On singular integrals and maximal singular integrals associated with nonisotropic dilations

Shuichi Sato
Kanazawa University

We consider two kinds of convolution on \mathbb{R}^{n} :

- convolution associated with Euclidean space structure - convolution associated with homogeneous group structure.
- Convolution associated with homogeneous group structure.

Singular integrals on a homogeneous group:

$$
\begin{aligned}
T(f)(x) & =\text { p.v. } \int f(y) L\left(y^{-1} x\right) d y \\
& =\lim _{\epsilon \rightarrow 0} \int_{r\left(y^{-1} x\right)>\epsilon} f(y) L\left(y^{-1} x\right) d y
\end{aligned}
$$

with rough kernels:

$$
L(x)=h(r(x)) K(x),
$$

K is homogeneous of degree $-\gamma$ with respect to dilations $A_{t}, t>0$,

$$
\begin{gathered}
\boldsymbol{K}\left(A_{t} x\right)=t^{-\gamma} K(x), \quad t>0, \quad x \neq 0, \\
A_{t} x=\left(t^{a_{1}} x_{1}, t^{a_{2}} x_{2}, \ldots, t^{a_{n}} x_{n}\right), \quad x=\left(x_{1}, \ldots, x_{n}\right), \\
0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}, \quad \gamma=a_{1}+\cdots+a_{n}
\end{gathered}
$$

Also, we consider a maximal singular integral

$$
T_{*} f(x)=\sup _{N, \epsilon>0}\left|\int_{\epsilon<r\left(y^{-1} x\right)<N} f(y) L\left(y^{-1} x\right) d y\right|
$$

We prove L^{p} and weighted L^{p} boundedness of T and T_{*} under a sharp condition for the kernel

- Convolution associated with Euclidean space structure.

Let $\left\{A_{t}\right\}_{t>0}, A_{t}=t^{P}=\exp ((\log t) P)$, be a dilation group on \mathbb{R}^{n}, where \boldsymbol{P} is an $n \times n$ real matrix whose eigenvalues have positive real parts.
Define

$$
T(f)(x)=\text { p.v. } \int f(y) K(x-y) d y
$$

where K is homogeneous of degree $-\gamma, \gamma=$ trace \boldsymbol{P}, with respect to dilations A_{t}. We prove weak type $(1,1)$ estimates for T on \mathbb{R}^{2} under the $L \log L$ condition on the kernel.
$\S 1 . \mathbb{R}^{n}$ as a homogeneous group
§2. Results for L^{p} estimates for T and T_{*}
§3. Results for weighted L^{p} estimates for T and T_{*}
$\S 4$. A basic L^{2} estimates
§5. Sketch of proof for L^{p} estimates of T
\S. Weak type $(1,1)$ estimates on \mathbb{R}^{2}.
$\S 1 . \mathbb{R}^{n}$ as a homogeneous group.
\mathbb{R}^{n} : the n dimensional Euclidean space, $n \geq 2$.
We regard \mathbb{R}^{n} as a homogeneous group:

- multiplication is given by a polynomial mapping;
- $\exists\left\{A_{t}\right\}_{t>0}$: a dilation family on \mathbb{R}^{n} such that

$$
A_{t} x=\left(t^{a_{1}} x_{1}, t^{a_{2}} x_{2}, \ldots, t^{a_{n}} x_{n}\right)
$$

$x=\left(x_{1}, \ldots, x_{n}\right)$ and $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$, A_{t} is an automorphism of the group structure;

- Lebesgue measure is a bi-invariant Haar measure;
- the identity is the origin $0, x^{-1}=-x$.

