓ,J1
+ uη′′

−ℓ,J2
) ∩ P1(u

η̃′

ℓ+m,J1
+ uη̃′′

−ℓ−m,J2
) ̸= ∅,

then

12(ℓ+ 1)τ−1 + 12(ℓ+m+ 1)τ−1 ≥ |P1(A)− P1(B)|

≥ η cos ℓτ−1/2 − η cos(ℓ+m)τ−1/2 − 4τ−1

≥ η2π−2(2ℓ+m)mτ−1 − 4τ−1

≥ 2π−2(2ℓ+m)mτ−1 − 4τ−1,

where the penultimate inequality follows by (2.5). This implies that

m2 + 2(ℓ− 3π2)m− 2π2(6ℓ+ 7) ≤ 0,

and hence we see that m ≤ C with a positive constant C. From this Lemma 1.5
for a = 0 can be deduced.

Let Rσ be a rotation around the origin such that Rσ((1, 0)) = (cosσ, sinσ).
To prove the general case, let a ∈ I, (µ, ν) ∈ k−1

0 ({a}) and put α = µ − a,

β = ν−a. Then α+β = 0. We note that α, β ∈ Z∗∩ [−τ1/2π8−1+1, τ1/2π8−1−1],
recalling Z∗ = {k/2 : k ∈ Z}. Also, we observe that R−aτ−1/2Γµ = Γα and
R−aτ−1/2Γν = Γβ . Thus, we can argue similarly to the case a = 0 to handle the
family of the sets

∪
η′+η′′=η,

η′∈J̃1,η
′′∈J̃2

R−aτ−1/2

(
uη′

µ,J1
+ uη′′

ν,J2

)
(µ,ν)∈k−1

0 ({a})

to get a finitely overlapping property which can prove the desired result by applying
the mapping Raτ−1/2 . This completes the proof of Lemma 1.5. �

3. Proof of Lemma 1.7

In this section, we prove Lemma 1.7. Let δ = τ−1. Let N0 be the set of non-

negative integers and let N∗
0 = {k/2 : k ∈ N0}. Let η′ + η′′ = η, η′ ∈ J̃1, η

′′ ∈ J̃2
and ℓ ∈ N∗

0, ℓ ≤ τ1/2(π/8)− 1. Put

pℓ,δ(η
′, η′′) = (η cos(ℓδ1/2), (η′ − η′′) sin(ℓδ1/2)).

Let R0(a, b) = [−a, a] × [−b, b], a, b > 0 be the rectangle centered at 0. Let ℓ∗ =
max(ℓ, 1/2) and c1, c2 > 0. Define

R(pℓ,δ(η
′, η′′); c1ℓ∗δ, c2δ

1/2) = pℓ,δ(η
′, η′′) +R0(c1ℓ∗δ, c2δ

1/2).
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Let a ∈ I, ℓ ∈ N∗
0. If µ = a+ ℓ, ν = a− ℓ, then

(3.1) R−aδ1/2(u
η′

µ,J1
+ uη′′

ν,J2
) ⊂ R(pℓ,δ(η

′, η′′); c1ℓ∗δ, c2δ
1/2)

for some positive constants c1, c2, which can be seen since uη′

µ,J1
+uη′′

ν,J2
is contained

in a ball of radius cδ1/2 and we have estimates similar to (2.6).
Let

E(0)(η′, η′′) =

{
(ξ1, ξ2) :

ξ21
η2

+
ξ22

(η′ − η′′)2
= 1, 1 ≤ ξ1 ≤ η

}
when η′ ̸= η′′; if η′ = η′′, let

E(0)(η′, η′′) = {(ξ1, 0) : 1 ≤ ξ1 ≤ η} .
Let

E(η′, η′′) =
{
(ξ1, ξ2) ∈ E(0)(η′, η′′) : ξ2 ≥ 0

}
if η′ ≥ η′′; when η′ ≤ η′′ let

E(η′, η′′) =
{
(ξ1, ξ2) ∈ E(0)(η′, η′′) : ξ2 ≤ 0

}
.

We note that the point pℓ,δ(η
′, η′′) is on the curve E(η′, η′′). Let Ea(η

′, η′′) =
Raδ1/2E(η

′, η′′), a ∈ R.
Also, for a technical reason, it is convenient to consider a slightly augmented

version of E(η′, η′′):

Ẽa(η
′, η′′) = Raδ1/2 Ẽ(η

′, η′′), Ẽ(η′, η′′) = E(η′, η′′) ∪ {(ξ1, 0) : η ≤ ξ1 ≤ 5}.
Let A(α, β) = {ξ ∈ R2 : α ≤ |ξ| ≤ β} be an annulus. To prove Lemma 1.7 we

need the following.

