ON DECOMPOSITION OF NEIGHBORHOOD OF A CIRCULAR
CONE RELATED TO PRINCIPAL CURVATURES

SHUICHI SATO

ABSTRACT. We give an alternative proof of a result on the uniform overlap of
the algebraic sums of the sets arising from a decomposition of a neighborhood
of a circular cone in R3. It is known that the uniform overlap result can be
applied to make a unified approach for the proofs of a theorem on the maximal
Bochner-Riesz operator on R? and a theorem on the maximal spherical means
on R2.

1. INTRODUCTION
Let
Thfe) = [ FO- R ag
[EI<R

be the Bochner-Riesz operator of order A on R?, where

F&) = [ fla)e =S do
]R’.’

is the Fourier transform and (z, &) = x1& + 2282, = (21, 22), £ = (&1, &2), denotes
the inner product. Let

T} f(x) = sup [T f ()]
R>0

be the maximal Bochner-Riesz operator.
The following is known ([2]).

Theorem A. If A >0, T is bounded on L*(R?) :
T2 flls < Callfls-

The L* boundedness for 77" is shown in [4]. See also [3] for related results.
Let

5:f(e) = [ fla=10)da(o)

be the spherical mean on R?, where S = {x € R? : |z| = 1} is the unit circle and
o denotes the Lebesgue arc length measure on S', and let

Sef(x) = sup |5 f(x)]
t>0

be the maximal spherical mean.
The following result is known ([1]).
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Theorem B. The mazimal operator S, is bounded on LP(R?) forp > 2 :
1S« fllp < Copll flp-

We refer to [7] for a result analogous to Theorem B in R™, n > 3.

In [6, Chap. 2|, a unified approach to the proofs of Theorems A and B are
presented. In the arguments, a geometric overlap theorem concerning a circular
cone in R? plays a crucial role.

Let 7 be a fixed large positive number. In this note we assume that 7 > 10°. Set

(L.1) Ty = {€ € R\ {0} pr 2 < arge < (u+ )72},
where p € R with |u| < 7Y/2(7/8) — 1. Let
(1.2) N ={neZ: u < rV2(x/8) -1},

where Z denotes the set of integers. Let J = [o, 3] C [1,2]. We assume that
|J|=B—a<7 Y2 For peN,let

(1.3) Ups ={(&1€]) eR*xXR: £ €Ty, [¢| € J}
and
(1.4) wu s ={(n) ER? xR:n—[¢][ <771, (& [€]) € Ups}

= U{{f} X H§| - Tﬁla |§| + Tﬁl} : (f, |§|) S UM,J}'

We note that U, ;j C u,, ;.
We have the following result.

Theorem 1.1. Let [aq, B1], [a2, B2] C [1,2]. Set J; = [a;, ;] and suppose that
\Ji| < 7Y% i=1,2. Letu, s, upus, be defined as in (1.4) with Ji, Jo in place of
J. Then there exists a constant C' independent of T and the intervals Jy, Jo such
that

I= Z Xy, gy i, 1 <G
(V) ENZ

where N is as in (1.2), w5 + w5 = {(&n) + (&, 0') - (&n) € upg, (E.7) €
Uy, g, and xXg denotes the characteristic function of a set E.

A more general result is stated in [6, (2.4.23), p. 87], and a variant of it is also
given ([6, Lemma 2.4.5]). As in [6], in the arguments for the unified approach to
the proofs of Theorems A and B applying half wave operators, Theorem 1.1 can be
used to prove an orthogonality result through Fourier transform estimates, which
is crucial in the arguments, since the orthogonality result leads to an effective
application of sharp L?(R?)-L?(R?) estimates for the Kakeya maximal functions
defined by using rays on a light cone.

The result [6, (2.4.23)] includes Theorem 1.1 as a special case and the proof is
given in [6, pp. 87-88]. In this note we shall give an alternative proof of Theorem
1.1. Also, we shall consider a variant of Theorem 1.1 (Theorem 4.2 below), which
is a special case of [6, Lemma 2.4.5] and which is related to Theorem 1.1 as [6,
Lemma 2.4.5] is related to [6, (2.4.23)]. We shall give the proof of Theorem 4.2 by
applying Theorem 1.1.

A version of Theorem 1.1 on R?, where a cone is replaced with a circle, is given
in [5] and it follows from Theorem 1.1 as a corollary.
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Remark 1.2. If the condition on  in the definition of N in (1.2) is replaced by
lu| < 7Y/2a—1 with some 7/2 < a < 7, then a result analogous to Theorem 1.1 will
not exist. This can be seen by letting J; = J; =: J, b € J and considering (u,v)
satisfying (¢, |€]) € U,y and (¢, |¢]) € U, s for some £ such that |{| = b and arg&
is sufficiently close to m/2. For such (p,v) we have (0,2b) € U, s+ U, ; and we
note that the cardinality of the family of such (u,v) increases with 7 unlimitedly.

