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§1. Let Q € L'(S™ ') satisfy
/ Q(0) do(8) =0
sn—1

where S" ' = {x € R": |z| =1}
do : the Lebesgue measure on S™"~ !, n > 2.

We consider singular integrals of the form:

T(f)(@) = pv. [ f(@ = 9)K(y)dy.

Q(x’)

™

K(x) = h(|z|) x' = ax/||.




Definition. Let FF € L'(S™™ ).

(1) F € LlogL(S™ ') (Zygmund class)
e

[ IF@1o5(2 + IF(@)]) do(@) < oo

(2) F € H'(S™ ') (Hardy space) <= ||F||;1 = ||PTF||;1 < oo,

where
PTF(0) = sup / F(w)Prg(w) do(w)
0<r<1 |/Jgn—1
1 — r? n—1
P,.,(0) = c, (Poisson kernel), 0< r<1,w,0 € S .
|rw — 0™ -

e Llog L(S™ ') is a proper subspace of H'(S™1).



The case of homogeneous kernels.

[When Tf =p.v. fx K, K = Q/|x|", write T = Tq. Then,

(Taf) (&) = m(&) £ (&),

where

m(E) =~ [ AOF(E,6)da(o),

sn—1

F(€,6) = [T sen((€’,0)) + log (€', 0)1 |

This implies
e Q€ LlogL(S™ ') = Tn:L*— L
If Q2 is odd,

Tof(2) = 7 |

iy Hof (@)$2(0) do(6),  Hof(z) = P-V-%/_oo F(x—1t0) dt/t.
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The method of rotations of Calderéon-Zygmund (1956) implies:
e Qisin L'(S" ' andodd = To:LP — LPforalll < p < oc;
e Q€ LlogL(S™"') = Tq:LP — LPforalll < p < oco.

Furthermore,
e Qc H'(S"!) = Tq:L? > LPforalll < p < oco.

This was proved by Coifman-Weiss, Connett, Ricci-Weiss (1977-1979) by applying
developed versions of the Calderén-Zygmund method of rotations.

This improves upon the previous result since L log L(S"_l) is a proper subspace
of H'(S™1).



The case where h is not constant.

Recall

T(f)(@) = pv. [ f(@ = 9)K(y)dy.

Q(x’)
[
If h is not constant, then the method of rotations of Calderon-Zygmund is not
applicable in general.

K(x) = h(|z|) x' = x/|x|.

The operator

exp(i|y|)
(1 + |y|?)n/2

5@ = [ -y

is included in the class of operators T' as a particular example.



Definition The space A, s > 1, is defined as

A, ={honR; : ||hlla, < 003,

od+1 1/s
R]la, = sup / R(8)]" dt/t
2

JEZ J

where
Z : the set of integers, R, ={t € R:t > 0};

Ao = L®(Ry).

.S>t_—_>ASCAt.
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(1) heL>®, Q€ Lip(S""') = T:LP - LP 1< p< oco.
R. Fefferman, 1979.

(2) hEL>® Ig>1: Q€ LY(S"') = T:L?P - L7, 1< p < oco.
J. Namaazi, 1986.

B) heA;,,3g>1:2€ LYS"') = T:L? - LP, 1< p < oco.
J. Duoandikoetxea and J. L. Rubio de Francia (D-R), 1986.

4 Qe H(S"1),3s>1:h € A,

— T :LP - LPif|1/p—1/2| < min(1/2,1/s8"),s' = s/(s — 1).
D. Fan and Y. Pan, 1997.
(65) @ € LlogL(S™'), 3s >1: h € A, = T : LP — LP,

1< p < oo
A. Al-Salman and Y. Pan, 2002.



Theorem 1. Suppose that @ € LY(S™" '), h € A,, q,s € (1,2]. Then

IT(F)llze < Cpla — 1) (s — 1) 12 yqsn—1) 1Rl as | Fll p

for all p € (1, co), where the constant C), is independent of g, s, Q2 and h.
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Definition
For h on R, and a > 0, let

9J+1
La(h) = sup [ |h(r)] (log(2 + [R(r)])* dr/r.

