Nonisotropic dilations and the Calderón-Zygmund method of rotations with weight

Shuichi Sato

Kanazawa University
§1. Maximal functions and singular integrals along curves. Let $\left\{A_{t}\right\}_{t>0}$ be a dilation group on \mathbb{R}^{n} defined by

$$
A_{t}=t^{P}=\exp ((\log t) P)
$$

where P is an $n \times n$ real matrix whose eigenvalues have positive real parts. We assume $n \geq 2$. We can define a norm function r on \mathbb{R}^{n} from $\left\{A_{t}\right\}_{t>0}$ such that
(1) $r(x) \geq 0, r(x)=r(-x)$ for all $x \in \mathbb{R}^{n}, r(x)=0$ if and only if $x=0$;
(2) r is continuous on \mathbb{R}^{n} and infinitely differentiable in $\mathbb{R}^{n} \backslash\{0\}$;
(3) $r\left(A_{t} x\right)=\operatorname{tr}(x)$ for all $t>0$ and $x \in \mathbb{R}^{n}$;
(4) $r(x+y) \leq C(r(x)+r(y))$ for some $C>0$;
(5) $\Sigma=\left\{\theta \in \mathbb{R}^{n}:\langle B \theta, \theta\rangle=1\right\}$ for a positive symmetric matrix B, where $\Sigma=\left\{x \in \mathbb{R}^{n}: r(x)=1\right\}$ and $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{n};
(6) $d x=t^{\gamma-1} d \mu d t$, that is,

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty} \int_{\Sigma} f\left(A_{t} \theta\right) t^{\gamma-1} d \mu(\theta) d t, \quad d \mu=\omega d \mu_{0}
$$

where ω is a strictly positive C^{∞} function on $\Sigma, d \mu_{0}$ is the Lebesgue surface measure on $\boldsymbol{\Sigma}$ and $\gamma=$ trace \boldsymbol{P};
(7) there are positive constants $c_{1}, c_{2}, c_{3}, c_{4}, \alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} such that

$$
\begin{gathered}
c_{1}|x|^{\alpha_{1}}<r(x)<c_{2}|x|^{\alpha_{2}} \quad \text { if } r(x) \geq 1 \\
c_{3}|x|^{\beta_{1}}<r(x)<c_{4}|x|^{\beta_{2}} \quad \text { if } 0<r(x) \leq 1
\end{gathered}
$$

For $\boldsymbol{t}<0$, define $\boldsymbol{A}_{\boldsymbol{t}}$ by $\boldsymbol{A}_{\boldsymbol{t}}=(\operatorname{sgn} \boldsymbol{t}) \boldsymbol{A}_{\mid \boldsymbol{t t}}=-\boldsymbol{A}_{|t|}$.

Let S^{n-1} denote the unit sphere of \mathbb{R}^{n}. For $(x, \theta) \in \mathbb{R}^{n} \times S^{n-1}$, we define

$$
\begin{gathered}
M f(x, \theta)=\sup _{h>0} h^{-1}\left|\int_{0}^{h} f\left(x-A_{t} \theta\right) d t\right| \\
H f(x, \theta)=\mathrm{p} \cdot \mathrm{v} \cdot \int_{-\infty}^{\infty} f\left(x-A_{t} \theta\right) d t / t \\
H_{*} f(x, \theta)=\sup _{0<\epsilon<R}\left|\int_{\epsilon<|t|<R} f\left(x-A_{t} \theta\right) d t / t\right|
\end{gathered}
$$

Let \boldsymbol{w} be a weight function. We recall that

$$
\|F\|_{L_{w}^{p}\left(L^{q}\right)}=\left(\int_{\mathbb{R}^{n}}\left(\int_{S^{n-1}}|F(x, \theta)|^{q} d \sigma(\theta)\right)^{p / q} w(x) d x\right)^{1 / p}
$$

for functions $F \in L_{w}^{p}\left(L^{q}\left(S^{n-1}\right)\right)$, with usual modifications when $q=\infty$ or $p=\infty$, where $d \sigma$ denotes the Lebesgue surface measure on S^{n-1}.

Also, we write

$$
\|f\|_{L_{\boldsymbol{w}}^{p}}^{p}=\left\|\boldsymbol{f} \boldsymbol{w}^{1 / p}\right\|_{L} p=\left\|\boldsymbol{f} \boldsymbol{w}^{1 / p}\right\|_{p}
$$

for $f \in L_{w}^{p}\left(\mathbb{R}^{n}\right)$.

For $1 \leq p, q \leq \infty$, let $\Delta_{(p, q)} \subset[0,1] \times[0,1]$ be the interior of the convex hull of the points $(0,0),(1,1),(0,1),(1 / p, 1 / q)$. Put

$$
q_{n}(p)=p(n-1) /(n-p), \quad p_{n}=\max (2,(n+1) / 2)
$$

$$
\boldsymbol{q}_{n}(\boldsymbol{p})=\infty, \quad p \geq n
$$

Then, the following result was proved by M. Christ, J. Duoandikoetxea and J. L. Rubio de Francia (1986).

Theorem A. Suppose $P=E$ (the identity matrix). Let $(1 / p, 1 / q) \in$ $\Delta_{\left(p_{n}, q_{n}\left(p_{n}\right)\right)}$. Then,

$$
M, H, H_{*}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(L^{q}\right)
$$

Theorem A for M, H was extended to the case of nonisotropic dilations by Bez (2008) as follows.