We also write $\mathbb{R}^{n}=\mathbb{H}$.
Multiplication $x y$ satisfies
(1) $(\mathrm{ux})(\mathrm{vx})=\mathrm{ux}+\mathrm{vx}, x \in \mathbb{H}, u, v \in \mathbb{R}$;
(2) $A_{t}(x y)=\left(A_{t} x\right)\left(A_{t} y\right), x, y \in \mathbb{H}, t>0$;
(3) if $z=x y, z=\left(z_{1}, \ldots, z_{n}\right)$, then $z_{k}=P_{k}(x, y)$,

$$
\begin{aligned}
& P_{1}(x, y)=x_{1}+y_{1} \\
& P_{k}(x, y)=x_{k}+y_{k}+R_{k}(x, y) \quad \text { for } k \geq 2
\end{aligned}
$$

where $R_{k}(x, y)$ is a polynomial of degree greater than 1 depending only on $x_{1}, \ldots, x_{k-1}, y_{1}, \ldots, y_{k-1}$.
$|x|:$ the Euclidean norm for $x \in \mathbb{R}^{n}$,
$r(x)$: a norm function satisfying $r\left(A_{t} x\right)=\operatorname{tr}(x), \forall t>0, \forall x \in \mathbb{R}^{n} ;$
(1) r is continuous on \mathbb{R}^{n} and smooth in $\mathbb{R}^{n} \backslash\{0\}$;
(2) $r(x+y) \leq C_{0}(r(x)+r(y)), \quad r(x y) \leq C_{0}(r(x)+r(y))$ for some $C_{0} \geq 1$;
(3) $r\left(x^{-1}\right)=r(x)$;
(4) If $\Sigma=\left\{x \in \mathbb{R}^{n}: r(x)=1\right\}$, then $\Sigma=S^{n-1}$, where $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\} ;$
(5) $\exists c_{1}, c_{2}, c_{3}, c_{4}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}>0$ such that

$$
\begin{array}{ll}
c_{1}|x|^{\alpha_{1}} \leq r(x) \leq c_{2}|x|^{\alpha_{2}} & \text { if } r(x) \geq 1 \\
c_{3}|x|^{\beta_{1}} \leq r(x) \leq c_{4}|x|^{\beta_{2}} & \text { if } r(x) \leq 1
\end{array}
$$

- The space \mathbb{H} with a left invariant quasi-metric $d(x, y)=r\left(x^{-1} y\right)$ is a space of homogeneous type.
- Let $\gamma=a_{1}+\cdots+a_{n}$. Then, $d x=t^{\gamma-1} d S d t$, that is,

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty} \int_{\Sigma} f\left(A_{t} \theta\right) t^{\gamma-1} d S(\theta) d t
$$

where $d S=\omega d S_{0}, \omega$ is a positive C^{∞} function on Σ and $d S_{0}$ is the Lebesgue surface measure on Σ.

Convolution

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(y) g\left(y^{-1} x\right) d y
$$

- $\quad(f * g) * h=f *(g * h)$
- $\quad(f * g)^{\sim}=\tilde{g} * \tilde{f} \quad$ if $\quad \tilde{f}(x)=f\left(x^{-1}\right)$.
- Euclidean convolution

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(y) g(x-y) d y
$$

An example. Heisenberg group \mathbb{H}_{1}.

$$
\begin{gathered}
(x, y, u)\left(x^{\prime}, y^{\prime}, u^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, u+u^{\prime}+\left(x y^{\prime}-y x^{\prime}\right) / 2\right) \\
(x, y, u),\left(x^{\prime}, y^{\prime}, u^{\prime}\right) \in \mathbb{R}^{3}
\end{gathered}
$$

then \mathbb{R}^{3} with this group law is the Heisenberg group \mathbb{H}_{1};
a dilation is defined by

$$
A_{t}(x, y, u)=\left(t x, t y, t^{2} u\right)
$$

and a norm function is

$$
r(x, y, u)=\frac{1}{\sqrt{2}} \sqrt{\sqrt{\left(x^{2}+y^{2}\right)^{2}+4 u^{2}}+x^{2}+y^{2}}
$$

Also, we can adopt

$$
A_{t}^{\prime}(x, y, u)=\left(t x, t^{2} y, t^{3} u\right)
$$

§2. Results for L^{p} estimates for T and T_{*}.