Lemma 3.1. Let ℓ ∈ N∗
0∩ [0, τ1/2π8−1−1]. Let b1 be a positive constant satisfying

|pℓ,δ| − b1ℓ∗δ > |η′ − η′′|, where pℓ,δ = pℓ,δ(η
′, η′′). Then there exist b2, b3 > 0

depending on b1 such that

A(|pℓ,δ| − b1ℓ∗δ, |pℓ,δ|+ b1ℓ∗δ) ∩ Ẽ(η′, η′′) ⊂ R(pℓ,δ; b2ℓ∗δ, b3δ
1/2),

where b2 and b3 are independent of η′ ∈ J̃1, η
′′ ∈ J̃2 and δ.

Proof. Let η′ ≥ η′′. Let

Φ(ξ1) = (η′ − η′′)

√
1− ξ21

η2
, Ψ(ξ1) =

√
(h− b1ℓ∗δ)2 − ξ21 ,

where h = |pℓ,δ|. If Φ(ξ1) = Ψ(ξ1), ξ1 ≥ 0, then

ξ1 =
η√

η2 − β2

√
(h− b1ℓ∗δ)2 − β2,

where β = η′ − η′′. We note that

(3.2) 0 ≤ η2 cos2(ℓδ1/2)− η2

η2 − β2
((h− b1ℓ∗δ)

2 − β2) ≤ η2

η2 − β2
2b1hℓ∗δ,

as follows:

η2 cos2(ℓδ1/2)− η2

η2 − β2
((h− b1ℓ∗δ)

2 − β2) =
η2

η2 − β2
(h2 − (h− b1ℓ∗δ)

2)

≤ η2

η2 − β2
2hb1ℓ∗δ.
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Since η cos(ℓδ1/2) ≥ 1, by (3.2) we have

0 ≤ η cos(ℓδ1/2)− η√
η2 − β2

√
(h− b1ℓ∗δ)2 − β2(3.3)

≤ η2 cos2(ℓδ1/2)− η2

η2 − β2
((h− b1ℓ∗δ)

2 − β2)

≤ η2

η2 − β2
2b1hℓ∗δ.

In the case ℓ = 0, from (3.3) we can easily see that

A(η − (b1/2)δ, η + (b1/2)δ) ∩ Ẽ(η′, η′′) ⊂ R((η, 0); b2δ, b3δ
1/2)

for some b2, b3 > 0, which is what we need. So, we assume that ℓ ≥ 1/2 and ℓ∗ = ℓ
in what follows.

Let Φ(ξ1) be as above and

Ψ̃(ξ1) =
√
(h+ b1ℓδ)2 − ξ21 .

Solving the equation Φ(ξ1) = Ψ̃(ξ1) for ξ1 ≥ 0 under the condition that h+b1ℓδ ≤ η,
we have

ξ1 =
η√

η2 − β2

√
(h+ b1ℓδ)2 − β2.

We see that

0 ≤ η2

η2 − β2
((h+ b1ℓδ)

2 − β2)− η2 cos2(ℓδ1/2) =
η2

η2 − β2
((h+ b1ℓδ)

2 − h2)

=
η2

η2 − β2
(2hb1 + b21ℓδ)ℓδ

and hence, arguing as in (3.3), we have

0 ≤ η√
η2 − β2

√
(h+ b1ℓδ)2 − β2 − η cos(ℓδ1/2)(3.4)

≤ η2

η2 − β2
((h+ b1ℓδ)

2 − β2)− η2 cos2(ℓδ1/2)

=
η2

η2 − β2
(2hb1 + b21ℓδ)ℓδ,

assuming h+ b1ℓδ ≤ η.
Next, we estimate

I := Φ(η cos(ℓδ1/2)− b̃1ℓδ)− Φ(η cos(ℓδ1/2)),

where we assume that b̃1ℓδ ≤ η cos(ℓδ1/2), b̃1 ≥ 0, and

II := −Φ(η cos(ℓδ1/2) + b̃1ℓδ) + Φ(η cos(ℓδ1/2)),

when η cos(ℓδ1/2)+ b̃1ℓδ ≤ η; when η cos(ℓδ1/2)+ b̃1ℓδ > η, let II = Φ(η cos(ℓδ1/2)).