Theorem B.
(1) If $(1 / p, 1 / q) \in \Delta_{\left(p_{n}, q_{n}\left(p_{n}\right)\right)}$,

$$
M: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(L^{q}\right)
$$

(2)

$$
\begin{gathered}
H: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(L^{q}\right) \\
\text { whenever }(1 / p, 1 / q) \in \Delta_{\left(2, q_{n}(2)\right)} \text {. }
\end{gathered}
$$

We assume that $\Sigma=S^{n-1}, d \mu=\omega d \sigma$ and ω is even.
Theorem 1. Suppose that $(1 / p, 1 / q) \in \Delta_{\left(2, q_{n}(2)\right)}$. Then,

$$
H_{*}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(L^{q}\right)
$$

We recall the following result for \boldsymbol{H}_{*} shown by Lung-Kee Chen (1988).
Theorem C. Suppose $\boldsymbol{n}=2$ and $\boldsymbol{P}=\operatorname{diag}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right)$ with $1<\boldsymbol{\alpha}_{2} / \boldsymbol{\alpha}_{1}<4 / 3$. Then, H_{*} is bounded from $L^{p}\left(\mathbb{R}^{2}\right)$ to $L^{p}\left(L^{q}\left(S^{1}\right)\right)$ whenever $(1 / p, 1 / q) \in \Delta_{(2,4)}$.

Theorem 1 improves on Theorem C, when $n=2$. It is known that if H is bounded from L^{p} to $L^{p}\left(L^{q}\right), p \in(1, \infty)$, then $q \leq q_{n}(p)$. This implies the same result for H_{*}. Thus, in particular, we can see that Theorem 1 is a sharp result when $n=2$ (we note that $\Delta_{\left(2, q_{2}(2)\right)}=\Delta_{(2, \infty)}$).

If B is a subset of \mathbb{R}^{n} such that $B=\left\{x \in \mathbb{R}^{n}: r(x-a)<t\right\}$ for some $a \in \mathbb{R}^{n}$ and $t>0$, then we call B an r-ball. Let w be a weight function on \mathbb{R}^{n}. For $1 \leq p<\infty$, we recall the Muckenhoupt class \mathcal{A}_{p}. We say $w \in \mathcal{A}_{p}$, $1<p<\infty$, if

$$
\sup _{B}\left(|B|^{-1} \int_{B} w(x) d x\right)\left(|B|^{-1} \int_{B} w(x)^{-1 /(p-1)} d x\right)^{p-1}<\infty
$$

where the supremum is taken over all r-balls B. The class \mathcal{A}_{1} is defined to be the set of weight functions w satisfying

$$
M_{H L} w \leq C w \text { a.e. }
$$

where $M_{H L}$ is the Hardy-Littlewood maximal operator defined by

$$
M_{H L} g(x)=\sup _{t>0} t^{-\gamma} \int_{r(x-y)<t}|g(y)| d y
$$

We note that $\mathcal{A}_{p} \subset \mathcal{A}_{u}$ if $p \leq u$. We shall prove the following weighted estimates.

Theorem 2. Let $2 \leq q<q_{n}(2)$. Then,

$$
M, H, H_{*}: L_{w}^{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{w}^{2}\left(L^{q}\right)
$$

for $w \in \mathcal{A}_{1}^{\tau}, \tau=2(n-1) / q-n+2$, where \mathcal{A}_{1}^{τ} is a subclass of \mathcal{A}_{1} defined by $\mathcal{A}_{1}^{\tau}=\left\{v^{\tau}: v \in \mathcal{A}_{1}\right\}$.

By Stein-Wainger (1978) we know that the operator H_{*} is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(L^{p}\right), 1<p<\infty$, so Theorem 1 follows by interpolation from the part of Theorem 2 concerning H_{*} with $w=1$.

Theorem 2 implies in particular

$$
\int_{S^{n-1}} \int_{\mathbb{R}^{n}}|M f(x, \theta)|^{2}|x|^{\alpha} d x d \sigma(\theta) \leq C \int_{\mathbb{R}^{n}}|f(x)|^{2}|x|^{\alpha} d x
$$

for

$$
-n<\alpha \leq 0
$$

where

$$
M f(x, \theta)=\sup _{h>0} h^{-1}\left|\int_{0}^{h} f(x-t \theta) d t\right|
$$

Difference between the cases of isotropic dilation and nonisotropic dilation.

- In the case of nonisotropic dilations, to get necessary estimates for the maximal operator M near $\left(1 / p_{n}, 1 / q_{n}\left(p_{n}\right)\right)$ we cannot apply a result for the X-ray transform X of M. Christ (1984) in the same way as in the case of nonisotropic dilation, where

$$
\begin{gathered}
X f(x, \theta)=\int_{-\infty}^{\infty} f(x, t \theta) d t, \quad(x, \theta) \in S \\
S=\left\{(x, \theta) \in \mathbb{R}^{n} \times S^{n-1}:\langle x, \theta\rangle=0\right\}
\end{gathered}
$$

then

$$
X: L^{(n+1) / 2}\left(\mathbb{R}^{n}\right) \rightarrow L^{n+1}(S, d \nu), \quad d \nu(x, \theta)=d \lambda_{\theta}(x) d \sigma(\theta)
$$

with $d \lambda_{\theta}(x)$ denoting $n-1$ dimensional Lebesgue measure on the hyperplane $\{x:\langle x, \theta\rangle=0\}$.