Definition.

$$
\begin{aligned}
& \bullet F \in L \log L(\Sigma)(\text { Zygmund class }) \\
& \Longleftrightarrow \\
& \int_{\Sigma}|F(x)| \log (2+|F(x)|) d S(x)<\infty . \\
& \bullet F \Longleftrightarrow L^{q}(\Sigma) \Longleftrightarrow\|F\|_{q}=\left(\int_{\Sigma}|F|^{q} d S\right)^{1 / q}<\infty .
\end{aligned}
$$

Definition $d_{s}=\left\{h\right.$ on $\left.\mathbb{R}_{+}:\|h\|_{d_{s}}<\infty\right\}$,

$$
\|h\|_{d_{s}}=\sup _{j \in \mathbb{Z}}\left(\int_{2^{j}}^{2^{j+1}}|h(t)|^{s} d t / t\right)^{1 / s}
$$

$\mathbb{Z}:$ the set of integers, $\quad \mathbb{R}_{+}=\{t \in \mathbb{R}: t>0\} ;$
$d_{\infty}=L^{\infty}\left(\mathbb{R}_{+}\right)$.

- $s>t \Longrightarrow d_{s} \subset d_{t}$.

Put for $t \in(0,1]$,

$$
\omega(h, t)=\sup _{|s|<t R / 2} \int_{R}^{2 R}|h(r-s)-h(r)| d r / r
$$

where the supremum is taken over all s and R such that $|s|<t R / 2$.

Definition. For $\eta>0$, let Λ^{η} denote the family of functions h such that

$$
\|h\|_{\Lambda^{\eta}}=\sup _{t \in(0,1]} t^{-\eta} \omega(h, t)<\infty
$$

Define a space $\Lambda_{s}^{\eta}=d_{s} \cap \Lambda^{\eta}$ and set

$$
\|h\|_{\Lambda_{s}^{\eta}}=\|h\|_{d_{s}}+\|h\|_{\Lambda^{\eta}} \quad \text { for } h \in \Lambda_{s}^{\eta}
$$

- $\Lambda_{s}^{\eta_{1}} \subset \Lambda_{s}^{\eta_{2}}$ if $\eta_{2} \leq \eta_{1}, \Lambda_{s_{1}}^{\eta} \subset \Lambda_{s_{2}}^{\eta}$ if $s_{2} \leq s_{1}$.

Definition. Let Λ denote the collection of functions h on \mathbb{R}_{+}such that

$$
h=\sum_{k=1}^{\infty} a_{k} h_{k}
$$

for some functions $h_{k} \in \Lambda_{1+1 / k}^{1 /(k+1)}$ and a sequence $\left\{a_{k}\right\}$ of non-negative real numbers satisfying

$$
\sup _{k \geq 1}\left\|h_{k}\right\|_{\Lambda_{1+1 / k}^{1 /(k+1)}}<\infty, \quad \sum_{k=1}^{\infty} k a_{k}<\infty
$$

Let Ω be locally integrable in $\mathbb{R}^{n} \backslash\{0\}$ and homogeneous of degree 0 with respect to the dilation group $\left\{A_{t}\right\}$, that is,

$$
\Omega\left(A_{t} x\right)=\Omega(x) \quad \text { for } x \neq 0, t>0
$$

We assume that

$$
\int_{\Sigma} \Omega(\theta) d S(\theta)=0
$$

Let

$$
K(x)=\Omega\left(x^{\prime}\right) r(x)^{-\gamma}, \quad x^{\prime}=A_{r(x)^{-1}} x \text { for } x \neq 0
$$

where $\gamma=a_{1}+\cdots+a_{n}$. Then K is a locally integrable function on $\mathbb{R}^{n} \backslash\{0\}$ and

$$
\boldsymbol{K}\left(\boldsymbol{A}_{t} x\right)=t^{-\gamma} \boldsymbol{K}(x)
$$

for all $t>0$ and $x \in \mathbb{R}^{n} \backslash\{0\}$.