We note that if η < η cos(ℓδ1/2) + b̃1ℓδ, then

b̃1ℓδ > η(1− cos(ℓδ1/2)) ≥ η(2/π2)ℓ2δ,

and hence ℓ < b̃1η
−1π2/2.
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We use

Φ′(ξ1) = β

(
1− ξ21

η2

)−1/2 (
− ξ1
η2

)
.

By the mean value theorem, it follows that

(3.5) |I| ≤ b̃1ℓδβ(1− cos2(ℓδ1/2))−1/2η−1 ≤ b̃1ℓδβ sin(ℓδ1/2)−1 ≤ (π/2)̃b1βδ
1/2.

Obviously, we see that

(3.6) |II| ≤ Φ(η cos(ℓδ1/2)) = β sin(ℓδ1/2) ≤ βℓδ1/2.

If ℓ ≥ b̃1η
−1π2/2 and so η cos(ℓδ1/2) + b̃1ℓδ ≤ η, then applying the mean value

theorem, we see that

|II| ≤ βb̃1ℓδ
(
1− η−2(η cos(ℓδ1/2) + b̃1ℓδ)

2
)−1/2

= βb̃1ℓδ
(
1− (cos2(ℓδ1/2) + 2η−1b̃1ℓδ cos(ℓδ

1/2) + η−2(̃b1)
2(ℓδ)2)

)−1/2

= βb̃1ℓδ
(
sin2(ℓδ1/2)− 2η−1b̃1ℓδ cos(ℓδ

1/2)− η−2(̃b1)
2(ℓδ)2

)−1/2

≤ βb̃1ℓδ
(
(2/π)2ℓ2δ − (2η−1b̃1 + η−2(̃b1)

2)ℓδ
)−1/2

=: J,

where we assume that ℓ ≥ 2(π/2)2(2η−1b̃1 + η−2(̃b1)
2) =: C0. Then, we see that

(3.7) |II| ≤ J ≤ βb̃1ℓδ
(
2−1(2/π)2ℓ2δ

)−1/2
= 2−1/2πβb̃1δ

1/2.

By (3.6) and (3.7), noting that C0 ≥ b̃1η
−1π2/2, we have

(3.8) |II| ≤ β(C0 + 2−1/2πb̃1)δ
1/2.

By (3.3), (3.4), (3.5) and (3.8), we can prove Lemma 3.1 as follows. First, by
(3.3), (3.4), we have

(3.9) A(|pℓ,δ| − b1ℓδ, |pℓ,δ|+ b1ℓδ) ∩ Ẽ(η′, η′′)

⊂ [η cos(ℓδ1/2)− b2ℓδ, η cos(ℓδ
1/2) + b2ℓδ]× R

for some b2 > 0 under the condition h + b1ℓδ ≤ η. If h + b1ℓδ > η, we easily see
that

2hb1ℓδ + b21ℓ
2δ2 > (η2 − β2) sin2(ℓδ1/2),

which implies that ℓ ≤ C for some constant C. Using this, we have

|h− η cos(ℓδ1/2)| ≤ h2 − η2 cos2(ℓδ1/2)(3.10)

= (η′ − η′′)2 sin2(ℓδ1/2) ≤ C1ℓ
2δ ≤ C1Cℓδ.

Also, when h+ b1ℓδ > η, by (3.3) we see that

(3.11) A(|pℓ,δ| − b1ℓδ, |pℓ,δ|+ b1ℓδ)∩ Ẽ(η′, η′′) ⊂ [η cos(ℓδ1/2)− b2ℓδ, h+ b1ℓδ]×R.

By (3.10) and (3.11), we also have (3.9) for some b2 when h+ b1ℓδ > η.
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Next, by (3.5) and (3.8) with b̃1 = b2 and (3.9) we have

A(|pℓ,δ| − b1ℓδ, |pℓ,δ|+ b1ℓδ) ∩ Ẽ(η′, η′′)

⊂
(
[η cos(ℓδ1/2)− b2ℓδ, η cos(ℓδ

1/2) + b2ℓδ]× R
)
∩ Ẽ(η′, η′′)

⊂ [η cos(ℓδ1/2)− b2ℓδ, η cos(ℓδ
1/2) + b2ℓδ]

× [β sin(ℓδ1/2)− b3δ
1/2, β sin(ℓδ1/2) + b3δ

1/2]

for some positive constant b3. This proves Lemma 3.1 when η′ ≥ η′′.
The case η′ ≤ η′′ can be handled similarly. This completes the proof of Lemma

3.1. �

We also need the following lemmas (Lemmas 3.2, 3.3 and 3.4) in proving Lemma
1.7.

Lemma 3.2. Let ℓ ∈ N∗
0 ∩ [0, δ−1/2(π/8) − 1]. Let c1, c2 be positive constants.

