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81. Maximal functions and singular integrals along curves.

Let { A:}+~0 be a dilation group on R™ defined by

A; = t¥ = exp((log t) P),

where P is an n X n real matrix whose eigenvalues have positive real parts. We
assume n > 2.
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We can define = a norm function » on R™ from {A;}:>o such that

r(x) > 0,r(x) = r(—x) for all € € R™, r(x) = 0 if and only if x = 0;

r is continuous on R™ and infinitely differentiable in R™ \ {0};

r(Aix) = tr(x) forall t > 0 and =z € R";

r(e +vy) < C(r(x) 4+ r(y)) for some C > 0;

> = {0 € R": (BO,0) = 1} for a positive symmetric matrix B, where
>={x € R":r(x) =1} and (-, :) denotes the Euclidean inner product in
R"™;

de = t7"! du dt, that is,

f(x)dxe = / / F(A0)t" " du(0)dt, dp = w dpo,

R™ 0o Jx

where w is a strictly positive C°° function on X, du is the Lebesgue surface
measure on X and v = trace P.

Let S™ ! denote the unit sphere of R™. We assume that ¥ = S™ ! and write
dyu = wdo;



(7) there are positive constants c;, ca, C3, C4, 01, 2, 31 and 3, such that

ci|lx|™ < r(x) < ex|x|™? if r(x) > 1,
cslz|Pt < r(x) < cq|x]? if0 < r(x) < 1.

For t < 0, define Ay by A; = (sgnt)Aj = —Ap.



For (z,0) € R™ x S™ !, we define

M f(x,0) = sup ht
h>0

h
/ f(z — A0) dt
0

9

Hf(x,0) = p.v./ f(x — A0)dt/t,

H.f(x,0) = sup
0<e<R

/ f(x — A.0)dt/t|.
e<|t|I<R




Let w be a weight function. We recall that

1 Fll e (Lay = (/Rn (/sn—l |F(z, 0)]° dO'(O))p/qw(w) dw) 1/p

for functions F € LP (L9(S™ ")), with usual modifications when q = co or
p = oo, where do denotes the Lebesgue surface measure on S™ 1.

Also, we write
1 1
1£llze = lfw'Plle = || Fw' /P,

for f € L? (R™).



If B is a subset of R” such that B = { € R" : r( — a) < t} for some
a € R" and t > 0, then we call B an r-ball. Let w be a weight function on
R™. For 1 < p < oo, we recall the Muckenhoupt class A,. We say w € A,,

1< p<oo,if

supg (|B|™! [ w(x) dx) <|B|_1 fB'w(:10)_1/(7”_1)d:1r:)p_1 < oo,

where the supremum is taken over all r-balls B. The class A, is defined to be
the set of weight functions w satisfying

MHL'w S Cw a.e.

where Mg is the Hardy-Littlewood maximal operator defined by

Mrurg(e) = supt™” / l9(v)| dy.
t>0 r(z—y)<t

We note that A, C A, if p < u.



Our results imply
|| 1Tt 0w dedo©) < C | |f(@)*w() da
Sn— R™ R™
for w € A;, where T = M, H or H,.
Let

MIf(a:, 0) = sup ht
h>0

9

/Ohf(a: — t0) dt

H'f(x,0) = p.v. /_oo f(x — t6) dt/t,

H!f(x,0) = sup
0<e<R

/ Flz — t0) dt/t
€<|t|<R



Then

for

1< oa<l,

where T = MI,HI, or Hf When —n < o < 0, this can be shown as
follows:
Let wo(x) = |x|%, —n < a < 0. Then

[ 1M #(@, )P wa(e) de do(®) 5 [[ 17(@)*M wa(x, 6) d do(6)
= [1r@P* ([ M"wa(@,6) do(0)) az

< / £ (@) [Pwa(@) de.
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Let T = H' or HY. Then

[ 175 (@, 0)Pwa(@) dz do(6) < [[ 1T 1, 0)* (M (2,0))"" da dor(0)
< [[ 1@ (M"wi(,0)"" e dor ()
— [1r@0 ([, (M"wie.0)" do()) da
S [ 1@ wa(@) de,

if s > 1 and s is sufficiently close to 1.
O This argument breaks down for a general w € A;.

° Weighted norm inequalities are not available in the case of nonisotropic
dilations.
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For1 < p,q < oo, let A, 4) C [0,1] X [0, 1] be the interior of the convex hull

of the points (0,0),(1,1),(0,1),(1/p,1/q). Put

an(p) = p(n — 1)/(n — p), Pn = max(2, (n + 1)/2),

gn(p) = oo, p > n.

