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We consider singular integral operators and maximal singular
integral operators with homogeneous kernels on the product space
of homogeneous groups.

We prove the L?P boundedness of the singular integrals for p €
(1, 00) under the L(log L)? integrability condition of the kernels on
the product of unit spheres.

Our methods will give different proofs for some previous results,
where singular integrals are defined by Euclidean convolution, since
our proofs will not use Fourier transform estimates explicitly.

My talk is based on a joint work with Yong Ding (Beijing Normal
University).
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§1. R? as a homogeneous group.

R9: the d dimensional Euclidean space, d > 2.
We regard R? as a homogeneous group:

e multiplication is given by a polynomial mapping;
e 3{A;};>0: a dilation family on R¢ such that

Ay = (tMxq, t*2xs, ..., 1% xy),

£ = (wla"'awd)’ 0<a, Sa'2 S S ad,

A; is an automorphism of the group structure;
e Lebesgue measure is a bi-invariant Haar measure;
e the identity is the origin 0, z—! = —=.

We also write R¢ = H.




Multiplication xy satisfies
(1) (ux)(vx) =ux +ve, x € H, u,v € R;

(2)

Ai(zy) = (Awx)(Asy), z,y € H, t > 0;

3) fz=2xy, z=(215-.+.524), 2 = Pr(x,y), then

Pl(mv y) = o1 + Y1,
Py(z,y) = T + yr + Ri(x,y) for k > 2,

where Ry(x,y) is a polynomial depending
L1geeesyL—15Y1yee-sYk—1-

only

on



|z|: the Euclidean norm for = € R%,
r(x): a norm function satisfying r(A;x) = tr(z), Vt > 0, Vz € R%;

(1) = is continuous on R? and smooth in R\ {0};

(2) r(xz+y) < Co(r(z) + 7)), r(zy) < Col(r(z) +7(y))
for some Cy > 1;
(3) r(z™') =r(=);

(4) fXy={x € R?: r(x) =1}, then 34 = §91,

where S9! = {z e R4 : |z| = 1};



(5) dey, ¢35 €35 €45 1, 2, B1, B2 > 0 such that

alz[™ < r(x) < eolx[™ if r(z) 2 1,
cs|z|Pt < r(x) < cqx|P? if r(z) < 1.

e The space H with a left invariant quasi-metric d(z,y) = r(z~'y)
is a space of homogeneous type.

o if vy =ay+ -+ aq (the homogeneous dimension of H), then
dxr = t7—1 dS,dt, that is,

f(x)de = / - F(A)~1dS4(0) dt
Rd 0 F)

with dS; = w do4, where w is a strictly positive C'°° function on
3.4 and dog is the Lebesgue surface measure on .



Convolution
f*g(z) = / fg(y 'z)dy
Rd

o (fxg)xh=f=x(g=h)
o (fxg) =g*f if f(z)=7f(z).



An example. Heisenberg group H;.

(,y,u) (@, y,u)=(z+ 2",y + v, u+u + (zy’ — yz')/2),

(z,y,u), (z',y’,u') € R?,

then R3 with this group law is the Heisenberg group Hj;
a dilation is defined by

Ai(z,y,u) = (tz, ty, tzu)a



and a norm function is

1
(@, y, 1) = EV V@ + 90 + Au? + a? + g2,

Also, we can adopt

Ay(z,y,u) = (tz, t?y, t2u).
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§2. LP estimates for singular integrals on R<.

Definition.
e FF € Llog L(X3) (Zygmund class)

<

/2 |F(x)|log(2 + |F(x)|) dSgq(x) < oo.

o Feri(y) < IFl =/

d

1/q
|F|qud> < 0.
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Let 2 be locally integrable in R%\ {0} and homogeneous of degree
0 with respect to the dilation group {A;}, that is,

Q(Ax) = Q(x) forx A0, t > 0.
We assume that
/ Q(0)dSa(0) = 0.
Xd
Let

K(z) = Q(z")r(x)™", T’ = A, (p—17 for z #£ 0,

where v = a1+ -+ a4. Then K is a locally integrable function on
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R% \ {0} and

K(Aix) =t7 7K (x) for all t > 0 and = € R* \ {0}.
Let

Tf(z) = pv.f * K(z) = p.v. / FWK @y dy.
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Theorem A (T. Tao, 1999). Suppose that 2 € LlogL(3y,).
Then, T is bounded on L?(RR?) for all p € (1, c0).

We also consider the maximal singular integral operator

T« f(x) = sup
e>0

/ flzy ) K (y) dy| .
r(y)>e

Then the following result is known.

Theorem B. Suppose that 2 € Llog L(3,;). Then, T, is bounded
on LP(R%) for p € (1, 00).
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Theorem A for p € (1, 2] can be proved by interpolation between
L? estimates and weak (1,1) estimates for T' with Q € L log L;
both estimates are given by T. Tao (1999); the result for p € [2, o0)
follows by duality.