Let

(1.5) I—{a:a—u;ry,,u,ue./\/'}.

Set Z* = {k/2 : k € Z}. Then we note that Z is a subset of Z* and if a € Z, then
—(7/8)1' /%2 41 < a < (7/8)7/? — 1. To prove Theorem 1.1, we write
I = Z XUH1J1+U1,”]2 = Z Z XuM,Jl-‘ruy,sz
(u,v)ENZ a€T (pv)eky t({a})

where the surjection kg : N2 — T is defined by

utv
ko(u,v) = 5

Let 7' C Z be such that if a,a’ € 7’ and a # o/, then |a — a’| > Cp, where Cj is
sufficiently large. To prove I < C, it suffices to show that

(16) Z Z Xu“,,Jl Fuv, gy < Cla

A€’ (uv)eky ' ({a})

by considering a suitable partition of Z.
In the proof of (1.6), one result we apply is the following.

Lemma 1.3. Fiza €Z. Let “2* = a, p,v € N and

Ea(:uv V) = Uy,J; + Uy, J,-

Then {Eq (1, V)}(M’V)ek(;l({a}) 18 finitely overlapping uniformly in a € T.

Let s s
Jl = [O[l - T_1761 +T_1}7 J2 = [OZZ - T_1752 +T_1]'
Let n € Jy + Jo = [a1 4+ ag — 2771, By + B2 + 27 1] and define
El(p,v) = {£ €R*: (&) € Ea(p,v)},  (1,v) € kg ' ({a}).

Then the following result implies Lemma 1.3.

Lemma 1.4. Fiza € Z. Let n € Jy + Jo. Then {E(y, I/)}(M,y)eko—l({a}) is finitely
overlapping uniformly in a and 7.

To prove Lemma 1.4, we observe that
El(uv) = {“Z,Jl +uy g, 0 0" =0 € Ji,n" € Jz} ;
where u, ; and u) ;, are defined from w, ;, and u,, ;, as

ul g = {€eR?: (&) €upg ), uy 5, = {€eR?: (&) €y,

Thus Lemma 1.4 is restated as follows.
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Lemma 1.5. Leta €7 andn € :]\I + /j; The family of the sets

’ 17
n n
U (uﬂle +UV’J2)

n "=,
’ 7
meSnTES () €k ({a})

is finitely overlapping uniformly in a € Z and n € j]; + 3;
To prove (1.6) another result we need is the following.
Lemma 1.6. Fora €T, let
E.= |J  Eapv).
(nv)€ky ' ({a})

Then there exists Cy > 0 such that if |a — a’| > Cy, a,a’ € Z, then E, N E, = 0.
Lemma 1.6 follows from the following.

Lemma 1.7. Letn € I+3; Then there exists Cy > 0 independent of n such that
EINE!, =0 if la—d'| > Cy, a,da’ € T, where
Bl ={¢ € R?: (§,1) € E,}.

By Lemmas 1.3 and 1.6 we have (1.6), from which Theorem 1.1 will follow. As we
have seen above, Lemmas 1.3 and 1.6 follow from Lemmas 1.5 and 1.7, respectively.
So, to prove Theorem 1.1 it suffices to show Lemmas 1.5 and 1.7.

In Section 2, we shall prove Lemma 1.5 by applying arguments using principal

curvatures of a circular cone. The proof of Lemma 1.7 will be given in Section 3.
When J; = Jz, we can prove Lemma 1.7 by observing that E7 is contained in a

e~ /2 neighborhood £, of a line segment ¢, for some positive constant ¢, where
la={¢ R arg=ar 2,1/2<|6] <9/2}, L= {CER?:d((,La) <er '/},
with d(¢, ¢,) = infeer, |¢—&|. The proof for the general case is slightly less straight-
forward. We shall provide a detailed proof. In Section 4, we shall state a variant
of Theorem 1.1 (Theorem 4.2) and give the proof.
2. ProOOF OF LEMMA 1.5

We need the following.

Lemma 2.1. Letn/ € J,, p € N.
(1) if € eul ., then
€ =1'(cosf,sinf) +¢, (= o(cosh,sinf)

for some 0,0 € R such that pr=/? <0 < (n+ 1)1 Y2 and |o| < 771;
(2) if ur=Y2 <0 < (u+1)77Y2, there exists o € R such that |o| < 77! and

12 . . 77’
1 (cos@,sinf) + o(cos,sinb) € u; ;.