Then, the following result was proved by M. Christ, J. Duoandikoetxea and J. L.

Rubio de Francia (1986).

Theorem A. Suppose P = E (the identity matrix).
A(Pn,Qn(pn))' Then,

M, H, H, : LP(R™) — LP(LY).

Let (1/p,1/q) €

12
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Theorem A for M, H was extended to the case of nonisotropic dilations by Bez
(2008) as follows.

Theorem B.
(1) f(1/p,1/q) € A (pr,qn (pn))’
M : LP(R™) — LP(L?);
(2)

H : Lp(Rn) —> Lp(Lq)
whenever (1/p,1/q) € A(2,qn(2))-
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1 1/p
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We assume that ¥ = S™ !, du = w do and w is even.

Theorem 1. Suppose that (1/p,1/q) € A(2,4,(2))- Then,

H, : L°(R"™) — L?(LY).

We recall the following result for H, shown by Lung-Kee Chen (1988).

Theorem C. Suppose n = 2 and P = diag(a, a2) with 1 < az2/o; < 4/3.
Then, H, is bounded from LP(R?) to LP(L%(S")) whenever (1/p,1/q) € A(z,4).

Theorem 1 improves on Theorem C, when n = 2. It is known that if H is
bounded from L? to LP?(L?), p € (1,00), then g < gn(p). This implies the
same result for H,. Thus, in particular, we can see that Theorem 1 is a sharp
result when n = 2 (we note that A(; 4,(2)) = A(2,00))-
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We shall prove the following weighted estimates.

Theorem 2. Let 2 < g < gn(2). Then,
M,H,H, : L? (R") — L? (L9
forw € A], 7 = 2(n —1)/q — n + 2, where A] is a subclass of A; defined by

Al = {v" 1 v € A1 }.

By Stein-Wainger (1978) we know that the operator H, is bounded from LP(R"™)
to LP(L?), 1 < p < oo, so Theorem 1 follows by interpolation from the part of
Theorem 2 concerning H, with w = 1.
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Difference between the cases of isotropic dilation and nonisotropic dilation.

® In the case of nonisotropic dilations, to get necessary estimates for the
maximal operator M near (1/p,,1/qn(pn)) we cannot apply a result for the
X-ray transform X of S. W. Drury (1983), M. Christ (1984) in the same way as

in the case of isotropic dilation, where
Xf(@0)= | fl@—to)dt, (=,6)€S,

S={(z,0) ER" X S"': (x,0) = 0};
then

X : LYY 2RY) - L™Y(S, dv),  dv(z, 0) = de(x) do(6),

with d\g(x) denoting n — 1 dimensional Lebesgue measure on the hyperplane

{x: (x,0) = 0}.
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® In the case of nonisotropic dilations, the maximal operator M cannot be
used to control H, H, as in the case of isotropic dilation;

a reason for this is that certain weighted inequalities which will be required in the
arguments are not yet available in the case of nonisotropic dilations.

° In the case of nonisotropic dilations, to estimate the maximal operator M
near (1/pn,1/qn(prn)), Bez (2008) applied a result of

P. Gressman, LP-improving properties of X-ray like transforms, Math. Res. Lett.

13 (2006), 787-803.

O Bez (2008) proved certain estimates for trigonometric integrals by using the
decay estimates for the Fourier transform of do .

o Consequently, Bez (2008) can prove boundedness of the maximal operator
M in the same range of (1/p,1/q) as in the case of isotropic dilations.
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Let X,Y be C° manifolds, dimX =: dx, dimY =: dy.

We assume dy > dx.

Let M be a smooth submanifold of X X Y such that dimM = dy + 1.
We assume that X, Y, M are equipped with measures of smooth density.

Let mx : M — X and wy : M — Y be the natural projections.
We assume 7w x and 7ty have everywhere surjective differential maps.

Let X; and %); the vector fields on M which are annihilated by d=wx and

dmy, respectively.
Let Y; € 2); be a nonvanishing representative. Define

%j = {V E %j—l . T(V) E %j_l -I- 2)1},

where T' (V') = [V, Yi].
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Definition. The ensemble (M, X,Y, wx, wy) is said to be nondegenerate
through order k at the point m € M

<
there exist vector fields X, € Xg, £ = 1,...dx — 1, such that X;|., Di|m
and {Tk(Xg)lm :€£=1,...,dx — 1} span the tangent space of M at m.