Then, there exist constants c3, c4 > 0 depending on c1, c2 such that

R(pℓ,δ; c1ℓ∗δ, c2δ
1/2) ⊂ A(|pℓ,δ| − c3ℓ∗δ, |pℓ,δ|+ c4ℓ∗δ),

where pℓ,δ = pℓ,δ(η
′, η′′) and ℓ∗ = max(ℓ, 1/2).

Proof. We write (α, β) for pℓ,δ. Let (α + ϵ1, β + ϵ2) ∈ R(pℓ,δ; c1ℓ∗δ, c2δ
1/2). Then

|ϵ1| ≤ c1ℓ∗δ, |ϵ2| ≤ c2δ
1/2. To prove the lemma, it suffices to show that∣∣∣√α2 + β2 −

√
(α+ ϵ1)2 + (β + ϵ2)2

∣∣∣ ≤ c0ℓ∗δ

for some c0 > 0. Since α ≥ c > 0, this follows from the estimate

(3.12)
∣∣(α2 + β2)−

(
(α+ ϵ1)

2 + (β + ϵ2)
2
)∣∣ ≤ c′0ℓ∗δ.

Now we see that |α| ≤ 5, |β| ≤ |η′ − η′′|ℓδ1/2, |η′ − η′′| ≤ 3/2 and∣∣(α2 + β2)−
(
(α+ ϵ1)

2 + (β + ϵ2)
2
)∣∣ = ∣∣2αϵ1 + ϵ21 + 2βϵ2 + ϵ22

∣∣
≤ 10c1ℓ∗δ + (c1ℓ∗δ)

2 + 2|η′ − η′′|ℓδ1/2c2δ1/2 + c22δ

≤ 10c1ℓ∗δ + (c1ℓ∗δ)
2 + 3c2ℓ∗δ + c22δ

≤ (10c1 + c21 + 3c2 + 2c22)ℓ∗δ.

This proves (3.12) and hence completes the proof of Lemma 3.2. �

Let η′ ∈ J̃1, η
′′ ∈ J̃2, η

′ + η′′ = η. Let ℓ ∈ N∗
0 and

pℓ,δ(η
′, η′′) = (η cos(ℓδ1/2), (η′ − η′′) sin(ℓδ1/2)).

Let

Rℓ,δ(η
′, η′′) = pℓ,δ(η

′, η′′) +R0(c1ℓ∗δ, (c2 + 4)δ1/2),

where c1, c2 are as in (3.1) and we recall that ℓ∗ = max(ℓ, 1/2).

Lemma 3.3. If η′, η′0 ∈ J̃1, η
′′, η′′0 ∈ J̃2, η

′ + η′′ = η, η′0 + η′′0 = η, then

Ẽa(η
′, η′′) ∩Rℓ,δ(η

′
0, η

′′
0 ) ⊂ Raδ1/2R(pℓ,δ(η

′, η′′); c′1ℓ∗δ, c
′
2δ

1/2)

for some positive constants c′1, c
′
2 independent of a, δ and ℓ, where Ẽa(η

′, η′′) =

Raδ1/2 Ẽ(η
′, η′′) for a ∈ R.
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We have

(3.13) Rℓ,δ(η
′, η′′) ∪R(pℓ,δ(η

′, η′′); c′1ℓ∗δ, c
′
2δ

1/2) ⊂ B(η, ℓ, δ, c3)

for all η′ ∈ J̃1, η
′′ ∈ J̃2 satisfying η′ + η′′ = η with some positive number c3, where

B(η, ℓ, δ, c3) =
∪

η′+η′′=η,

η′∈J̃1,η
′′∈J̃2

B(pℓ,δ(η
′, η′′), c3δ

1/2).

Here B(x, r) denotes a ball with radius r centered at x. We may assume that c3δ
1/2

is small enough so that

(1)

RσB(η, ℓ, δ, c3) ⊂ D = {ξ ∈ R2 : 3/2 ≤ |ξ| ≤ 9/2, ξ1 ≥ 0}
for |σ| ≤ π/4;

(2) there exists a0 > 0 independent of η, ℓ, δ such that if a0 ≤ |a| ≤ (π/4)δ−1/2,
then

(3.14) B(η, ℓ, δ, c3) ∩Raδ1/2B(η, ℓ, δ, c3) = ∅.

Proof of Lemma 3.3. We note that |η′ − η′0| < 2δ1/2, |η′′ − η′′0 | < 2δ1/2. Thus

Rℓ,δ(η
′
0, η

′′
0 ) ⊂ R(pℓ,δ(η

′, η′′); c1ℓ∗δ, (c2 + 8)δ1/2).