JEZL

Define
Lo ={h: La(h) < co}.

ea<b=— L, CL,.

° US>1 A, ; ﬂa>0 La.
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Definition
Let M,, a > 0, be the collection of functions h on R, such that

A{hr}re;» T{ar}r-, (a sequence of non-negative real numbers),

h =5 1o ,aghg, | sup||hg|la <1, Z k®a < oco.

1+1/k

k21 k=1
Define
[ @)
||h||M = inf k:aak.
Proposition.
(1) || * ||m, is @ norm on the space M;

(2) h € Lgypforsomedb >1=— h € Mg;
(83) h EM,=>h € L,.
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Lemma 1. Suppose F € Ll(S'"’_l) and a > 0. Then, the following two
statements are equivalent:

(1) Jgn—1 |F| (log(2 + |F|))* do < oo and [,y F do = 0;

(2) there exist a sequence {F,,}°°_, of functions on S™ ' and a sequence
{bm },,_, of non-negative real numbers such that

F — Z;.::]_ bmFmv

o o)

sup || Fllisijm <1, [ Fndo =0, ) mn < co.
m> sn—1

= m=1
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By Theorem 1 and extrapolation of Yano we have

Theorem 2. Let Q € Llog L(S™ ') and h € M;. Then

T (F)llze < CpllQ|L10g LI, || £l P

for all p € (1, c0).

Remarks.

e Al-Salman-Pan (2002) proved L? boundedness of T' under the condition that
Q€ LlogL(S™ ') and h € A, for some s > 1. Theorem 2 improves upon
this result by replacing the assumption on h with h € M, which will be satisfied
if h € L, for some a > 2.

eQE€ LlogL(S" Y),h€ Ly =>T:L? — LPforallp € (1,00) ?
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Proof of Theorem 2. Fix p € (1,00) and a function f with ||f]l, <

1. Set S(h,Q) = || T(f)llp- Let h € My and Q € LlogL(S™™1).
Write h = Y .- axhg, as in the definition of M;. We may assume
>reikar S ||R|lm,.  Also, we have Q@ = Y >  by,Qy, by Lemma 1
with a = 1, where sup,,>; [|Qm|li+1/m < 1, [gn—1Qmdo = 0, b, > 0,
S mby S |||z 10gL- Now, the subadditivity of S and Theorem 1 imply

S(h, ﬂ) S akbmS(hk, ﬂm)
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82. Singular Radon transforms.

T(f)(x) = p.v. " f(z — P(y))K(y) dy
= lim s f(z — P(y))K(y) dy,

where

K(y) = h(ly)2y)|yl™", y = |y| "'y,
n>2 Q¢ L'Y(S"),

/ Q(6) do(8) = 0,
sn—1
f: a function on RY,

P(y) = (Pi(y), P2(y), ..., P4(y)): a polynomial mapping, where each P; is a
real-valued polynomial on R".
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We assume that P(—y) = — P(y).

Theorem 3. Suppose that @ € LY(S™ '), h € A,, q,s € (1,2]. Then

1T (F) | oy < Cpla — 1) (s = 1) 12| pg(sn—1) IRl ag | F 1l Lp(gay

for all p € (1, oco), where the constant C}, is independent of g, s, 2 and h; also,
it is independent of the polynomials P; if they are of fixed degree.

By Theorem 3 and extrapolation we have

Theorem 4. Let Q € Llog L(S™ ') and h € M;. Then

IT ()l Loray < CpllQLiogLllPllnv | Fllpprays P € (1, 00),

where C), is independent of the polynomials P; if they are of fixed degree.
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Previous result

Recall

T(f)(@) = pv. [ f(@— P@)K(®)dy,

K(y) = h(lyDQ@W)IyI™, ¥ =yl 'y

Q€ LlogL(S™'),3s>1:h € A,, P(—y) = —P(y)
— T :LP — LPforall1 < p < oo.
A. Al-Salman and Y. Pan, J. London Math. Soc. (2), 2002.

Theorem 4 improves upon this result by replacing the assumption on h with

h € M;.
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Idea for proofs of Theorems 1, 3.