Similar results hold for uZ,:]Q with " € Jo, v EN.
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Proof. If £ € u , then (£,7') € w, g, which implies that (£,|£]) € U, s, and
w,J1 HyJ1 HyJ1

— < 71, Since (¢, € U, j., there exists 8 € R such that ,uT_l/2 <0<
n HyJ1
(u+ 17712 and € = |€|(cos 0, sinH). We write

& =1n'(cos®,sinf) + (|¢] — n')(cos b, sin 9).

Putting o = |£| — 1/, we get the conclusion of part (1).
Proof of part (2). We take i}, € J; such that |ny—n'| <771, Then (n}(cos6,sinf),n}) €

Uy,g,- Thus (n5(cos0,sin0),n') € uy, g, Tt follows that ng(cosf,sind) € u) ;
Therefore, setting o = n{, — n’, we reach the conclusion.

Proof of Lemma 1.5. We first assume that a = 0. Let (n,v) € kgt ({0}), 7 € Ji,
n' e Js. Suppose/that w="L+ m, v = —L —m, with £,m > 0. By Lemma 2.1 (2),
there exist p € u;) ; and g € u, ;, such that
(21) 1 (cos(r~4/2),sin(ur1/2)) — p| < 71,
(2.2) In" (cos(vr—1/?),sin(vr™Y?)) —q| < 771
Also, we have
(2.3)

1 (cos(€ + m)r =2 sin(£ +m)T~Y2) + 1" (cos(¢ + m)r ™2, —sin(€ + m)T1/?)

= (ncos(f +m)T~ 2 (n) — ") sin(£ + m)T~/?).
We note that
cos b7 12 — cos( +m)rY/? = 2sin (Z + %) 77 1/2sin %771/2.

By this it follows that

(2.4) ‘COS@T*UQ — cos(f + m)Tfl/Q‘ <2 (E + %) %7”1
(2:5) [cos £r71/2 — cos(¢ + m)r 12| = 2(2/m)? (€4 2) Br 7,

where we have used well-known inequalities sinz < z, z > 0, and sinz > (2/7)z,
0<z<m/2.

If¢e UZ:JN & =(&,&), u =L+ m, by Lemma 2.1 (1) and the estimate |n'| <3
and by using (2.4) suitably, we have

o cos(l + m)r=2 — &1] < i cos(l 4+ m)r? —of cosb] + |G
< | cos(l +m)r~ 2% — cos(L +m + 1)77 /2| 4 771
<3(0+m+ 1)t
Also, if & € ull,, & = (€1,€)), v = —(£+m),
& =n"(cosb',sin0')+ ', (¢ =o'(cost, sind’),
with v771/2 < ¢ < (v +1)77Y/2, |¢'| < 771, then
1" cos(£ +m)T~ Y% — &l < 0’| cos(f +m)T ™2 — cos(l +m — )7 /2| + |¢]]
<n'e+m—1/2r 477t
<3(+m+1)rt
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for £,m > 0. Thus we have diam Pl(uzl,h) < 6({ +m+1)77L diam Pl(uZ:b) <
6(¢ +m + 1)771, where P is the projection mapping defined by P;(£) = & when
g = (517 52)

Therefore
(2.6) diam Pl(uZ:Jl + “Z:IQ) <1200+ m+1)77 L
Le/t 7+ 7” =nn € jﬁ,’ e j;;” By (2.1), (2.2) and (2.3), there exist A €
uZJl + u’le)h and B € u?‘f‘m,Jl + uze_m)h such that
Incostr=Y2 — P (A)| <2771, |ncos(f +m)r~ Y% — P(B)| < 2r L.
Thus if
Pl(ug,lJl + UZI;,JQ) NP (u?—/i-m,Jl + “Z—m,h) # 0,
then
R+ 1) 4120 +m+ 1)1t > |P(A) — Pi(B)]
> neosbr— Y% —peos(l +m)r V2% — 4771
>n2r 2 (20 +m)mrt — 4771
> 2 220+ m)mr b — 477,
where the penultimate inequality follows by (2.5). This implies that
m? + 2(¢ — 37%)m — 272 (60 +7) <0,

and hence we see that m < C with a positive constant C'. From this Lemma 1.5
for a = 0 can be deduced.