Definition. Let G, C [0, 1]? the convex hull of (0, 1), (1, 0), (0, 0) and

2 2 1 1 .
(. . 1 — — . . ): —y g =1 ..,k .
{ jdx —3j +2 (J+1)(Fdx —3+2) <pj qj> }
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Theorem (P. Gressman). Let (M, X,Y,7wx,wy) be nondegenerate through

order k at m € M and (%, %) € €f. Then, there exists an open set U C M,
m & U, such that

/U Fx(mx(m)) fy (mwy (m)) dm < Cll fxlpll Frlly

forany fx > 0on X and fy > 0OonY.
Conversely, this does not hold true if p < pj and (%, i) &Z Cp.
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Example 1.
Xf@,0)= [ f@—to)dt, (2,0€S5,
S ={(x,0) € R"* x "' : (x,0) = 0}.
/Xf(:n,@)g(ac,@) dv(z, 0) =// F(z — t0)g(x, 0) dv(w, 0) dt
S RJS
= [ [ fmx(t.2,0)g(my (¢, 2, 0)) du(, 0) at.
M=RxXS, dmM=2n—1, X=R", Y =8.

tx : M - R", wx(t,z,0) =x — t0O,
y : M — S, =wy(t,z,0) = (x,0).

e (M,X,Y,wx,wy) is nondegenerate through order 1 at (0, x,0) € M.
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Example 2.

M =R x R")", X=RxR', Y =®R")",

x(ty Yoy« -+ Yr) = (b, Yo + tys + -+ - + typ),

Ty (£ Yoy« -« s Yk) = (Yos Y15+ -+ 5 Yk)-

o (M,X,Y, wx,™y) is nondegenerate through order k at 0 € M.
Let

Rif(yo, Y1y -+ -5 Yk) =/f(t,yo+ty1+---+tkyk) dt.
R
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/ Rif(Yos Y15+ -5 Yr)9(Yos Y15 - - s Yr) dyo - - - dyg
(R™)k+1
R (Rn)k—i—l

— /R/(Rn)k-I—l f(ﬂ'X(ta Yoy Y1y o+ ¢ yk))g(ﬂ'Y(t, Yoy Y19 o ¢ o o yk)) dt dy() e o o dyk.
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Suppose n = 1, k = 3. Let

Z =t t’0y, + ~td o
6 Yo 2 Y1 > Y2 6 Ys.
Then dnx(Z) = 0 — Z € X%;.

Zf(ﬂ-X(tv Yoy Y145 Y2, y3)) = Zf(t, Yo + ty1 + t2y2 + t3y3) =0

dﬂ'y(at) =0 = ot E 2)1.

ot g(ﬂ-Y(tv Yoy Y15 Y2, y3)) — 8tg(y09 Y1y e ooy yk) = 0.

[8t, Z] = 3t*Byo — tOy1 + 30ys € X1 = Z € X».
[8'[2[8'[3, Z]] = t0yyg — Oy, € X1 — [8'[3, Z] € Xo — Z € X;3.

[0t [8t[8t, Z]]] = Dyo.
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1 1
{Bt, AYo, tOYo — Oy, Etzayo — t0y1 + anz, Z}

0

1 1
- {ata O0Yo, —OY1, an% _ang} :
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When (1/p,1/q) is near (2/(n +1),1/(n + 1)), N. Bez proved

/U f(x — A0)g(x,0)dt dx do(0) < || fllp (/ g(x, 9)q, o da(9)>1/q'

U C[1,2] X R* X "7 for f, g > 0.
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§2. Applications.
Let K(«x,y) be a kernel on R™ X R" such that
K(x,Ayy) =t "K(x,y) forallt > 0and (z,y) € R” x (R" \ {0}).

We assume that K (x, y) is locally integrable with respect to y in R" \ {0} and
/ K(x,y)dy =0 foralla,b, 0 < a <b,
a<r(y)<b

for every & € R"™. We consider the singular integral

Tf(z) = p-V-/K(w,y)f(w — y)dy = lim . K(z,y)f(xz — y) dy,
r(y)>e€

and the maximal singular integral

T.f(x) = sup
e, R>0

/ K(xz,y)f(x — y)dy
e<r(y)<R
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We can apply Theorems 1 and 2 to study mapping properties of T' and T.