So, by Lemma 3.2 we have

Rℓ,δ(η
′
0, η

′′
0 ) ⊂ R(pℓ,δ; c1ℓ∗δ, (c2 + 8)δ1/2) ⊂ A(|pℓ,δ| − cℓ∗δ, |pℓ,δ|+ cℓ∗δ)

for some c > 0, where pℓ,δ = pℓ,δ(η
′, η′′). Thus

Ẽa(η
′, η′′) ∩Rℓ,δ(η

′
0, η

′′
0 ) ⊂ Ẽa(η

′, η′′) ∩A(|pℓ,δ| − cℓ∗δ, |pℓ,δ|+ cℓ∗δ).

By Lemma 3.1 and the rotation invariance of annulus, we see that

Ẽa(η
′, η′′) ∩A(|pℓ,δ| − cℓ∗δ, |pℓ,δ|+ cℓ∗δ) ⊂ Raδ1/2R(pℓ,δ; c

′ℓ∗δ, c
′δ1/2)

for some c′ > 0. Combining results, we have

Ẽa(η
′, η′′) ∩Rℓ,δ(η

′
0, η

′′
0 ) ⊂ Raδ1/2R(pℓ,δ; c

′ℓ∗δ, c
′δ1/2).

This completes the proof of Lemma 3.3. �

Let

Ẽη
00 =

∪
ℓ,η′+η′′=η,

η′∈J̃1,η
′′∈J̃2

R(pℓ,δ(η
′, η′′); c1ℓ∗δ, (c2 + 4)δ1/2) =

∪
ℓ,η′+η′′=η,

η′∈J̃1,η
′′∈J̃2

Rℓ,δ(η,η
′′),

where ℓ ranges over a subset of N∗
0 such that 0 ≤ ℓ ≤ δ−1/2(π/8)− 1 and c1, c2 are

as in (3.1).

Lemma 3.4. Fix η′ ∈ J̃1 and η′′ ∈ J̃2 with η′ + η′′ = η. There exists a0 > 0
independent of δ such that if a0 ≤ a ≤ (π/8)δ−1/2, then

Ẽa(η
′, η′′) ∩ Ẽη

00 = ∅, Raδ1/2(Ẽ
η
00) ∩ Ẽ(η′, η′′) = ∅.
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Proof. Let η′0 ∈ J̃1 and η′′0 ∈ J̃2 with η′0 + η′′0 = η. We first show that

(3.15) Ẽa(η
′, η′′) ∩Rℓ,δ(η

′
0, η

′′
0 ) = ∅,

if a0 ≤ a ≤ (π/8)δ−1/2 and a0 is sufficiently large, where Rℓ,δ(η
′
0, η

′′
0 ) is as in Lemma

3.3. By Lemma 3.3 and (3.13), we have

Ẽa(η
′, η′′) ∩Rℓ,δ(η

′
0, η

′′
0 ) ⊂ Raδ1/2B(η, ℓ, δ, c3).

Since Rℓ,δ(η
′
0, η

′′
0 ) ⊂ B(η, ℓ, δ, c3), by (3.14) we have (3.15) if a0 ≤ a ≤ (π/8)δ−1/2

and a0 is as in (3.14), from which it can be deduced that Ẽa(η
′, η′′) ∩ Ẽη

00 = ∅ as
claimed.

Next, we prove that Raδ1/2(Ẽ
η
00)∩ Ẽ(η′, η′′) = ∅ if a0 ≤ a ≤ (π/8)δ−1/2 and a0 is

sufficiently large. This follows from Ẽη
00 ∩ Ẽ−a(η

′, η′′) = ∅, which can be shown as
above by using Lemma 3.3, (3.13) and (3.14). This completes the proof of Lemma
3.4. �
Proof of Lemma 1.7. Let

Ẽη
0 =

∪
ℓ,η′+η′′=η,

η′∈J̃1,η
′′∈J̃2

R(pℓ,δ(η
′, η′′); c1ℓ∗δ, c2δ

1/2),

where the constants c1, c2 are as in (3.1) and ℓ ranges over a subset of N∗
0 such that

0 ≤ ℓ ≤ δ−1/2(π/8)− 1. We note that

(3.16) Eη
α ⊂ Rαδ1/2Ẽ

η
0 =

∪
ℓ,η′+η′′=η,

η′∈J̃1,η
′′∈J̃2

Rαδ1/2R(pℓ,δ(η
′, η′′); c1ℓ∗δ, c2δ

1/2)

(see (3.1)). Recall that D = {ξ ∈ R2 : 3/2 ≤ |ξ| ≤ 9/2, ξ1 ≥ 0}. We may assume

that Rαδ1/2Ẽ
η
0 ⊂ D for |α| ≤ (π/4)δ−1/2, η = η′ + η′′, η′ ∈ J̃1, η

′′ ∈ J̃2.