Let R, be a rotation around the origin such that R,((1,0)) = (coso,sino).
To prove the general case, let a € Z, (u,v) € ky'({a}) and put o = u — a,
B =v—a. Then a+ B = 0. We note that a, § € Z*N[—7/278" 1 +1,7'/2728~1 —1],
recalling Z* = {k/2 : k € Z}. Also, we observe that R_,,-1/:I'y, = I'y and
R_qr—1/21'y, = I'g. Thus, we can argue similarly to the case a = 0 to handle the
family of the sets

RiaT—l/Q (UZJI + UZ,J2>
n'tn"=n,
W ESin €S () €hy  ({a})
to get a finitely overlapping property which can prove the desired result by applying
the mapping R,,-1/2. This completes the proof of Lemma 1.5. ([l

3. PROOF OF LEMMA 1.7

In this section, we prove Lemma 1.7. Let § = 7~ !. Let Ny be the set of non-
negative integers and let N§ = {k/2 : k € No}. Let o' + 0" =n,0 € Ji,n" € J,
and ¢ € Nj, £ < 71/2(1/8) — 1. Put

pes(n',n") = (neos(€6'/?), (1 — ") sin(€6'/2)).
Let Ro(a,b) = [—a,a] x [=b,b], a,b > 0 be the rectangle centered at 0. Let £, =
max(¢,1/2) and ¢1,co > 0. Define

R(pes(n',n"); c10u8,c26"%) = pys(n',1") + Ro(c1€.8, c25"/?).
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LetacZ, leNjy. If py=a+ /¢, v=a—/{, then
(31) R—a51/2 (uZ’Jl + UZ’Jz) C R(pzﬁ(n/’ 77//); le*(x 0251/2)
for some positive constants c1, co, which can be seen since uzl ba +uZ:,2 is contained
in a ball of radius ¢d'/? and we have estimates similar to (2.6).
Let ) )
S 3

IR
n”? o (

EO (o ") = {(51,52) =2

when 7' # 0"y if " = 7", let
e ") = {(&,0): 1 <& < n}.

Let
') = {(51752) ey &> 0}
if ' >n"; when / <7 let

Em',n") = {(51’52) e O ") & < 0}-

We note that the point pss(n’,n”) is on the curve E(n',n”). Let E.(n',n") =
Ras12E(m',n"), a € R.

Also, for a technical reason, it is convenient to consider a slightly augmented
version of &(n’,n"):

Ealn's1") = Rugi2€n' "), EG ") = €/ ") U{(61,0) 1 < & < 5}
Let A(a, B) = {€ € R? : a < |¢]| < B} be an annulus. To prove Lemma 1.7 we
need the following.

Lemma 3.1. Let £ € N3N [0,7'/278~ 1 —1]. Let by be a positive constant satisfying
Ipes| — 0100 > |0 — 0|, where pes = pos(n',n'’). Then there exist ba,bg > 0
depending on by such that

A(|pe.s| — b10.8, [pe.s| + b1£.8) N E(M,1") C R(pe.s; balsd, b36'/?),
where by and bs are independent of ' € T]I, n' e Jy and §.
Proof. Let n’ > 1. Let

(&) = (0 — 77")\/—>f712, V(&) = \/(h —bil.6)? - &,

where h = |pgs|. If (&) = ¥(&1), & > 0, then
n
&= \/ﬁ\/(h — b14.0)% — B2,

where § =1n' —n”. We note that

2 2
(32)  0<p’cos®(t5"/2) — - BQ((h—b1€*5)2—52)g772”76221)1%5,
o -
as follows:
2 08?(0612) — T (b= 010.5Y — B7) = — T (12— (h — b10.6)?
77C05( ) 772_52(( 1*) /8)_772_52( ( 1*))
< T oms
= 772_52 1€x0.
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Since 5 cos(£5'/2) > 1, by (3.2) we have

n
(3.3) 0 < necos(6t/?) — ———/(h — b10,6)2 — 32
/772 _ 62
2
< 1P cos?(65Y%) = T ((h — b1£,5)> — B?)
n* =B
2
n
< pER—E 2by hl,6.

In the case ¢ = 0, from (3.3) we can easily see that
A(n = (b1/2),1+ (b1/2)8) N €T ") © R((n, 0); ba0, b53"/?)

for some by, bs > 0, which is what we need. So, we assume that ¢ > 1/2 and ¢, = ¢
in what follows.
Let ®(&1) be as above and

(&) = \/(h+b108)? — €.