For T, with Q € Llog L, neither weak (1, 1) boundedness nor L?
boundedness was known.

We can prove Theorem B and give a different proof of Theorem
A via extrapolation arguments;
our proof of Theorem A will not depend on the weak (1,1)
boundedness of 1" and will be applicable to some other operators for
which weak (1,1) boundedness is not known.

An analogue of a theory of Duoandikoetxea and Rubio de Francia
(1986) for homogeneous groups was developed by S. Sato (2010),
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where the use of Fourier transform estimates was replaced by a
variant of the L? orthogonality estimates given by T. Tao (1999).

The theory enables us to prove Theorem B and to give a different
proof of Theorem A.

Here | would like to talk that the theory extends to the case of
product spaces of homogeneous groups.

Consequently, we can obtain analogues of Theorems A and B for
multiple singular integrals with rough kernels.
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Idea of proof of Theorem B.
e Extrapolation on (2 using

Proposition. Let 1 < p<oo,1<s<2and e L%Xy). Then,
there exists a constant C, independent of s and €2 such that

ITfllp < Cp(s = 1)7HIQUN fllpy T = T

%

We can prove Theorem B from Proposition by decomposing 2 €
Llog L as

Q= Z Ckﬂk,,
k=1

where supy>, [|Qk|l141/x <1, e > 0, Y207, kep < oo.

17



T2l < 3 el T2 1,
k
< c,. C inf (s —1)"YQ%lls
<D eny (inf o = 0l

<D ek Cp k||l 1417kl £l
k

< Cp (Z kck) 1] p-
k

)1l
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Theory of Duoandikoetxea and Rubio de Francia (1986):

e Orthogonality arguments for L? estimates via
Fourier transform estimates and Plancherel’s theorem

e Littlewood-Paley theory
e Interpolation arguments
Our strategy is:

to employ a version of theory of Duoandikoetxea and Rubio de
Francia adapted for analysis on homogeneous groups;

replace the use of Fourier transform estimates with (T'T*)M
estimates (L’ orthogonality estimates for convolution) and apply
Cotlar’s lemma.
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(TT*)™ method.
o [|TT™|| = ||T|".
Let 2 be homogeneous of degree 0 on R? \ {0}. Define

Co = {A0:1t> 0}, 0 c X,
Then, 2 is smooth on Cy for every 0 € 3; since 2(A.0) = Q(0).

Co
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Orthogonality estimates in L? via convolution.

Let ¢; € C$°(R), j € Z, be such that

supp(h;) C {t ER: p? <t < p?*%}, ;> 0, p>2,

log22¢j(t) =1 fort#0,
JEL
(@/dt)™ 5 ()] < emlt]™ for m =0,1,2,...,

where c,, is independent of p.

21



Let 5:Ko(x) =t "Ko(A; 'z), Ko(z) = K(z)x,(x),
Li={zxeR:1<r(z) <2},

S, Ko(z) = /0 i (1)0,Ko(x) dt /1
= Q(z")r(x)™" s Y;(tr(x)) dt/t.

Then, supp(S;Ko) C {z : p? < r(z) < 2p'T2} and

Y S;Ko = K, Tf=> f=*S;Ko.

JEZ JEZ
We choose p = 2° if Q € L5(Zg).
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Let ¢ be a C°° function such that

supp(¢) C {1/2 < r(z) <1}, [ =1, ¢(x) = ¢(z7), ¢(x) > 0.

Define
Ap =010 —0rp, k€L sop(x)=t"¢(A; ).

Then

> A =9,

where 9J is the delta function.
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Lemma (L? orthogonality estimates). Let s > 1, Q € L3(X,),
p = 25" Then,

S
1f * SjKo * Apyjll2 < 0:2‘€'k'llﬂ||3||f||z.

For s = oo, this was proved by T. Tao 1999 with (T'T*)¢ method.
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§3. LP estimates for singular integrals on product domain.
We consider the product space

R™ = R™ x R"2, n = ni + no;

Rnl — Hl, an — Hz

are homogeneous groups with dilations A,(;l), Aiz) and norm functions
1, T2, respectively.