Theorem 3. Let (1/p,1/q') € A,qn2) 4 = q/(g — 1). Suppose that
K(x,y) is odd in y, that is, K(x,—y) = —K(x,y) for all (z,y) €
R™ X (R™ \ {0}) and suppose that

1/q
swp ([ 1K@ 0)"d0(9)) " = [ Kllzmus < oo.
Ssn—

T ERM

Then, T, is bounded on LP(R"™).

This is an analogue for T, of Theorem 12 of Bez (2008) concerning T'. Theorem 3
is an extension to the case of nonisotropic dilations of a result due to M. Cowling
and G. Mauceri (1985) for isotropic dilation.
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Theorem 4. Let 2(n—1)/n < q < 2, w € A;. Suppose that || K||poozg) <
oco. Then, T and T, are bounded on L?, w € A], T =n — 2(n — 1)/q.

w’

Since w® € A, for some b > 1 when b € A;, from Theorem 4 we readily
obtain the following result.

Corollary. Suppose that || K ||foco(Lg) < oo for all g < 2. Then, T and T are
bounded on Lfv for all w € A,;.

Using this result and the extrapolation theorem of Rubio de Francia, we can
obtain the L? boundedness of T" and T, for w € A,/3, p > 2.

32



Proof of Theorem 3.

The method of rotations of Calderon-Zygmund and Hoalder’s inequality imply

T.f@) < C [ 1K@, 0)H.f(z,0)do(©)

< CllK”LOO(LQ(sn—l))“H*f(wv ')”Lq’°
Thus, the conclusion follows from Theorem 1.

Similarly, Theorem 4 follows from Theorem 2.

Remark 1.

Introducing nonisotropic Riesz transforms, we expect that Theorems 3, 4 extend
to the case where kernels K (x, y) are even in y.
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§3. L2 (LY) estimates for maximal functions.

§4. L2 (L?) estimates for H.

§5. L2 (LY) estimates for H.,.
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Idea of proof.

Theory of Duoandikoetxea and Rubio de Francia (1986):

e Orthogonality arguments with L? estimates via
Fourier transform estimates and Plancherel’s theorem for vector valued functions

e Sobolev embedding theorem
e Littlewood-Paley theory

@ Interpolation arguments
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§3. L2 (LY) estimates for maximal functions.

In this section we prove

IMFll2 e < Cllfllz, 2<a<aan2), fE€SEY,

where §(R™) denotes the Schwartz class, and g and w are related as in Theorem
2.

We denote by f the Fourier transform of f:

f&) = Fflx)e ™™ de,

R’I’L

Let { Dy} _ be a sequence of non-negative functions in C'°°((0, co)) such that
supp(Dy) C [27°71, 274, Y Dy(t)® =1,
k

((d/dt)" Di(t)| < cm/t™ (m=1,2,...).
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To apply the Littlewood-Paley theory, we define S by

(Sk(F)) (&) = Di(s(§)f (&), k€L,

where Z denotes the set of integers, and the norm function s(&) is coming from
Ay (the adjoint). For k € Z, let

Nuf(@,0) = [ fl@— Ad)en(t)dt — [ F(@ =) Pu(v) dv,

where ¢ € C°(R), ¢ > 0, supp(p) C (1/2,2), [edt = 1, pr(t) =
27 %p(27%t), and @ € C°(R™), [ ® dx = 1. We define fi(x) = t~7f(A; 'x),
t > 0.
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Put S, = S;. Then, >, Spf = f. We may assume f > 0. We note that

M f(x,0) < Csup /oo f(x — Ai0)pr(t) dt
kEZ J —o0

< ngp |Nif(x, 0)| + CMurf(x)

00 1/q
<C Z (Z ‘ngﬂkf(wa 9)‘(1) + CMpurf(x).

k
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Let 2 < g < gn(2). Since g > 2, this and the Hardy-Littlewood maximal
theorem imply

1/q
7 k

L3y

1/2
<cYy (Z ||Nksj+kf||iq(sn—1)> + ClI Az,
j k

L3y

for w € A,.
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We prove the following result.

Lemma 1. If 0 < a < 1/2, then

1/2
k

2

< c27||fl|2 for some € > O.
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Proof. Let 0 < a < 1/2 — . It suffices to prove

[ 1N p (@, )3, de
< C [ 11D (3(9)* min(| ALl | A3l )™ de.

Note that (N f(-,0)) (&) = f(§)T(ALLE, 0), where
V(€ 0) = Wo(€,0) — B(E), Wa(€,0) = [ exp(—2mi(A0,E)() dt.