Solving the equation ®(&;) = \T/(fl) for & > 0 under the condition that h+b1£6 < 7,
we have

n
& = s (h + b1£6)% — B2.
We see that
7’ n’
0< m((h + b1£§)2 - 52) - C052(£§1/2) = 02 — 32 ((h+ b1€§)2 B h2)
02

= m@hbl + b205)66

and hence, arguing as in (3.3), we have

(3.4) 0<—— = (h + b108)2 — B2 — yycos(£5/2)
g
2
< 777271 g2 (o but0)? = %) — o cos?(15'?)
7]2
o

assuming h + b105 <.
Next, we estimate

I = @(7’] COS(€61/2) _glz(s) _ (D(T] COS(K(Sl/Q)),
where we assume that by £ < ncos(£6/?), by >0, and
IT := —®(ncos(£6"/2) + b1 £6) + ®(y cos(¢5/2)),

when ncos(%l/g)—i—glﬂé < n; when 7 cos(£5/?) +b106 >, let 1T = ® (1) cos(£61/?)).
We note that if 7 < 77 cos(£6%/?) 4+ b1£5, then

b1l5 > (1 — cos(6/2)) > n(2/x2)36,

and hence ¢ < byy~1x2/2.
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ww-o(-8)""(5)

By the mean value theorem, it follows that

We use

(3.5) |I| < b1l8B(1 — cos(£6Y2)) 12y~ < by 6B sin(£6Y/?) "1 < (w/2)byB5Y/2.
Obviously, we see that
(3.6) |IT] < ®(ncos(£6'/?)) = Bsin(£6'/?) < pest/2.

If ¢ > by~ '72/2 and so ncos(€6Y/2) + b5 < n, then applying the mean value
theorem, we see that

- _~ —-1/2
I1| < Bbi 6o (1 — 2 (ncos(£6Y/2) + b1€6)2)

~ —1/2
= Bby05 (1 — (cos®(£5"/2) + 27 by05 cos(£5V/2) + 7~ (61)2(65)2))

—1/2

—1/2

— b6 (sm (£6Y/2) — 25,46 cos(£6Y/2) — *2('51)2(135)2)
(2/7r V2025 — (207 Y0y + 1~ (b1)2)€5> = J,

< Bby 66 ((

where we assume that ¢ > 2(7/2)2(2p~ b, + n=2(b1)2) =: Cy. Then, we see that

-1/2 _ 271/27%’5151/2.

(3.7) 1] < J < Bbits (271(2/7)2¢29)
By (3.6) and (3.7), noting that Co > byn~'72/2, we have
(3.8) 11| < B(Co + 27V 2xby)6Y/2.

By (3.3), (3.4), (3.5) and (3.8), we can prove Lemma 3.1 as follows. First, by
(3.3), (3.4), we have

(3.9)  Allpe.s| — b10d, [pes| +b168) N E(' ")
C [ncos(£81/?) — byts, ncos(L61/?) + byl8] x R

for some by > 0 under the condition h + b145 < n. If h + b14d > 7, we easily see
that

2hby 06 + b2026% > (n? — B?) sin®(46/?),
which implies that ¢ < C' for some constant C. Using this, we have
(3.10) |h — ncos(t6'/?)| < h? — n? cos?(45'/?)
= (' —n")?sin®(¢6'/%) < C14%5 < CL.C16.
Also, when h + 0140 > n, by (3.3) we see that
(3.11) A(|pe,s| — b140, |pe,s| + b1£5) N &, n") C [ncos(t6Y/?) — byls, h+ by £6] X R.
By (3.10) and (3.11), we also have (3.9) for some by when h + b1£5 > 7.
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Next, by (3.5) and (3.8) with b; = by and (3.9) we have
Allpe.s] — bi£6, |pes] +168) N E(f ")
© (I cos(8/2) — batd,neos(¢5'/2) + bt5] x R) N EGY ")
C [ncos(£5Y/2) — bytd, m cos(L6Y/?) + batd]
x [Bsin(06Y/?) — b36'/?, Bsin(06'/?) + bg6'/?]

for some positive constant bs. This proves Lemma 3.1 when 7' > 7.
The case ' < 7 can be handled similarly. This completes the proof of Lemma
3.1. ]

We also need the following lemmas (Lemmas 3.2, 3.3 and 3.4) in proving Lemma
1.7.

Lemma 3.2. Let £ € N;N[0,67Y/2(n/8) — 1]. Let c1, ca be positive constants.
Then, there exist constants cs,cq > 0 depending on c1,ce such that

R(pe,5; c1£.6,¢26"%) C A(|pes| — c3t.8, |pes| + calid),
where pe.s = pes(n',n") and £, = max(¢,1/2).