- In the case of nonisotropic dilations, the maximal operator M cannot be used to control H, H_{*} as in the case of nonisotropic dilation; a reason for this is that certain weighted inequalities which will be required in the arguments are not yet available in the case of nonisotropic dilations.
- In the case of nonisotropic dilations, to estimate the maximal operator M near $\left(1 / p_{n}, 1 / q_{n}\left(p_{n}\right)\right)$, Bez (2008) applied a result of
P. Gressman, L^{p}-improving properties of X-ray like transforms, Math. Res. Lett. 13 (2006), 10001-10017.
- Bez (2008) proved certain estimates for trigonometric integrals by using the decay estimates for the Fourier transform of $d \sigma$.
- Consequently, Bez (2008) can prove boundedness of the maximal operator M in the same range of $(1 / p, 1 / q)$ as in the case of isotropic dilations.

§2. Applications.

Let $K(x, y)$ be a kernel on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ such that

$$
K\left(x, A_{t} y\right)=t^{-\gamma} K(x, y) \quad \text { for all } t>0 \text { and }(x, y) \in \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)
$$

We assume that $K(x, y)$ is locally integrable with respect to y in $\mathbb{R}^{n} \backslash\{0\}$ and

$$
\int_{a \leq r(y) \leq b} K(x, y) d y=0 \quad \text { for all } a, b, 0<a<b
$$

for every $x \in \mathbb{R}^{n}$. We consider the singular integral

$$
T f(x)=\text { p.v. } \int K(x, y) f(x-y) d y=\lim _{\epsilon \rightarrow 0} \int_{r(y) \geq \epsilon} K(x, y) f(x-y) d y
$$

and the maximal singular integral

$$
T_{*} f(x)=\sup _{\epsilon, R>0}\left|\int_{\epsilon \leq r(y) \leq R} K(x, y) f(x-y) d y\right|
$$

We can apply Theorems 1 and 2 to study mapping properties of T and T_{*}.
Theorem 3. Let $\left(1 / p, 1 / q^{\prime}\right) \in \Delta_{\left(2, q_{n}(2)\right)}, q^{\prime}=q /(q-1)$. Suppose that $K(x, y)$ is odd in y, that is, $K(x,-y)=-K(x, y)$ for all $(x, y) \in$ $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and suppose that

$$
\sup _{x \in \mathbb{R}^{n}}\left(\int_{S^{n-1}}|K(x, \theta)|^{q} d \sigma(\theta)\right)^{1 / q}=\|K\|_{L^{\infty}\left(L^{q}\right)}<\infty .
$$

Then, T_{*} is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$.

This is an analogue for T_{*} of Theorem 12 of Bez (2008) concerning T. Theorem 3 is an extension to the case of nonisotropic dilations of a result due to M . Cowling and G. Mauceri (1985) for isotropic dilation.

Theorem 4. Let $2(n-1) / n<q \leq 2, w \in \mathcal{A}_{1}$. Suppose that $\|K\|_{L^{\infty}{ }_{\left(L^{q}\right)}}<$ ∞. Then, T and T_{*} are bounded on $L_{w}^{2}, w \in \mathcal{A}_{1}^{\tau}, \tau=n-2(n-1) / q$.

Since $w^{b} \in \mathcal{A}_{1}$ for some $b>1$ when $b \in \mathcal{A}_{1}$, from Theorem 4 we readily obtain the following result.

Corollary. Suppose that $\|K\|_{L^{\infty}\left(L^{q}\right)}<\infty$ for all $q<2$. Then, T and T_{*} are bounded on L_{w}^{2} for all $w \in \mathcal{A}_{1}$.

Using this result and the extrapolation theorem of Rubio de Francia, we can obtain the L_{w}^{p} boundedness of T and T_{*} for $w \in \mathcal{A}_{p / 2}, p \geq 2$.

Proof of Theorem 3.

The method of rotations of Calderón-Zygmund and Hölder's inequality imply

$$
\begin{aligned}
T_{*} f(x) & \leq C \int_{S^{n-1}}|K(x, \theta)| H_{*} f(x, \theta) d \sigma(\theta) \\
& \leq C\|K\|_{L^{\infty}\left(L^{q}\left(S^{n-1}\right)\right)}\left\|H_{*} f(x, \cdot)\right\|_{L^{q^{\prime}}}
\end{aligned}
$$

Thus, the conclusion follows from Theorem 1.
Similarly, Theorem 4 follows from Theorem 2.

Remark 1.

Introducing nonisotropic Riesz transforms, we expect that Theorems 3,4 extend to the case where kernels $K(x, y)$ are even in \boldsymbol{y}.
§3. $L_{w}^{2}\left(L^{q}\right)$ estimates for maximal functions.
§4. $\quad L_{w}^{2}\left(L^{q}\right)$ estimates for H.
§5. $L_{w}^{2}\left(L^{q}\right)$ estimates for H_{*}.

Idea of proof.

Theory of Duoandikoetxea and Rubio de Francia (1986):

- Orthogonality arguments with L^{2} estimates via Fourier transform estimates and Plancherel's theorem for vector valued functions
- Sobolev embedding theorem
- Littlewood-Paley theory
- Interpolation arguments

§3. $L_{w}^{2}\left(L^{q}\right)$ estimates for maximal functions.