— OO

Therefore, it suffices to show the pointwise inequality

1% (&, )72, < Cmin(|€], €71

If |£] < 1, this is easily obtained, since ¥ (&, ) is C° and vanishes when £ = 0.
The estimate for |£| > 1 follows from the following result of Bez (2008).
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Lemma 2. Let 0 < c; < cyand € € R”, [£] > 1. Then

/Sn—l

for all 6 > 0.

2

/62 exp (i(A:0,€)) dt| do(6) < Csl¢|™

1

To prove this N. Bez used
o ()] 5 (1 + 1)~V

Remark 2. Let 0 < c; < czand 1, ¢ € R™ \ {0}. Then, we have

/2exp (i(Am, ¢)) dt| < C |(Pn, )|,

1

where d is the degree of the minimal polynomial of P. We note that this result

implies Lemma 2 when d = 1, 2.
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On the other hand, we can easily see that

Nefll 2 < Cfll,2 .
INeF g, < O,

do(0) w(x) dx

/_Oo Flz — A0)pi(t) dt

o S

< . /Sn_l /_oo |f(x — A:0)|” pi(t) dt do(0) w(x) de

= [ r@r ([ [ ety +a0) atas)) az

Rn

S | f ()| 2_'”/ w(x 4+ y)dy | d=
R™ 2k—1<p(y)<2k+l

N n |f(2)|° Mpr(w)(zx) de.
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Therefore, if w € A,, by the Littlewood-Paley inequality we have

1/2]|2
(Z ||Nij+kf||i2(sn—1)>
k

L3,

< CY NISiflliz, < ClifllGe-
k

If 2 < g < gn(2), then by the Sobolev embedding theorem we have

L?(S™ 1 C LY(S™ ') for some a = a(q) € [0,1/2).

Thus, Lemma 1 implies

1/2
(Z ||Nk‘§j+kf||iQ(sn—1)> < c2 | f||2 for some € > O.
k

2
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By interpolation with change of measure, we get

1/2
(Z ||Nksj+kf||iq(sn—1>> < 27V £l L2
k

L2(wT)

for some € > 0, where g and 7 are related as in Theorem 2. This implies the
desired result.
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§4. L> (L9) estimates for H.

Let 2 < g < g, (2). In this section we prove

IH SN2 1) < Cllfll2, € SER™),
where g and w are related as in Theorem 2.

Decompose

Hf(xz,0) = Y Hgf(x,0), Hgf(z,0)= /_oo f(xz — A0)y(t) dt,

k=—o0

where ¥ (t) = 27Fp(27%t), ¥ € CZ(R), supp(y) C {1/2 < [t| < 2},
[ 1(t) dt = 0. We write

Hf = ; Hyf = Z U;f, U;f = Ekj H.S; .f.
J
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Let 0 < a < 1/2. We prove

1U; £l 222y < €27V £l2,

for some € > 0. Then, arguing as in the case of M, from this and the Sobolev
embedding theorem we can get

1U; fll2za) < C27VNIFll2, 2 < g < an(2).

Let

o @)

@(¢, 0) =/ exp(—2mi (A0, £))(t) dt.

— o0

Then X o
(Hef(-,0)) (&) = f(§)¥(AuE,0).
If 0 < a < 1/2 — o, we have the estimate

(&, )72 < Cmin(|€], [€]71).
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Therefore, by the Littlewood-Paley theory for vector valued functions,

||Ujf||iz(L2a) < CE}; ||Hk5j+kf||2Lz(L2a)
<c), / 1Dj1(s(€)) F(8)|” min(| AZE], | AZk€E|T1)* dE,
k
where 0 < a < 1/2 — «. This implies
U5 £lIG2z) < C27 ) / 1D k(s(8) £ (&)I* dg < c2Vif1;
k

for some € > 0, as claimed.
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If w € A;, we can show that

||Hij+kf||L,%v(L2) S C”Sj—i-kf”L,%U'

Thus, by the Littlewood-Paley inequality, we have
1/2
ke

1/2
<c <Z ||sj+kf||i%,> < ClIfllga,-
k

Interpolation between the unweighted and weighted estimates implies

1Uifllzz | zay < €27 VISl 2 |

for some € > 0, where g and 7 are related as in Theorem 2. Using this and the
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triangle inequality, we can see that

||Hf||L,%U(Lq) Z ||U3f||L2 2(L9) =

022_6'”'I|f||L2 < ClIflla,-
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§5. L2 (LY) estimates for H.,.