Framework of the proof comes from

e J. Duoandikoetxea and J. L. Rubio de Francia (D-R), Maximal and singular
integral operators via Fourier transform estimates, Invent. Math. 84 (1986).

We apply the methods of D-R with a suitable Littlewood-Paley (L-P)
decomposition.

For singular Radon transforms, we also use results for oscillatory integrals in

e D. Fan and Y. Pan, Singular integral operators with rough kernels supported by
subvarieties, Amer. J. Math. (1997),

® F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular
integrals, |, J. Func. Anal. 73 (1987).
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Littlewood-Paley decomposition.
L-P decomposition adapted to a lacunary sequence {pk}

1¥k}ez_ oot Y € C7((0, 00)),

supp(x) C [p 71, p* Y,

Z 'ka(t) =1,

keZ

|(d/dt) Pr(t)] < ¢/t (G =1,2,..

where the constants c; are independent of p > 2.

+ )
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Define an operator Sy by

(Sk(£)) (&) = ¥ (I€]) £(£).

Then

< Gyl Fllps

p

1/2
<Z |Sk(f)|2>
k

£l < G

1/2
(Z ISk(f)I2>

k

for 1 < p < oco. The constants C),, C’;D are independent of p.
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A new element of the proof is to apply L-P decomposition depending on g
and s for which Q@ € LY(S™ ') and h € A,. More precisely, we apply L-P
decomposition adapted to a lacunary sequence with Hadamard gap

p ~ 2qlsl .

If we apply L-P decomposition with a fixed Hadamard gap, for example, with
p = 2, and leave the other part of our proof unchanged, then we have

—1-46
1T |lpp < [(g@ — 1) (s — D] °PQ 4]~ as»

where
5(p) = |1/p—1/p|.
This is unfavorable, since 1 + 6(p) — 2as p — 1 or p — oo.
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83. Singular integrals on homogeneous groups.

Convolution associated with homogeneous group structure defines singular

integrals:
T(f)(@) = pov. [Fu)K(y™'2) dy

= li Ky tx)d
i [ @)K ) dy,

where K is homogeneous of degree —~ with respect to dilations A;, ¢ > O,
K(Aix) =t "K(x), t>0, x#0,

Aye = (@, t%xay .o, " @y), T = (T1y.-.yTn),
0<a;<ay<--<ap, vy=ai+--+ an,

and r(x) is a norm function associated with { A;}.
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Also, we consider the maximal singular integral

T.(f)(x) = sup

/ FWK(y™z) dy|.
N,e>0 |Je<r(y—la)<N

We prove LP and weighted L? boundedness of T' and T, under a sharp condition
of the kernel.
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We regard R™ as a homogeneous group. We also write R" = H.

e multiplication is given by a polynomial mapping;
® (ux)(vx)= ux+vx, ¢ € H, u,v € R;
@ the identity is the origin 0, 7! = —;

® J{ A:}+>0: a dilation family on R" such that

a a a

T =(Cry..., ), 0< a; <a; <. < ay,

A, is an automorphism of the group structure

Ai(zy) = (A)(Ary), ¢,y € H, t > 0;

® Lebesgue measure is bi-invariant Haar measure.
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|z|: the Euclidean norm for x € R",
r(x): a norm function satisfying r(A;x) = tr(x), Vt > 0, Vo € R";

(1) = is continuous on R™ and smooth in R" \ {0};

(2) 7(z+y) < Co(r(z) + r(y)), r(zy) < Co(r(z) + 7(v))
for some Cy > 1;

3) r(z7') =r(x)

(4) IfX = {x € R": r(x) = 1}, then & = S™ 1,
where S" ' = {x € R" : |z| = 1};

(5) e, c2,c34 Cqy Ay 2, B1, B2 > 0 such that

aile® < r(@) < ealal*? if r(z) > 1,

cslz|Pt < r(x) < cq|x|?? if r(x) < 1.
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Convolution is defined as

F*g(x) = /Rn f(v)g(y~'z) dy.