In this section we prove

$$
\|M f\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)} \leq C\|f\|_{L_{w}^{2}}, \quad 2 \leq q<q_{n}(2), \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

where $\mathcal{S}\left(\mathbb{R}^{n}\right)$ denotes the Schwartz class, and q and w are related as in Theorem 2.

We denote by \hat{f} the Fourier transform of f :

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i\langle x, \xi\rangle} d x
$$

Let $\left\{D_{k}\right\}_{-\infty}^{\infty}$ be a sequence of non-negative functions in $C^{\infty}((0, \infty))$ such that

$$
\begin{gathered}
\operatorname{supp}\left(D_{k}\right) \subset\left[2^{-k-1}, 2^{-k+1}\right], \quad \sum_{k} D_{k}(t)^{2}=1 \\
\left|(d / d t)^{m} D_{k}(t)\right| \leq c_{m} / t^{m} \quad(m=1,2, \ldots)
\end{gathered}
$$

To apply the Littlewood-Paley theory, we define S_{k} by

$$
\left(S_{k}(f)\right)^{\wedge}(\xi)=D_{k}(s(\xi)) \hat{f}(\xi), \quad k \in \mathbb{Z}
$$

where \mathbb{Z} denotes the set of integers, and the norm function $s(\xi)$ is coming from A_{t}^{*} (the adjoint). For $k \in \mathbb{Z}$, let

$$
N_{k} f(x, \theta)=\int_{-\infty}^{\infty} f\left(x-A_{t} \theta\right) \varphi_{k}(t) d t-\int_{\mathbb{R}^{n}} f(x-y) \Phi_{2^{k}}(y) d y
$$

where $\varphi \in C_{0}^{\infty}(\mathbb{R}), \varphi \geq 0, \operatorname{supp}(\varphi) \subset(1 / 2,2), \int \varphi d t=1, \varphi_{k}(t)=$ $2^{-k} \varphi\left(2^{-k} t\right)$, and $\Phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \int \Phi d x=1$. We define $f_{t}(x)=t^{-\gamma} f\left(A_{t}^{-1} x\right)$, $t>0$.

Put $\tilde{S}_{k}=S_{k}^{2}$. Then, $\sum_{k} \tilde{S}_{k} f=f$. We may assume $f \geq 0$. We note that

$$
\begin{aligned}
M f(x, \theta) & \leq C \sup _{k \in \mathbb{Z}} \int_{-\infty}^{\infty} f\left(x-A_{t} \theta\right) \varphi_{k}(t) d t \\
& \leq C \sup _{k}\left|N_{k} f(x, \theta)\right|+C M_{H L} f(x) \\
& \leq C \sum_{j=-\infty}^{\infty}\left(\sum_{k}\left|N_{k} \tilde{S}_{j+k} f(x, \theta)\right|^{q}\right)^{1 / q}+C M_{H L} f(x) .
\end{aligned}
$$

Let $2 \leq q<q_{n}(2)$. Since $q \geq 2$, this and the Hardy-Littlewood maximal theorem imply

$$
\begin{aligned}
\|M f\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)} & \leq C \sum_{j}\left\|\left(\sum_{k}\left\|N_{k} \tilde{S}_{j+k} f\right\|_{L^{q}\left(S^{n-1}\right)}^{q}\right)^{1 / q}\right\|_{L_{\boldsymbol{w}}^{2}}+C\|f\|_{L_{\boldsymbol{w}}^{2}} \\
& \leq C \sum_{j}\left\|\left(\sum_{k}\left\|N_{k} \tilde{S}_{j+k} f\right\|_{L^{q}\left(S^{n-1}\right)}^{2}\right)^{1 / 2}\right\|_{L_{\boldsymbol{w}}^{2}}+C\|f\|_{L_{\boldsymbol{w}}^{2}}
\end{aligned}
$$

for $\boldsymbol{w} \in \mathcal{A}_{2}$.

We prove the following result.
Lemma 1. If $0 \leq \alpha<1 / 2$, then

$$
\left\|\left(\sum_{k}\left\|N_{k} \tilde{S}_{j+k} f\right\|_{L_{\alpha}^{2}\left(S^{n-1}\right)}^{2}\right)^{1 / 2}\right\|_{2} \leq C 2^{-\epsilon|j|}\|f\|_{2} \quad \text { for some } \epsilon>0
$$

Proof. Let $0<a<1 / 2-\alpha$. It suffices to prove

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left\|N_{k} \tilde{S}_{j+k} f(x, \cdot)\right\|_{L_{\alpha}^{2}}^{2} d x \\
& \leq C \int_{\mathbb{R}^{n}}|\hat{f}(\xi)|^{2}\left|D_{k+j}(s(\xi))\right|^{4} \min \left(\left|A_{2^{k}}^{*} \xi\right|,\left|A_{2^{k}}^{*} \xi\right|^{-1}\right)^{2 a} d \xi
\end{aligned}
$$

Note that $\left(N_{k} f(\cdot, \theta)\right)^{\wedge}(\xi)=\hat{f}(\xi) \Psi\left(A_{2^{k}}^{*} \xi, \theta\right)$, where

$$
\Psi(\xi, \theta)=\Psi_{0}(\xi, \theta)-\hat{\Phi}(\xi), \quad \Psi_{0}(\xi, \theta)=\int_{-\infty}^{\infty} \exp \left(-2 \pi i\left\langle A_{t} \theta, \xi\right\rangle\right) \varphi(t) d t
$$

Therefore, it suffices to show the pointwise inequality

$$
\|\Psi(\xi, \cdot)\|_{L_{\alpha}^{2}}^{2} \leq C \min \left(|\xi|,|\xi|^{-1}\right)^{2 a}
$$

If $|\xi| \leq 1$, this is easily obtained, since $\Psi(\xi, \theta)$ is C^{∞} and vanishes when $\xi=0$. The estimate for $|\xi|>1$ follows from the following result of Bez (2008).