Let ℓ, ℓ′ ∈ N∗
0 with 0 ≤ ℓ, ℓ′ ≤ δ−1/2(π/8) − 1, η′0, η

′
1 ∈ J̃1, η

′′
0 , η

′′
1 ∈ J̃2 with

η′0 + η′′0 = η, η′1 + η′′1 = η. Let a, a′ ∈ I. To prove Lemma 1.7, by (3.16) it suffices
to show that

(3.17) R(pℓ,δ(η
′
0, η

′′
0 ), c1ℓ∗δ, c2δ

1/2) ∩R(a−a′)δ1/2R(pℓ′,δ(η
′
1, η

′′
1 ), c1ℓ

′
∗δ, c2δ

1/2) = ∅,

if a − a′ is sufficiently large with a − a′ ≤ (π/4)δ−1/2 − 2. Let b = a − a′. We

observe that for η′ ∈ J̃1 and η′′ ∈ J̃2 with η′ + η′′ = η,

pℓ,δ(η
′, η′′) ∈ R(pℓ,δ(η

′
0, η

′′
0 ), c1ℓ∗δ, (c2 + 4)δ1/2) = Rℓ,δ(η

′
0, η

′′
0 ),(3.18)

Rbδ1/2pℓ′,δ(η
′, η′′) ∈ Rbδ1/2R(pℓ′,δ(η

′
1, η

′′
1 ), c1ℓ

′
∗δ, (c2 + 4)δ1/2) = Rbδ1/2Rℓ′,δ(η

′
1, η

′′
1 ).

Obviously (3.17) follows from

(3.19) Rℓ,δ(η
′
0, η

′′
0 ) ∩Rbδ1/2Rℓ′,δ(η

′
1, η

′′
1 ) = ∅.

Applying Lemma 3.4, we see that

Ẽb/2(η
′, η′′) ∩Rℓ,δ(η

′
0, η

′′
0 ) = ∅,(3.20)

Rbδ1/2Rℓ′,δ(η
′
1, η

′′
1 ) ∩ Ẽb/2(η

′, η′′) = ∅

for a sufficiently large b > 0, 0 < b ≤ (π/4)δ−1/2 − 2.

We can divide D as D \ Ẽb/2(η
′, η′′) = D1 ∪ D2 with D1 ∩ D2 = ∅. Since

E(η′, η′′),Eb(η
′, η′′) ⊂ D and, obviously, Ẽb/2(η

′, η′′) ∩ E(η′, η′′) = ∅, Ẽb/2(η
′, η′′) ∩

Eb(η
′, η′′) = ∅, we may assume that E(η′, η′′) ⊂ D1 and Eb(η

′, η′′) ⊂ D2. Since
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pℓ,δ(η
′, η′′) ∈ E(η′, η′′), Rbδ1/2pℓ′,δ(η

′, η′′) ∈ Eb(η
′, η′′), we have pℓ,δ(η

′, η′′) ∈ D1

and Rbδ1/2pℓ′,δ(η
′, η′′) ∈ D2. Thus by (3.18) and (3.20) we have Rℓ,δ(η

′
0, η

′′
0 ) ⊂ D1

and Rbδ1/2Rℓ′,δ(η
′
1, η

′′
1 ) ⊂ D2, which implies (3.19). This completes the proof of

Lemma 1.7. �

4. Applications of Theorem 1.1

Recall that

uµ,Ji = u
(δ)
µ,Ji

= {(ξ, η) ∈ R2 × R : |η − |ξ|| ≤ δ, (ξ, |ξ|) ∈ Uµ,Ji}
= ∪{{ξ} × [|ξ| − δ, |ξ|+ δ] : (ξ, |ξ|) ∈ Uµ,Ji

} i = 1, 2,

where δ = τ−1 is a small positive number,

Uµ,Ji = U
(δ)
µ,Ji

= {(ξ, |ξ|) ∈ R2 × R : ξ ∈ Γµ, |ξ| ∈ Ji},

Γµ = Γ(δ)
µ = {ξ ∈ R2 : µδ1/2 ≤ arg ξ < (µ+ 1)δ1/2}, µ ∈ N ,

N = N (δ) = {µ ∈ Z : |µ| ≤ π

8
δ−1/2 − 1},

Ji = J
(δ)
i = [αi, βi] ⊂ [1, 2], |Ji| ≤ δ1/2, i = 1, 2.