Let 2 € L' (X,,, X X,,,) satisfy

/znl Q(u,v) dSp, (u) = / Q(u,v) dSp,(v) = 0,

3ng

V(u,v) € 3, X Xp,.
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Define the singular integral

Tf(ZU, y) = p.v. | * K(wa y)

= p.v./ f(zu™ ', yv~ 1)K (u,v) dudv,
R™1 x R™2
where
K(u,v) = ri(u) "ra(v) 7202 (w', v'),

1 4(1) 1 A(2) :
u' = Arl(u)_lu, v = Arz(v)_lv,

~v1 and v are the homogeneous dimensions of H; and H, respectively.
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Theorem 1. Suppose that Q@ € L(log L)*(X,,, X X,,)- Then,

T : Lp(Hl X Hz) — Lp(Hl X Hz) for all p € (]_, OO)

Also, we consider the maximal singular integral

T*.f(wa y) — sup
€1>0,
€9>0

1 (w) >€1,
ro(u)>en

f(zu ', yv ) K(u,v) dudv|.
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Theorem 2.
T, : Lp(Hl X Hg) — Lp(Hl X Hz)

whenever Q € L(log L)*(X,, X X4y,).

for all p € (1, 00),
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Previous works.

e R. Fefferman and E. M. Stein, Singular integrals on product
spaces,
Adv. in Math. 45 (1982), 117-143.

e J. Duoandikoetxea, Multiple singular integrals and maximal
functions along hypersurfaces,

Ann. Inst. Fourier 36 (1986), 185-206.

e H. Al-Qassem and Y. Pan, LP boundedness for singular integrals
with rough kernels on product domains,

Hokkaido Math. J. 31 (2002), 555-613.

e A. Al-Salman, H. Al-Qassem and Y. Pan, Singular integrals on
product domains,

Indiana Univ. Math. J., 55 (2006), 369-387.
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B Theorems 1 and 2 are extensions of results of A. Al-Salman,
H. Al-Qassem and Y. Pan (2006) to the case of singular
integrals on product of homogeneous groups.

B The optimality of the kernel class L(log L)?, in the case of

Euclidean convolution, can be found in A. Al-Salman,
H. Al-Qassem and Y. Pan (2006).

B Our methods give different proofs for previous results, where
singular integrals are defined by Euclidean convolution, since
our proofs of Theorems 1 and 2 do not use Fourier transform
estimates explicitly.
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To prove Theorems 1 and 2, we apply extrapolation arguments
via the following estimates.

Proposition 1. Letl <p<o0,1<s<2and
Q€ L?(X,, X ¥p,). Then, 3 C,, independent of s and €2 such that

IT£llp < Cp(s — 1) 2N f ]l p-

Proposition 2. Let p,s and (2 be as in Proposition 1. Then

1T fllp < Cp(s — 1) ZNQUNFlp

for some constant C), independent of s and (2.
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Proposition 1 —> Theorem 1, Proposition 2 —> Theorem 2.
Decomposing 2 € L(log L)*(X,, X X,,) as

O

Q:ZCka, Ck:ZO

where
/ (1, v) dSy, (1) = / Qo (w, 0) dSn, (v) = 0,
Sny Sy

sup [[Qk|l1+1/6 < 1,
k>

i kc;, < oo.
k=1
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§4. Orthogonality in L? via convolution.
We write

z = (2P, z?) € R?, 2™ ¢ R™, 2 € R™2, n = ny + no.

Let ¢V, 4 = 1,2, be a C* function on R™: such that
. . 1 .
supp(¢™) C {‘/”(Z) CRM:g< ri(z®) < 1}’
/ 60 =1, 60 =30,  H® >0
where ¢®) (M) = ¢ ((x(®)~1). Set
AP =80 00 — 60, ke,
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where 5(i)¢(i) (V) = t—Yigp(®) Al —1406) , p > 2.
t t

Then . o . .
Ag&) _ Af,:), ZA‘S) — 5(%)’
k

where 69 is the delta function on R™:,.

Choose ¢ € C5°(R), j € Z, satisfying

supp(v;) C {t €ER: p? <t < %2}, 95 >0,
(log2) Y v;(t) =1 fort #0,
JEZL
[(d/dt)™p;(t)| < em|t|™™ for m =0,1,2,...,

where c,,, is a constant independent of p > 2 .
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Let 6, = 6V ® 6.7, Define

Si el () = /Ooo /Ooo Y (8)Yx(t)ds,t F () %%,

where F € L1(R™), supp(F) C Do, Doy = D" x D{?,
D(()i) = {z® e R% : 1 < r;(=¥) < 2}.
Let Ko(z) = K(x)xD,(x). Then

Y S;uKo=K.
J k€L
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Let &) be a non-negative smooth function on R™ such that
/q)(i)(w(i)) dz® = 1,89 = 8@ supp(@?) C {fri(az(i)) < 1}.

For F € L'(R™) with supp(F) C D,, define the operator U, =
Us(F) by

Usf = Us(F)(f) = Y ikl * Viks
gk
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where
vik(@) = vip(F)(z) = SjpF(z) — 850 (z) — @) (z) + &, k(2),

(I)gl)c(w) — (I)gl)c(F)(w) = </SJkF(:IJ) dw(1)>5g)@(1)(w(1))’
¢ (v) = @) (F)(z) = ( / SinF(x) dw<2>>5ﬁ>q)<2>(w<z>),
D, p(x) = P p(F)(x) = (/S’ij(af:) d:r:) 5 k®(x), ®=31ge?,

and o = {0} is an arbitrary sequence such that o;; = 1 or —1.
Then

/ngk(m) dw(Z) — U SjakKO — Vﬂak(KO)
U, (Ko)(f) = Tf if ojp =1 forall j, k.
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For s > 1, let

L%(Dy) = {F € L°(H; x Hy) : supp F C Dy}.