(f * g) *h = f *(gx*h).
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elet~Y=a;+ -+ ay,. Then, de =t~ dS dt, that is,

. f(z)de = /Ooo/Zf(,alta)t“"1 dS(0) dt

where dS = w dSj, w is a strictly positive C°° function on X and dSj is the
Lebesgue surface measure on X..

Remark Let {A;:};~0, A; = t¥ = exp((logt)P), be a dilation group on R™,
where P is an n X m real matrix whose eigenvalues have positive real parts.
Then, we have similar results for { A¢}¢~0, with v = trace P.
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An example. Heisenberg group H;.
(iB, Y, u)(w,a yla u,) — (CB + wla Yy + yla u + u’ + (:By, — yw,)/2)a
(iB, Y, u)a (wla y,a u,) c R3a
then R? with this group law is the Heisenberg group Hj; a dilation is defined by

A(x,y,u) = (tz, ty, tzfu,),

and a norm function is

1
r(ay Yy ) = EV V(@ T g9 § 4 £ 22 + 2.

Also, we can adopt
Az, y,u) = (tz, t'y, t'u).
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Let
K(x) = Q(z')r(x) 7, x = A, (-1 for z # 0,
where v = a; + - - + a,,

Q is locally integrable in R™ \ {0} and homogeneous of degree 0 with respect to
the dilation group {A.,}, that is,

Q(Aix) = Q(x) forx #0,t > 0;
also

/ () dS(6) = o.
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Theorem A. Suppose that Q2 € Llog L(X). Then, T is bounded on LP(R"™)
for all p € (1, c0).

T. Tao 1999 proved this by interpolation between L* estimates and weak (1, 1)
estimates.

IDEA: (TT*)M estimates

Theorem 5. Suppose that Q € L log L(X). Then,

T, : L°(R") — LP(R"), Vp € (1, c0).

IDEA: Extrapolation
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Weighted L? estimates for T' and T.
If B is a subset of H such that
B={x€H:ra 'z) < s}

for some a € H and s > 0, then we call B a ball in H with center a and radius
s and write B = B(a, s).

Definition (Muckenhoupt class on H) Let w be a weight function on R".

(1) Wesay w € Ay, 1 < p < oo, if

sup (1817 [ w(e)dz) (1817 [ w(w)—”@—”dw)p_l < oo,

where the supremum is taken over all balls B in H.

(2) The class A; is defined to be the set of weight functions w satisfying
Mw < Cw a.e. where M denotes the Hardy-Littlewood maximal operator.
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Theorem 6. Suppose that ¢ > 1, 2 € LX), 1 < p < oco. Then,

(1) T and T, are bounded on LP(w) if ¢’ < p < co and w € A
q =q/(q — 1);

2)ifl<p<qgand w € A/, +, T and T, are bounded on LP(w'~P).
= p'/q

p/q’’

In the Euclidean convolution case, where Fourier transform estimates are
available, this was proved independently by

J. Duoandikoetxea, 1993,

D. Watson, 1990.
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Idea of proof.

Theory of Duoandikoetxea and Rubio de Francia (1986):

e Orthogonality arguments for L? estimates via
Fourier transform estimates and Plancherel’s theorem

e Littlewood-Paley theory
e Interpolation arguments
Our strategy is:

to employ a version of theory of Duoandikoetxea and Rubio de Francia adapted
for analysis on homogeneous groups;

replace use of Fourier transform estimates with (T'T*)™ estimates (basic L?
estimates for convolution) and apply Cotlar’s lemma.
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(TT*)™ method.

o |[TT*|| = [T
Let 2 be homogeneous of degree 0 on R" \ {0}. Define
CQZ{At02t>O}, 962.

Then, €2 is smooth on Cy for every 8 € X since

Q(A.0) = Q(6).
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Let p > 2. Let ¢; € C5°(R), j € Z, be such that

supp(v;) C{t €R: p’ <t < p'™*}, 4; >0,
D pi(t) =1 fort #0,

JEL

[(d/dt)™ ()] < em|t]”™™ form =0,1,2,...,

where c,, is independent of p. Let

D;K(x) = (log2)™" /Ooo P;(t)6: Ko(x) dt/t

— (log 2) ') r(2) " | ;(tr(x)) dt/t,

1/2

5:Ko(x) = tTTKo(A;'®), Ko(z) = K(z)x1y(),
In={xz e R":1 < r(zx) <2}
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Then, supp(D; K) C {z: p’ < r(x) < 2p°"?} and

Y D;K = K,

JEL

We choose p = 2¢ ifQ ¢ L*(X).