Lemma 2. Let $0<c_{1}<c_{2}$ and $\xi \in \mathbb{R}^{n},|\xi|>1$. Then

$$
\int_{S^{n-1}}\left|\int_{c_{1}}^{c_{2}} \exp \left(i\left\langle A_{t} \theta, \xi\right\rangle\right) d t\right|^{2} d \sigma(\theta) \leq C_{\delta}|\xi|^{-1+\delta}
$$

for all $\boldsymbol{\delta}>\mathbf{0}$.

On the other hand, we can easily see that

$$
\left\|N_{k} f\right\|_{L_{w}^{2}\left(L^{2}\right)} \leq C\|f\|_{L_{M_{H L}(w)}^{2}}
$$

Therefore, if $w \in \mathcal{A}_{1}$, by the Littlewood-Paley inequality we have

$$
\left\|\left(\sum_{k}\left\|N_{k} \tilde{S}_{j+k} f\right\|_{L^{2}\left(S^{n-1}\right)}^{2}\right)^{1 / 2}\right\|_{L_{w}^{2}}^{2} \leq C \sum_{k}\left\|\tilde{S}_{j+k} f\right\|_{L_{w}^{2}}^{2} \leq C\|f\|_{L_{w}^{2}}^{2}
$$

If $2 \leq q<q_{n}(2)$, then by the Sobolev embedding theorem we have

$$
L_{\alpha}^{2}\left(S^{n-1}\right) \subset L^{q}\left(S^{n-1}\right) \text { for some } \alpha=\alpha(q) \in[0,1 / 2)
$$

Thus, Lemma 1 implies

$$
\left\|\left(\sum_{k}\left\|N_{k} \tilde{S}_{j+k} f\right\|_{L q_{\left(S^{n-1}\right)}^{2}}^{2}\right)^{1 / 2}\right\|_{2} \leq C 2^{-\epsilon|j|}\|f\|_{2}
$$

for some $\epsilon>0$. By interpolation with change of measure, we get

$$
\left\|\left(\sum_{k}\left\|N_{k} \tilde{S}_{j+k} f\right\|_{L^{q}\left(S^{n-1}\right)}^{2}\right)^{1 / 2}\right\|_{L^{2}\left(w^{\tau}\right)} \leq C 2^{-\epsilon|j|}\|f\|_{L^{2}\left(w^{\tau}\right)}
$$

for some $\epsilon>0$, where q and τ are related as in Theorem 2. This implies the desired result.

Remark 2. Let $0<c_{1}<c_{2}$ and $\eta, \zeta \in \mathbb{R}^{n} \backslash\{0\}$. Then, we have

$$
\left|\int_{c_{1}}^{c_{2}} \exp \left(i\left\langle A_{t} \eta, \zeta\right\rangle\right) d t\right| \leq C|\langle P \eta, \zeta\rangle|^{-1 / d}
$$

for some positive constant C independent of η and ζ, where d is the degree of the minimal polynomial of P. We note that this result implies Lemma 2 when $d=1,2$.
§4. $L_{w}^{2}\left(L^{q}\right)$ estimates for H.
Let $2 \leq q<q_{n}(2)$. In this section we prove

$$
\|\boldsymbol{H} \boldsymbol{f}\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)} \leq C\|f\|_{L_{\boldsymbol{w}}^{2}}, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

where q and \boldsymbol{w} are related as in Theorem 2.
Decompose

$$
H f(x, \theta)=\sum_{k=-\infty}^{\infty} H_{k} f(x, \theta), \quad H_{k} f(x, \theta)=\int_{-\infty}^{\infty} f\left(x-A_{t} \theta\right) \psi_{k}(t) d t
$$

where $\psi_{k}(t)=2^{-k} \psi\left(2^{-k} t\right), \psi \in C_{0}^{\infty}(\mathbb{R}), \operatorname{supp}(\psi) \subset\{1 / 2 \leq|t| \leq 2\}$, $\int \psi(t) d t=0$. We write

$$
H f=\sum_{k} H_{k} f=\sum_{j} U_{j} f, \quad U_{j} f=\sum_{k} H_{k} S_{j+k}^{2} f
$$

Let $0 \leq \alpha<1 / 2$. We prove

$$
\left\|U_{j} f\right\|_{L^{2}\left(L_{\alpha}^{2}\right)} \leq C 2^{-\epsilon|j|}\|f\|_{2}
$$

for some $\epsilon>0$. Then, arguing as in the case of M, from this and the Sobolev embedding theorem we can get

$$
\left\|U_{j} f\right\|_{L^{2}\left(L^{q}\right)} \leq C 2^{-\epsilon|j|}\|f\|_{2}, \quad 2 \leq q<q_{n}(2)
$$