Proof. We write («, 8) for pgs. Let (o + €1,8 + €2) € R(pe,s; c1440, ¢26'/?). Then
le1| < 10,6, |e2] < 262, To prove the lemma, it suffices to show that

‘\/0(2 + 32 - \/(a +e)2+ (,6’—|—62)2’ < colyd
for some ¢y > 0. Since o > ¢ > 0, this follows from the estimate
(3.12) [(0® 4+ 8%) — ((a+e1)* + (B + €2)%) | < cplsd.
Now we see that |a| < 5, |3 < | — n"[€6Y/2, | — | < 3/2 and
[(0®+B%) = ((a+e)’ + (B4 €2)%)| = [2061 + 6 + 262 + €5
< 10¢1£,68 + (e1£.0) + 2|0 — 0" |06 206?426
< 10¢1£40 4 (€1£.6)? + 3calid + 36
< (10¢; 4 ¢ 4 3¢y + 2¢3)L,0.

This proves (3.12) and hence completes the proof of Lemma 3.2. O
Let / € Ji, 0 € Jo, f + 1" =1. Let £ € N¥ and

pes(n's ") = (ncos(L5t/?), (' —n") sin(£51/2)).
Let
Res(n',1") = pes(n',n") + Ro(c1l.6, (ca + 4)5Y/?),

where ¢1, ¢ are as in (3.1) and we recall that ¢, = max(¢,1/2).
Lemma 3.3. Ifn',n, € Ji, ' ni € Ja, n+n"=n, n,+n] =n, then
Ea(,1") O Res (myn) C Ragrz R(pe,s (', m"); ¢ 0., ¢551/2)

for some positive constants ¢}, ch independent of a, 6 and ¢, where Ea(n’,n”) =
Reosr2&(0',n") for a € R.
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We have
(3.13) Rys(',n") U R(pes(n',n"); €14.0,¢46"?) C B(n, L, 6, ¢s)
for all i/ € J1, n' e A satisfying ' + " = n with some positive number c3, where

B(na€7 6a 63) = U B(p€,6(77,777,/)7c361/2)-

n/inl/:nlv
n'e€Ji,n' €Jz

Here B(x,r) denotes a ball with radius r centered at z. We may assume that c36%/2
is small enough so that

(1)
ReB(n,0,0,c3) C D ={6 cR*:3/2<|¢<9/2,& >0}

for |o| < mw/4;
(2) there exists ag > 0 independent of 7, ¢, § such that if ag < |a| < (7/4)071/2,
then

(3.14) B(n,¢,6,¢3) NRys512B(n,¢,0,c3) = 0.
Proof of Lemma 3.3. We note that |’ —nj| < 26%/2, |n" —nf| < 261/2. Thus
Res(no»16) C R(pe.s(n',n"); e1bad, (cz +8)5/?).
So, by Lemma 3.2 we have
Ros(mb. i) C Rlpe,s; c1lid, (c2 +8)8"%) € Al|pe.s| — clud, |pes| + cl.)

for some ¢ > 0, where pgs = pes(n’,n"’). Thus

Ea(n'\0") 0 Res(nyny) € Ea(n' ") N Allpes| — cl6, |pes| + cL.d).
By Lemma 3.1 and the rotation invariance of annulus, we see that

Ea(n' ") N Allpes| — clu0, |pes

for some ¢’ > 0. Combining results, we have

+ ¢l.8) C Rogr/2R(pes; ¢ 0.6, 6Y?)

5a(n’,77”) N Ros(mh, 1) € RasiszR(pe.s; 0.6, ¢ 62).

This completes the proof of Lemma 3.3. O
Let
Elhy= U  Rest,n")iertud, (ca+ 95 = |J  Restnn),
5777';*-77”:@’ Z%nii'n”:ﬁ
n'€J1,n" €J2 n'€Jin" €2

where ¢ ranges over a subset of Nj such that 0 < ¢ < 57 1/2(r/8) — 1 and ¢, ¢y are
as in (3.1).

Lemma 3.4. Fiz ) € J; and ' € Jo with ' + 1" = n. There exists ag > 0
independent of § such that if ag < a < (7/8)0~1/2, then

Ealf ") NEJ]y =0, Rusr(Ed)NEM,1") = 0.
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Proof. Let nj, € Jy and ny € Jo with no +ny = n. We first show that
(3.15) €', 0") O\ Res(nh,my) = 0,

if agp < a < (7/8)6~1/? and ay is sufficiently large, where Ry s(n}, 1) is as in Lemma
3.3. By Lemma 3.3 and (3.13), we have

ga(n/v 77”) N RZ,J(néﬂ 776/) - Raél/ZB(na £, 4, 63)'
Since Rys(nh,ny) C B(n,£,3,c3), by (3.14) we have (3.15) if ag < a < (7/8)6 /2
and ay is as in (3.14), from which it can be deduced that ,(n’,n") N El, =0 as
claimed. B _
Next, we prove that Rs1/2(Egy) NE(n',n") = 0 if ag < a < (7/8)6~1/2 and ay is
sufficiently large. This follows from E oo N & o(n',n"") = 0, which can be shown as
above by using Lemma 3.3, (3.13) and (3.14). This completes the proof of Lemma