We also consider
N (δ)

∗ = {µ ∈ Z : |µ| ≤ π

7
δ−1/2 − 1}.

For µ ∈ N (δ)
∗ , we define an enlargement (u

(δ)
µ,Ji

)∗ of u
(δ)
µ,Ji

, i=1, 2, by

(u
(δ)
µ,Ji

)∗ = {(ξ, η) ∈ R2 × R : |η − |ξ|| ≤ 6δ, (ξ, |ξ|) ∈ (U
(δ)
µ,Ji

)∗}

= ∪{{ξ} × [|ξ| − 6δ, |ξ|+ 6δ] : (ξ, |ξ|) ∈ (U
(δ)
µ,Ji

)∗},
where

(U
(δ)
µ,Ji

)∗ = {(ξ, |ξ|) ∈ R2 × R : ξ ∈ (Γ(δ)
µ )∗, |ξ| ∈ (J

(δ)
i )∗},

(Γ(δ)
µ )∗ = {ξ ∈ R2 : (µ− 1)δ1/2 ≤ arg ξ < (µ+ 2)δ1/2},

(J
(δ)
i )∗ = [αi − 2δ, βi + 2δ].

We have the following result by examining the proof of Theorem 1.1.

Theorem 4.1. There exists a positive constant C independent of J1, J2 and δ such
that ∑

(µ,ν)∈(N (δ)
∗ )2

χ
(u

(δ)
µ,J1

)∗+(u
(δ)
ν,J2

)∗
≤ C.

Let 0 < ϵ < 1/2 and set

ũµ,Ji = {(ξ, η) ∈ R2 × R : d(uµ,Ji , (ξ, η)) < δ1−ϵ}, i = 1, 2,

where

d(uµ,Ji , (ξ, η)) = inf
(ξ′,η′)∈uµ,Ji

(|ξ1 − ξ′1|2 + |ξ2 − ξ′2|2 + |η − η′|2)1/2.

Then we have the following.

Theorem 4.2. We can find a positive constant C independent of J1, J2 and δ such
that ∑

(µ,ν)∈N 2

χũµ,J1
+ũν,J2

≤ Cδ−ϵ.
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To prove Theorem 4.2 by applying Theorem 4.1, we need the following.

Lemma 4.3. Let N = [δ−ϵ/2], δϵ = δ[δ−ϵ/2]2 ∼ δ1−ϵ, where [α] = max{m ∈ Z :
m ≤ α} for α ∈ R. Suppose that µ ∈ N (δ) and µ = ℓN + k for some ℓ ∈ Z and
k ∈ [0, N − 1] ∩ Z. Then

Γ
(δ)
ℓN+k ⊂ {ℓδ1/2ϵ ≤ arg ξ < (ℓ+ 1)δ1/2ϵ }.

Proof. We have

Γ
(δ)
ℓN+k = {(ℓN + k)δ1/2 ≤ arg ξ < (ℓN + k + 1)δ1/2}

⊂ {ℓNδ1/2 ≤ arg ξ < (ℓN +N)δ1/2}

= {ℓNδ1/2 ≤ arg ξ < (ℓ+ 1)Nδ1/2}

= {ℓδ1/2ϵ ≤ arg ξ < (ℓ+ 1)δ1/2ϵ }.
This completes the proof. �

We also need the following.

Lemma 4.4. Let µ, ℓ,N, k be as in Lemma 4.3 with ℓ ∈ N (δϵ)
∗ . Then, if δ is small

enough, we have

ũµ,Ji = ũℓN+k,Ji ⊂ (u
(δϵ)
ℓ,Ji

)∗, i = 1, 2.

Proof. We show the result by using Lemma 4.3 and the definitions of ũµ,Ji , u
(δϵ)
ℓ,Ji

and (u
(δϵ)
ℓ,Ji

)∗ as follows.

Fix i and let (ξ, η) ∈ ũℓN+k,Ji . Then there exists (ξ0, η0) ∈ uℓN+k,Ji such that

(4.1) |(ξ, η)− (ξ0, η0)| < δ1−ϵ.

Since (ξ0, η0) ∈ uℓN+k,Ji , we have (ξ0, |ξ0|) ∈ UℓN+k,Ji and

(4.2) |η0 − |ξ0|| < δ.