Let

$$
\tilde{\Psi}(\xi, \theta)=\int_{-\infty}^{\infty} \exp \left(-2 \pi i\left\langle A_{t} \theta, \xi\right\rangle\right) \psi(t) d t
$$

Then

$$
\left(H_{k} f(\cdot, \theta)\right) \wedge(\xi)=\hat{f}(\xi) \tilde{\Psi}\left(A_{2^{k}}^{*} \xi, \theta\right)
$$

If $0<a<1 / 2-\alpha$, we have the estimate

$$
\|\tilde{\Psi}(\xi, \cdot)\|_{L_{\alpha}^{2}}^{2} \leq C \min \left(|\xi|,|\xi|^{-1}\right)^{2 a}
$$

Therefore, by the Littlewood-Paley theory for vector valued functions,

$$
\begin{aligned}
\left\|U_{j} f\right\|_{L^{2}\left(L_{\alpha}^{2}\right)}^{2} & \leq C \sum_{k}\left\|H_{k} S_{j+k} f\right\|_{L^{2}\left(L_{\alpha}^{2}\right)}^{2} \\
& \leq C \sum_{k} \int_{\mathbb{R}^{n}}\left|D_{j+k}(s(\xi)) \hat{f}(\xi)\right|^{2} \min \left(\left|A_{2^{k}}^{*} \xi\right|,\left|A_{2^{k}}^{*} \xi\right|^{-1}\right)^{2 a} d \xi
\end{aligned}
$$

where $0<a<1 / 2-\alpha$. This implies

$$
\left\|U_{j} f\right\|_{L^{2}\left(L_{\alpha}^{2}\right)}^{2} \leq C 2^{-\epsilon|j|} \sum_{k} \int_{\mathbb{R}^{n}}\left|D_{j+k}(s(\xi)) \hat{f}(\xi)\right|^{2} d \xi \leq C 2^{-\epsilon|j|}\|f\|_{2}^{2}
$$

for some $\epsilon>0$, as claimed.

If $\boldsymbol{w} \in \mathcal{A}_{1}$, we can show that

$$
\left\|H_{k} S_{j+k} f\right\|_{L_{\boldsymbol{w}}^{2}\left(L^{2}\right)} \leq C\left\|S_{j+k} f\right\|_{L_{w}^{2}}
$$

Thus, by the Littlewood-Paley inequality, we have

$$
\begin{aligned}
\left\|U_{j} f\right\|_{L_{w}^{2}\left(L^{2}\right)} & \leq C\left(\sum_{k}\left\|H_{k} S_{j+k} f\right\|_{L_{\boldsymbol{w}}^{2}\left(L^{2}\right)}^{2}\right)^{1 / 2} \\
& \leq C\left(\sum_{k}\left\|S_{j+k} f\right\|_{L_{w}^{2}}^{2}\right)^{1 / 2} \leq C\|f\|_{L_{\boldsymbol{w}}^{2}}
\end{aligned}
$$

Interpolation between the unweighted and weighted estimates implies

$$
\left\|U_{j} f\right\|_{L_{w}^{2} \tau\left(L^{q}\right)} \leq C 2^{-\epsilon|j|}\|f\|_{L_{w} \tau}
$$

for some $\epsilon>0$, where q and τ are related as in Theorem 2. Using this and the
triangle inequality, we can see that

$$
\|H f\|_{L_{w}^{2}\left(L^{q}\right)} \leq \sum_{j}\left\|U_{j} f\right\|_{L_{w}^{2}\left(L^{q}\right)} \leq C \sum_{j} 2^{-\epsilon|j|}\|f\|_{L_{w}^{2}} \leq C\|f\|_{L_{w}^{2}}
$$

§5. $L_{w}^{2}\left(L^{q}\right)$ estimates for H_{*}.
Let q, w be as in Theorem 2. In this section we prove

$$
\left\|H_{*} f\right\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)} \leq C\|f\|_{L_{\boldsymbol{w}}^{2}}, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Lemma 3. Let

$$
H_{* *} f(x, \theta)=\sup _{N \in \mathbb{Z}}\left|\sum_{k=N}^{\infty} H_{k} f(x, \theta)\right| .
$$

Then

$$
\left\|\boldsymbol{H}_{* *} \boldsymbol{f}\right\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)} \leq C\|f\|_{L_{\boldsymbol{w}}^{2}}
$$

We need the following result, for $p \leq q$, to show Lemma 3 .

Lemma 4. Let $1<p<\infty, 1<q \leq \infty, w \in \mathcal{A}_{p}$. For functions $F(x, \theta)$ on $\mathbb{R}^{n} \times S^{n-1}$, define $\left(M_{H L} F\right)(x, \theta)=\left(M_{H L} F(\cdot, \theta)\right)(x)$. Then

$$
\left\|M_{H L} F\right\|_{L_{w}\left(L^{q}\right)}^{p} \leq C\|F\|_{L_{w}\left(L^{q}\right)}^{p}
$$

Proof of Lemma 3. Let $\hat{Q} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \operatorname{supp}(\hat{Q}) \subset\{s(\xi)<2\}, \hat{Q}(\xi)=1$ if $\boldsymbol{s}(\boldsymbol{\xi})<1$. Decompose

$$
\sum_{k=N}^{\infty} H_{k} f=Q_{2 N} * H f-Q_{2 N} * \sum_{k=-\infty}^{N-1} H_{k} f+\left(\delta-Q_{2 N}\right) * \sum_{k=N}^{\infty} H_{k} f
$$

where δ denotes the delta function and the convolution is taken with respect to the \boldsymbol{x} variable.