Lemma 1. Suppose that F € L*(Dy), s € (1,2]. Let vj, j, =

V1,52 (F),
a(t) = min(1, p™?), t €R.

Then, for 3;,k; € Z, 1 = 1, 2, we have

2
If * Vjyga * Ay ksllz < C(log p)* (H a(e(|gs — kil — C)/S')> 1 E]|s ][ F1]2

=1

for some positive constants C, € and c independent of p, s and F,
where Ay, 1, = A;:l) ® A}(,fz) and s = s/(s — 1).
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Put S = Sy 0F. By the T*T method, one of the key estimates

to prove Lemma 1 is the following:

ni

Hf * (Akl,kg xS xS * Akl,kz) ,

< C(log p)*mipctkaithate)/s ) p|12m| £,

k

for some €, c > 0, where

g:n:g*...*gJ

m times

and we may assume n; > n, without loss of generality.

39



85. Proof of Proposition 1.

Lemma 2 (Littlewood-Paley inqualities).

Akyk, = Ay) @ A}, Then

Z Jrerky ¥ Ak ky|| < Cp
ki,k2
Z |f*Aklak2|2
ki,k2

1/2

Z |fk1,k2|2

ki,k2

< Coll £l

p

where the constant C), is independent of p > 2.

1/2

Let 1 < p < o and
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We write U, = U, (F) with p = 2% and |
Usf = X0 Upw wnfs kD = (K1Y, k) € 22,

U w0 f = D 05 F %Ay 4 Vi* By, vi =vi(F), § = (j1,J2);
JEZ?

Vr,s(€) = Vps(F) () = SrsF () — (1) () — (2)(3’3) + ®rs(x),
o) (z) = 1) (F)(z) = ( / S, oF (z) da;<1>>5§,9<1><1>(a;<1>),
52)(2) = A(F)@) = ( [ 10F () da® )52 (a),

P, () =@, (F)(x) = ( / Sy.sF () dac) Spr ps®(x), @ =&Y e,
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Fix k@, k2 € 72. By Lemma 1 with p = 2¢ and duality,

2
If * Ag * vjll, < C(s = D)2F sl fll2 | | Ae(lki = dil =€),

=1

where
A(t) = min(1,277), t € R.

Applying this and Lemma 1, to v; and v;, and noting that

2
1Ag@ 1 * Aga il < C [ Aelds — il =€), 3" = (31, 33)s

=1
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|Ak|ls < C, we have

‘ 2

Hf * (Apgy * V) * (Ape gy * Apeg ) * (D5 * Apay, )

< CA%||fll: [T A2e(IkV | — ) A(e(l5i — 3] — ©)),

=1

A= (s —1)7%|F]s,

Hf * Ak:(l)—l—j * (I/j * Ak(z)—l—j) * (Ak(z)—l—j’ * I;j/) * Ak(l)—l—j’ )

2
< CcA?||fll: [T A2e(kP] = ¢)).

=1
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Taking the geometric mean, we have

Hf * (Ak(1)+j * Vj Ak(z)—l—j) * <A (2)40 * Vjr * A <1)+j'>

‘ 2

<cA?fl. [] (H A(e(|k™] — c>>> A(e(lgs — 41 — ©)/2)-

=1 m=1

We can treat

| f * <Ak(2)_|_j’ * Ujr Ak(l)-|-j’> * (Ak(1)+j * Vj * Ak(2)-|_j> 2

similarly. Thus, by the Cotlar-Knapp-Stein lemma

|0 k7|, < CAllFIL2 [T TTAGUE™] - e)/2

m=1 =1
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uniformly in o. This implies that

IUsfll2 < ) 0w e fllz < CAllfllz, A= (s —1)7?||F|ls.
k() k(2)

By the bootstrap argument of Duoandikoetxea-Rubio de Francia
(1986), we can prove that

1Usfll, < CpAllfll,, A=(s=1)7F|ls p€(1,2],

for all F' € L®(Dy), where C,, is independent of o, F' and s.

To carry out the bootstrap argument, we  use
the Littlewood-Paley theory (Lemma 2) and the Khintchine inequality ,
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and need to consider general U, (F'), even though we would like to
have the result for the particular case

U,(Ky)(f) =TFf, ojr = 1 for all 7, k.
Thus we have
ITfll, < C(s—1)72Qs|| fllp for p € (1,2];

a duality argument will imply the conclusion for p € [2, 00).
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