The fact (ξ0, |ξ0|) ∈ UℓN+k,Ji implies that ξ0 ∈ Γ
(δ)
ℓN+k and |ξ0| ∈ Ji. By Lemma

4.3 it follows that

(4.3) ℓδ1/2ϵ ≤ arg ξ0 < (ℓ+ 1)δ1/2ϵ ,

where |ℓ| ≤ (π/7)δ
−1/2
ϵ − 1 by the assumption that ℓ ∈ N (δϵ)

∗ .

To prove (ξ, η) ∈ (u
(δϵ)
ℓ,Ji

)∗, we need the estimate

(4.4) | arg ξ − arg ξ0| ≤ δ1/2ϵ ,

if 0 < ϵ < 1/2 and δ is small enough. By (4.1), (4.3) and the fact that |ξ0| ∈ Ji, we
have 1/2 < |ξ| < 5/2 and | arg ξ| < π/4. Let ξ0 = (ζ1, ζ2). Using (4.1), if δ is small
enough, we see that

| arg ξ − arg ξ0| = | arctan(ξ2/ξ1)− arctan(ζ2/ζ1)|
≤ |ξ2/ξ1 − ζ2/ζ1| = |ξ2ζ1 − ξ1ζ2|/|ξ1ζ1|
≤ c|ξ1 − ζ1|+ c|ξ2 − ζ2| ≤ 2cδ1−ϵ

≤ 4cδϵ ≤ δ1/2ϵ ,

which proves (4.4), where we have also used the estimates δ1−ϵ/2 ≤ δϵ ≤ δ1−ϵ,
which are valid when δ is small enough.
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By (4.3) and (4.4) we have

(4.5) (ℓ− 1)δ1/2ϵ ≤ arg ξ < (ℓ+ 2)δ1/2ϵ .

Since |ξ0| ∈ Ji = [αi, βi], by (4.1) it follows that

(4.6) αi − 2δϵ ≤ |ξ| ≤ βi + 2δϵ.

Also (4.1) and (4.2) imply that

(4.7) |η− |ξ|| ≤ |η− η0|+ |η0 − |ξ0||+ ||ξ0| − |ξ|| < δ1−ϵ + δ+ δ1−ϵ < 3δ1−ϵ < 6δϵ.

By (4.5) with ℓ ∈ N (δϵ)
∗ and (4.6) we see that (ξ, |ξ|) ∈ (U

(δϵ)
ℓ,Ji

)∗, which combined

with (4.7) will imply that (ξ, η) ∈ (u
(δϵ)
ℓ,Ji

)∗. This completes the proof of Lemma
4.4. �

The assumption that ℓ ∈ N (δϵ)
∗ in Lemma 4.4 is always satisfied when δ is small.

Lemma 4.5. If µ ∈ N (δ), then there exist ℓ ∈ N (δϵ)
∗ and k ∈ Z with 0 ≤ k ≤ N −1

such that µ = ℓN + k, where N is as in Lemma 4.3.

Proof. We write µ = mN + k, m, k ∈ Z with 0 ≤ k ≤ N − 1. Then

|m| = N−1|µ− k| ≤ N−1(
π

8
δ−1/2 − 1 + k) ≤ N−1(

π

8
δ−1/2 +N − 2)

=
π

8
δ−1/2
ϵ + 1− 2/N ≤ π

7
δ−1/2
ϵ − 1,

if δ is small enough, which implies that m ∈ N (δϵ)
∗ . �

Proof of Theorem 4.2. We may assume that δ is small enough. Let ℓ, ℓ′ ∈ N (δϵ)
∗ ,

0 ≤ k, k′ ≤ N − 1 and ℓN + k, ℓ′N + k′ ∈ N (δ). Then by Lemma 4.4 we have

χũℓN+k,J1
+ũℓ′N+k′,J2

≤ χ
(u

(δϵ)
ℓ,J1

)∗+(u
(δϵ)

ℓ′,J2
)∗
.

Therefore applying Lemma 4.5 and Theorem 4.1 with δϵ in place of δ, we have∑
(µ,ν)∈N 2

χũµ,J1
+ũν,J2

≤
∑

ℓ,ℓ′∈N (δϵ)
∗

∑
k,k′∈[0,N−1]∩Z

χũℓN+k,J1
+ũℓ′N+k′,J2

≤ N2
∑

(ℓ,ℓ′)∈(N (δϵ)
∗ )2

χ
(u

(δϵ)
ℓ,J1

)∗+(u
(δϵ)

ℓ′,J2
)∗

≤ CN2

≤ Cδ−ϵ.

This completes the proof of Theorem 4.2. �
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