The first term on the right hand side can be handled by Theorem 2 for H and

Lemma 4 as follows:

$$
\left\|\sup _{N} \mid Q_{2^{N}} * H f\right\|_{L_{w}^{2}\left(L^{q}\right)} \leq C\left\|M_{H L} H f\right\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)} \leq C\|H f\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)} \leq C\|f\|_{L_{\boldsymbol{w}}^{2}}
$$

Also, by inspection we see that

$$
\sup _{N}\left|Q_{2 N} * \sum_{k=-\infty}^{N-1} H_{k} f(x, \theta)\right| \leq C M_{H L} f(x)
$$

with the constant C independent of θ. Therefore, the second term on the right hand side can be handled by the weighted norm inequality for the Hardy-Littlewood maximal operator.

It remains to estimate

$$
I(f)=\sup _{N}\left|\left(\delta-Q_{2 N}\right) * \sum_{k=N}^{\infty} H_{k} f\right|
$$

We note that

$$
I(f) \leq \sum_{j=0}^{\infty} I_{j}(f), \quad I_{j}(f)=\sup _{N \in \mathbb{Z}}\left|\left(\delta-Q_{2^{N}}\right) * H_{N+j} f\right|
$$

Let $0 \leq \alpha<1 / 2$ and $0<a<1 / 2-\alpha$. Then, we have

$$
\left\|\left(\delta-Q_{2^{N}}\right) * H_{N+j} f\right\|_{L^{2}\left(L_{\alpha}^{2}\right)}^{2} \leq C \int_{\mathbb{R}^{n}}\left|\left(1-\hat{Q}\left(A_{2^{N}}^{*} \xi\right)\right) \hat{f}(\xi)\right|^{2}\left|A_{2^{N+j}}^{*} \xi\right|^{-2 a} d \xi
$$

Therefore,

$$
\sum_{N}\left\|\left(\delta-Q_{2^{2}}\right) * H_{N+j} f\right\|_{L^{2}\left(L_{\alpha}^{2}\right)}^{2} \leq C 2^{-j \epsilon}\|f\|_{2}^{2}
$$

and hence, if $2 \leq q<\boldsymbol{q}_{\boldsymbol{n}}(2)$, the Sobolev embedding theorem implies

$$
\sum_{N}\left\|\left(\delta-Q_{2^{N}}\right) * H_{N+j} f\right\|_{L^{2}\left(L^{q}\right)}^{2} \leq C 2^{-j \epsilon}\|f\|_{2}^{2}
$$

We write

$$
\delta-Q_{2} N=\sum_{m \leq N} \Delta_{m}, \quad \hat{\Delta}_{m}(\xi)=\Gamma\left(A_{2 m}^{*} \xi\right)
$$

where $\Gamma \in C_{0}^{\infty}, \operatorname{supp}(\Gamma) \subset\left\{c_{1}<s(\xi)<c_{2}\right\}$ for some $c_{1}, c_{2}>0$. Then, by Plancherel's theorem we have

$$
\left\|\Delta_{m} * H_{N+j} f\right\|_{L^{2}\left(L^{2}\right)}^{2} \leq C 2^{-\epsilon(N-m+j)}\|f\|_{2}^{2}
$$

On the other hand, if $w \in \mathcal{A}_{1}$,

$$
\left\|\Delta_{m} * H_{N+j} f\right\|_{L_{w}^{2}\left(L^{2}\right)}^{2} \leq C\|f\|_{L_{w}^{2}}^{2}
$$

For $w \in \mathcal{A}_{1}$, choose $b>1$ such that $w^{b} \in \mathcal{A}_{1}$. Then, interpolating between these estimates with w^{b} in place of w, we get

$$
\left\|\Delta_{m} * H_{N+j} f\right\|_{L_{w}^{2}\left(L^{2}\right)}^{2} \leq C 2^{-\epsilon(N-m+j)}\|f\|_{L_{w}^{2}}^{2}
$$

for some $\epsilon>0$.

Choose $\boldsymbol{G}_{m} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $\hat{\boldsymbol{G}}_{m}(\boldsymbol{\xi})=\boldsymbol{F}\left(\boldsymbol{A}_{2 m}^{*} \boldsymbol{\xi}\right), \boldsymbol{F} \in \boldsymbol{C}_{0}^{\infty}, \operatorname{supp}(\boldsymbol{F}) \subset$ $\left\{d_{1}<s(\xi)<d_{2}\right\}$ for some $d_{1}, d_{2}>0$, and

$$
\Delta_{m} * G_{m} * f=\Delta_{m} * f
$$

Then, by Littlewood-Paley inequality

$$
\begin{aligned}
\sum_{N \in \mathbb{Z}}\left\|\left(\delta-Q_{2} N\right) * H_{N+j} f\right\|_{L_{w}^{2}\left(L^{2}\right)}^{2} & \leq C \sum_{N \in \mathbb{Z}} \sum_{m \leq N}\left\|\Delta_{m} * H_{N+j} f\right\|_{L_{w}^{2}\left(L^{2}\right)}^{2} \\
& \leq C \sum_{N \in \mathbb{Z}} \sum_{m \leq N} 2^{-\epsilon(N-m+j)}\left\|G_{m} * f\right\|_{L_{w}}^{2} \\
& \leq C \sum_{m \in \mathbb{Z}} 2^{-j \epsilon}\left\|G_{m} * f\right\|_{L_{w}^{2}}^{2} \\
& \leq C 2^{-j \epsilon}\|f\|_{L_{w}}^{2}
\end{aligned}
$$