3.4. O
Proof of Lemma 1.7. Let
Eg=|J  RBus(',n");c1t.d,c28"?),
' +n” =n.
n'edi,n €z

where the constants ci, co are as in (3.1) and ¢ ranges over a subset of N such that
0<¢<6Y%(n/8) — 1. We note that

(3.16) EZ - ngl/zEg = U Ra(gqu(pz,g(’I]l, 77//); 015*6, 62(51/2)
£n'+n” =1
n' €1, ' 'edy

(see (3.1)). Recall that D = {£ € R? :3/2 < [¢] < 9/2 & > 0}. We may assume
that R g1,2E0 C D for |a| < (7/4)6 V2 n=n'+7",9 € Jl, e J,.

Let ¢,¢' € N§ with 0 < £,¢/ < ¢~ 1/2(7r/8) —1, nh,m, € S, nllin) € Jy with
no+ng =n,ny+n{ =n. Let a,a’ € Z. To prove Lemma 1.7, by (3.16) it suffices
to show that

(3.17) R(pe.s (16, m0)s c1640, €26 %) VR (o arys1/2 R(per 5 (], 1Y), 10,6, ¢261/%) = 0,
if a — a' is sufficiently large with a —a’ < (r/4)671/2 —2. Let b = a —a’. We
observe that for y € J; and 0’ € Jo with ' + 71" =n,

(3.18) pes(n'sn") € R(pes (1o, 16)s 1640, (ca +4)6"2) = Ry (ny, ).
Risrr2pe,5(0's1") € Rysrr2R(per 5(my,my), 16, (e2 + 4)51/2) = Rys1r2 Rer s (n,m7).-
Obviously (3.17) follows from

(3.19) Ry5(n>mo) N Resr2Rer 5(ny,my) = 0.

Applying Lemma 3.4, we see that
(3.20) Evy2(n'sn") N Res5(ng.m0) = 0,
RysrzRe 5(ny,my) N €b/z(n’, n") =10

for a sufficiently large b > 0, 0 < b < (7/4)6~ /2 —
We can divide D as D\ Eb/g(’f] n') = Dy U D2 with D; N Dy = . Since

E(n',n"), & (n',n") € D and, obviously, Eb/z(n ") neqn") =0, Eupaln'sn") N
Eb(n’,n”) = (0, we may assume that E(n',n"”) C Dy and &,(n',n"”) C D,. Since
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pes('sn”) € EM'\n"), Risr/2pes('sn”) € E(n',n"), we have pes(n',n") € D1
and Rys1/2pe.6(n',n"") € Da. Thus by (3.18) and (3.20) we have Ry s(ni,n0) C D1
and Rys1/2Re s(n1,n{) C Do, which implies (3.19). This completes the proof of
Lemma 1.7. O
4. APPLICATIONS OF THEOREM 1.1
Recall that
5
g, =ully = {(En) ER xR |n—[¢]| < 6,(&[€]) € Uy}
=U{{&} x [I§] =6, 16|+ 0] : (&, [¢]) € Up,ui} 1=1,2,
where 6§ = 77! is a small positive number,
5
Ups, =UD) = {(&|6) eR* x R: € €Ty, [¢] € Ji},
I, =T ={£eR?: pd'/? <argé < (u+1)6"2}, peWN,
N=NO = {uez:|p <25 -1},

Ji=J0 = (e, 8] C [1,2], L] <6V i=1.2.
‘We also consider -
NOD —{pez: |y < ?5*1/2 -1}

For 1 € ./\/',.gé)7 we define an enlargement (uff)J)* of uff?]i, i=1, 2, by

(ufoy)" = {(E.m) € R xR |y — [¢l| < 66, (5. [€]) € (U}))")
= U{{e} x [l€] — 66, |¢] + 6] - (¢, I¢]) € (UL))*Y,
where
U = {(E.leh e B2 x R: € e (TD)" [¢ e (JD)"},

(TD) = {6 € R : (n—1)§'/* < argé < (u+2)8'7%},
(D) = [oi — 26, i + 20].
We have the following result by examining the proof of Theorem 1.1.

Theorem 4.1. There exists a positive constant C' independent of J1, Jo and § such

that
Z X(@® Yoy yr <O
(;L,V)E(N,Eé)ﬂ w,Jq v,Jo

Let 0 < € < 1/2 and set
Uy, = {(&m) €ER? X R:d(uy, g, (Em) <67, i=1,2,

where

d(w,s, (Em) = | inf (|6 =&+ [& - &+ n— o).
(&' n")Eup, i,

Then we have the following.