Tf=) f=*D;K.

JEL

Let ¢ be a C° function such that supp(¢) C {1/2 < r(xz) < 1},
[ =1, ¢(x) = p(z™), p(x) > 0.

Define
Jk, = 5pk—1¢ - 5pk:§bv

Then

k€ 7,

5:p(z) =t B(A; @),

S Je =8,

where 9§ is the delta function.
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Lemma 2 (basic L? estimates). Let s > 1, Q € L*(X), p = 2. Then,

S —€
| f * DK * Jryjlls < C———2" 101411 £]l2-

s—1

If s = oo, this was proved by T. Tao 1999 with (T"T"*)" method.
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Decompose

Tf=) f*D;K= ) Ugglf,
JEZL k:l,k:2€Z
where

Uk, ko f = Z o Jirj * DiK % Jppj
J

Lemma 3. Let1<p<oo,1<s§2,p=2sl.

|1 Ugy o Fllp < C(s — 1) 27Ul R0y 1711,

for some € > 0.

Lemma 3 implies

ITFllp < Y Uiy iy Fllp < C(s —1)71 Y 27<WalHk2Dy 001 711,

k1,ko k1,ko

< C(s = 1) 120N Flp-
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84. Nonisotropic dilations and weak type (1, 1) estimates.

Let {A;:}i>0, A: = t¥ = exp((log t)P), be a dilation group on R™, where
P is an n X m real matrix whose eigenvalues have positive real parts.

Let K be a locally integrable function on R™ \ {0} such that
K(Aix) =t "K(x), -~ = traceP.
We write
K(x) = Q(x')r(x) 7, x = A, (12 for z F# 0,

where (2 is homogeneous of degree 0 with respect to the dilation group {A.}.
We assume that

/ Q(0) dS() = o.
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Let

Tf(@) = pv. [ (@K@ —y)dy, K() = )r(2)".

Theorem 7. Suppose that n = 2 and 2 € L log L(X). Then, the operator T
is of weak type (1,1), i.e.,

C
UTF > AH < LA Fll, A > 0.
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Previous results.

Theorem B (A. Seeger 1996). Suppose that A;x = tx and r(x) = |z|,
x € R",n >2, Q€& LlogL(X). Then, the operator T is of weak type (1, 1).

IDEA: Fourier transform estimates + microlocal analysis;

Calderon-Zygmund decomposition.
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Theorem C (T. Tao 1999). Let Az = (t“1axq, t“ 222, ...,t""x,), where x =

(T1yeeeyxpn)and 0 < a1 < az < -+ < a,. Suppose that 2 € Llog L(X).
Then T is of weak type (1,1).

In fact, T. Tao proved the weak type (1, 1) boundedness of singular integrals
on general homogeneous groups.

IDEA: (TT*)M estimates;

Calderon-Zygmund decomposition;
Covering lemma of Vitali type, John-Nirenberg inequality for BMO.
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There exists a non-singular real matrix Q such that Q 'PQ is one of the

following Jordan canonical forms:

P (5 ) me( ) e (5 2)

where a, 3 > 0. Accordingly, we have three kinds of dilations

t* 0 e 1 0 e cos(Blogt) sin(Blogt)
( o t° )’ ( logt 1 )’ ( —sin(Blogt) cos(Blogt) )

The case P = P,; is handled by Theorem C. We have to consider the cases

P=P2andP=P3.
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Proof of Theorem 7 follows closely the methods of T. Tao, as the Fourier
transform is not readily available in this context.

Also, to handle the case P = Pj;, we apply a trick that may have difficulty in
extending to higher dimensions.
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Some non-reqular convolution operators: Shuichi Sato
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