Interpolation between this and $L^{2}\left(L^{q}\right)$ estimate implies

$$
\sum_{N}\left\|\left(\delta-Q_{2^{N}}\right) * H_{N+j} f\right\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)}^{2} \leq C 2^{-j \epsilon}\|f\|_{L_{w}^{2}}^{2}
$$

for some $\epsilon>0$, where q, w are as in Theorem 2. Since

$$
I_{j}(f) \leq\left(\sum_{N \in \mathbb{Z}}\left|\left(\delta-Q_{2 N}\right) * H_{N+j} f\right|^{q}\right)^{1 / q}
$$

and $\boldsymbol{q} \geq 2$, we have

$$
\begin{aligned}
\|I(f)\|_{L_{\boldsymbol{w}}^{2}\left(L^{q}\right)} & \leq \sum_{j=0}^{\infty}\left\|\left(\sum_{N \in \mathbb{Z}}\left\|\left(\delta-Q_{2 N}\right) * H_{N+j} f\right\|_{L_{(} q_{\left(S^{n-1}\right)}^{q}}^{q}\right)^{2 / q}\right\|_{L_{\boldsymbol{w}}^{1}}^{1 / 2} \\
& \leq \sum_{j=0}^{\infty}\left(\sum_{N \in \mathbb{Z}}\left\|\left(\delta-Q_{2^{N}}\right) * H_{N+j} f\right\|_{L_{w}^{2}\left(L^{q}\right)}^{2}\right)^{1 / 2} \\
& \leq C \sum_{j=0}^{\infty} 2^{-j \epsilon / 2}\|f\|_{L_{w}^{2}} \leq C\|f\|_{L_{w}^{2}}
\end{aligned}
$$

where $\boldsymbol{q}, \boldsymbol{w}$ are as in Theorem 2. This completes the proof of Lemma 3.
Proof of Theorem 2 for H_{*}. We can easily prove the pointwise inequality

$$
H_{*} f(x, \theta) \leq C H_{* *} f(x, \theta)+C M f(x, \theta)+C M f(x,-\theta)
$$

Therefore, the result for H_{*} follows from Lemma 3 and the result for M.

References

[1] N. Bez, Mixed-norm estimates for a class of nonisotropic directional maximal operators and Hilbert transforms, J. Funct. Anal. 255 (2008), 3281-3302.
[2] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1-64.
[3] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.
[4] A. P. Calderón and A. Zygmund, On singular integrals with variable kernels, Appl. Anal. 7 (1978), 221-238.
[5] Lung-Kee Chen, The singular integrals related to the Calderón-Zygmund method of rotations, Appl. Anal. 30 (1988), 319-329.
[6] Lung-Kee Chen, The maximal operators related to the Calderón-Zygmund method of rotations, Illinois J. Math. 33 (1989), 268-279.
[7] M. Christ, Estimates for the \boldsymbol{k}-plane transform, Indiana Univ. Math. J. 33 (1984), 891-910.
[8] M. Christ, J. Duoandikoetxea and J. L. Rubio de Francia, Maximal operators related to the Radon transform and the Calderon-Zygmund method of rotations, Duke Math. J. 53 (1986), 189-209.
[9] M. Cowling and G. Mauceri, Inequalities for some maximal functions, I, Trans. Amer. Math. Soc. 287 (1985), 431-455.
[10] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[11] E. B. Fabes and N. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38.
[12] E. B. Fabes and N. Rivière, Symbolic calculus of kernels with mixed homogeneity, Proceedings of Symposia in Pure Mathematics, vol. 10, Singular integrals, Providence, 1967, pp. 106-127.
[13] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
[14] R. Fefferman, On an operator arising in the Calderón-Zygmund method of
rotations and the Bramble-Hilbert lemma, Proc. Nat. Acad. Sci. U. S. A. 80 (1983), 3877-3878.
[15] P. Gressman, L^{p}-improving properties of X -ray like transforms, Math. Res. Lett. 13 (2006), 10001-10017.
[16] P. Gressman, Sharp $L^{p}-L^{q}$ estimates for generalized \boldsymbol{k}-plane transforms, Adv. in Math. 214 (2007), 344-365.
[17] A. Nagel, N. Rivière and S. Wainger, On Hilbert transforms along curves, II, Amer. J. Math. 98 (1976), 395-403.
[18] N. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278.
[19] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), 7-48.
[20] S. Sato, Maximal functions associated with curves and the CalderónZygmund method of rotations, Trans. Amer. Math. Soc. 293 (1986), 799-806.
[21] S. Sato, Estimates for singular integrals along surfaces of revolution, J. Aust. Math. Soc. 86 (2009), 413-430.
[22] S. Sato, Nonisotropic dilations and the method of rotations with weight, Proc. Amer. Math. Soc. (to appear).
[23] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.

THANK YOU!