Let g, w be as in Theorem 2. In this section we prove

1L SNl 2,0y < CllFll,  F € SEY).

Lemma 3. Let

H..f(x,0) = sup
NezZ

Z ka(ma 0)
k=N

Then
”H**.f”L,%U(LQ) S C”f”L,%U

We need the following result, for p < g, to show Lemma 3.
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Lemma 4. Let ]l < p<oo,1<Kqg< oo, wé€ Ap. For functions F(x, 0)
on R" X S™7 !, define (Mg F)(x,0) = (MgrF(-,0))(x). Then

”MHLF”L?ZJ(LQ) S C”F”L?LDU(LQ)'

Proof of Lemma 3. Let Q € C{°(R™), supp(Q) C {s(¢) < 2}, Q(¢) =1
if s(§) < 1. Decompose

oo N-—-1 oo
D> Hif =Qun x Hf —Q,n * ) Hif + (6 — Qyn) * Y Hif,
k=N k=—o0 k=N

where § denotes the delta function and the convolution is taken with respect to
the a variable.

The first term on the right hand side can be handled by Theorem 2 for H and
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Lemma 4 as follows:

<C ||MHLHf||L,%U(LQ) < C”Hf”L%,(LQ) < C”f”L%,'

sup ‘QzN * Hf‘
N L%y (L)

Also, by inspection we see that

N-—-1
Sup | QN * Y Hipf(z,0) < CMpurf(z)

k=—o0

with the constant C independent of 0. Therefore, the second term on the right
hand side can be handled by the weighted norm inequality for the Hardy-Littlewood
maximal operator.

It remains to estimate

I(f) =Slj<.rp (0 — Q,nN) * Z Hif|.

k=N
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We note that

1) S 3155 I() = sup (5 — Q) » Hiviif |

3=0

let0 < a<1/2and 0 < a < 1/2 — . Then, we have

|6 — Qun) * Hnjf 322, < C / 11— QAINE)F(©) P Asn 1€ > dE.

Therefore,

S8 — Qun) * Hnyif|r202) < C27N£I3
N

and hence, if 2 < g < gn(2), the Sobolev embedding theorem implies

>0 — Qo) x Hnsif 3200y < C27 N £1I5-
N
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We write

§—Q,Nn= ) Apm, Ap(E) =T(AmE),

m< N
where I' € C;°, supp(T') C {c1 < s5(&) < c3} for some c;,co > 0.
Then, by Plancherel’s theorem we have

—e(N—m-+3
1A * Hy 3202 < C27N 7™ ]2,
On the other hand, if w € A4,

For w € A,, choose b > 1 such that w? € A:. Then, interpolating between
these estimates with w? in place of w, we get

18m * HnF 32,02 < C27 N5 17,

for some € > 0.
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Choose G,, € 8(R™) such that G,,,(¢) = F(An€), F € C°, supp(F) C
{d; < s(&) < d.} for some dy,d; > 0, and

A, Gy x Ff = A * F.
Then, by Littlewood-Paley inequality

DI — Qun) * Hujfllzz 2y S C Y D I1Am * Hyiifll32, 12

NELZ NEZm<N

<cC Z Z o—€(N—m+j) |G * fHZL%,

NeZ m<N

Y 277G * FII
meEZ

IA

IA

—3 2
C277 || £112, .
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Interpolation between this and L*(L7?) estimate implies
2 —1J€
Z (6 — Q,n) * HN+ijLgU(Lq) < c2™’ ||f||2L%v
N

for some € > 0, where g, w are as in Theorem 2. Since

1/q
Ii(f) < (Z (6 — Q,n) * HN+jf\q>

NeZ
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and g > 2, we have

- 2/q||1/2
||I(f)||1;2 2(L9) = y: (S: H(6 - QzN) * HN+J'fH;Q(sn—1)>
7=0 NeEZ L'}v
oo 1/2
2
<3 (316 - @) = Hinest g |
J=0 \NegZ
<CY 27 fllz, < Clifllgz,
7=0
where g, w are as in Theorem 2. This completes the proof of Lemma 3.
Proof of Theorem 2 for H.. We can easily prove the pointwise inequality

H*f(wv 0) S CH**f(CC, 9) + CMf(CC, 0) + CMf(CC, _9)'

Therefore, the result for H, follows from Lemma 3 and the result for M.
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