Theorem 4.2. We can find a positive constant C' independent of J1, Jo and § such

that
Z Xy, 7y +i, 15 < 0"
(n,v)EN?
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To prove Theorem 4.2 by applying Theorem 4.1, we need the following.

Lemma 4.3. Let N = [07/2], 6. = 0[07/?]? ~ 6'~¢, where [a] = max{m € Z :
m < a} for a € R. Suppose that € N and p = (N + k for some £ € Z and
kel0,N—1]NZ. Then

TN © {06V < argé < (£+1)52/%).
Proof. We have
T = {(EN + k)8Y2 < arg€ < (UN + k + 1)5%/%}
C {¢N§Y? < argé < (UN + N)5'/?}
= {(N3Y? < argé < (£ +1)N§Y/?}
= {06}? < arge < (0 +1)61/%}.
This completes the proof. (I
We also need the following.

Lemma 4.4. Let u, ¢, N,k be as in Lemma 4.3 with £ € ./\/*(55). Then, if § is small
enough, we have

e — 7 (56) y —
Uy, J; = UWN+k,J; C (ué,Ji)*v 1=1,2.

Proof. We show the result by using Lemma 4.3 and the definitions of w,_j,, ugéj)

and (usz)* as follows.

Fix i and let (§,7) € Ugn+k,,- Then there exists (§0,70) € uen+k,s, such that

(4.1) 1(€:m) = (o0,m0)| < 6' <.
Since (£o0,70) € Wen+k,7,, We have (&o,]&0]) € Urn1r,s, and
(4.2) 1m0 — |€ol| < 6.

The fact (o, |€o0]) € Uenk,s; implies that & € Fg\)uk and |&| € J;. By Lemma
4.3 it follows that

(4.3) 06Y? < arg&y < (£ +1)81/2,
where |{] < (71'/7)5;1/2 — 1 by the assumption that ¢ € A%

To prove (£,m) € (ué‘i]))*7 we need the estimate

(4.4) |arg & — arg &| < 6}/%,
if 0 < e < 1/2 and § is small enough. By (4.1), (4.3) and the fact that || € J;, we
have 1/2 < |¢] < 5/2 and |arg{| < 7/4. Let & = (¢1,¢2). Using (4.1), if § is small
enough, we see that
|arg § — arg §o| = |arctan(§2/&1) — arctan(G2/G1)|
<&/& — /G| = &6 — &Gl/|& ]
<& — Gl +clé — G| < 2e8°
< 4cd. < 81/,

which proves (4.4), where we have also used the estimates §17¢/2 < §. < §17€,
which are valid when § is small enough.
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By (4.3) and (4.4) we have

(4.5) (0 —1)0Y2 < arg€ < (£ +2)6Y/2.
Since |&o| € J; = [au, Bi], by (4.1) it follows that
(46) a; — 20, < |§‘ < Bi + 20..

Also (4.1) and (4.2) imply that
(4.7) I = €Il < In = nol + no — |&ll + [|€o| — [€]] < 8"+ +6"7° < 36" < 66
By (4.5) with £ € N’ and (4.6) we sce that (&,[¢]) € (U;’;))*, which combined

with (4.7) will imply that (§,n) € (ugéJz)* This completes the proof of Lemma
4.4. ]

The assumption that £ € N*(é‘) in Lemma 4.4 is always satisfied when § is small.

Lemma 4.5. If y € ./\/'(5), then there exist ¢ € ./\/'*(65) andk € Z with0 < k< N-1
such that p = ¢N + k, where N is as in Lemma 4.3.

Proof. We write p =mN +k, m,k € Z with 0 < k < N — 1. Then
Im| = N~Yu—k| < N—l(ga—l/2 —14k)< N—l(g(s—l/2 +N—2)
- %5;1/2 +1-2/N < §5;1/2 _1,

if § is small enough, which implies that m € N, O

Proof of Theorem 4.2. We may assume that § is small enough. Let £,¢' € N*(éé),
0<k,k<N-1and ¢{N+Fk ¢N+Fk € N©®. Then by Lemma 4.4 we have

XﬁZN+k,J1 +77£’N+k’,12 < X(ufeli)*+(ui§5}2)* .

Therefore applying Lemma 4.5 and Theorem 4.1 with J. in place of §, we have

z : Xy, 7y i, 1 < 2 : 2 : XNk, Hgr Nt 1y

(u,v)EN2 Z’K/ENEJE) k,k’€[0,N—1]NZ

SN D Xl
()WL)
< CN?
<Cd e
This completes the proof of Theorem 4.2. O
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