Let

$$
T f(x)=\text { p.v. } f * L(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(y) L\left(y^{-1} x\right) d y
$$

where $L(x)=h(r(x)) K(x), h \in d_{1}$.

Theorem 1. Let $s>1$. Suppose that $\Omega \in L^{s}(\Sigma)$ and $h \in \Lambda_{s}^{\eta / s^{\prime}}$ for some fixed positive number η. Then, if $1<p<\infty$,

$$
\|T f\|_{p} \leq C_{p} s(s-1)^{-1}\|h\|_{\Lambda_{s}^{\eta / s^{\prime}}}\|\Omega\|_{s}\|f\|_{p}
$$

where the constant C_{p} is independent of s, Ω and h.

Extrapolation of Yano using Theorem 1 implies the following result.

Theorem 2. Suppose that $h \in \Lambda$ and $\Omega \in L \log L(\Sigma)$. Then, T is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in(1, \infty)$.

When $h=1$, this is due to T. Tao 1999.

Recall

$$
T_{*} f(x)=\sup _{N, \epsilon>0}\left|\int_{\epsilon<r\left(y^{-1} x\right)<N} f(y) L\left(y^{-1} x\right) d y\right| .
$$

Theorem 3. Let $s>1$. Suppose that $\Omega \in L^{s}(\Sigma)$ and $h \in \Lambda_{s}^{\eta / s^{\prime}}$ for some fixed positive number η. Then we have

$$
\left\|T_{*} f\right\|_{p} \leq C_{p} s(s-1)^{-1}\|h\|_{\Lambda_{s}^{\eta / s^{\prime}}}\|\Omega\|_{s}\|f\|_{p}
$$

for all $p \in(1, \infty)$, where C_{p} is independent of s, h and Ω.

Extrapolation of Yano using Theorem 3 implies the following result.

Theorem 4. Suppose that $\Omega \in L \log L(\Sigma)$ and $h \in \Lambda$. Then,

$$
T_{*}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right), \quad \forall p \in(1, \infty)
$$

When $h=1$, Theorem 2 can be proved by interpolation between L^{2} estimates and weak $(1,1)$ estimates given by Tao 1999.
For T_{*} with $\Omega \in L \log L$, weak $(1,1)$ boundedness is yet to be proved even in the case when $h=1$.
§3. Results for weighted L^{p} estimates for T and T_{*}.

Definition.

- $\boldsymbol{B}=\boldsymbol{B}(a, s)$ is called a ball in \mathbb{H} with center \boldsymbol{a} and radius s

$$
B=\left\{x \in \mathbb{H}: r\left(a^{-1} x\right)<s\right\}
$$

for $a \in \mathbb{H}$ and $s>0$.

- $w \in A_{p}, 1<p<\infty$ (Muckenhoupt class on \mathbb{H})

$$
\sup _{B}\left(|B|^{-1} \int_{B} w(x) d x\right)\left(|B|^{-1} \int_{B} w(x)^{-1 /(p-1)} d x\right)^{p-1}<\infty .
$$

- $w \in A_{1} \quad \Longleftrightarrow \quad M w \leq C w \quad$ a.e.
where M denotes the Hardy-Littlewood maximal operator

$$
M f(x)=\sup _{x \in B}|B|^{-1} \int_{B}|f(y)| d y
$$

Theorem 5. Let $q>1$. Suppose that
$\Omega \in L^{q}(\Sigma), \quad h \in \Lambda_{q}^{\eta}$ for some $\eta>0$.
Let $1<p<\infty$. Then,
(1) T and T_{*} are bounded on $L^{p}(w)$ if $q^{\prime} \leq p<\infty$ and $w \in A_{p / q^{\prime}}$, $q^{\prime}=q /(q-1) ;$
(2) if $1<p \leq q$ and $w \in A_{p^{\prime} / q^{\prime}}, T$ and T_{*} are bounded on $L^{p}\left(w^{1-p}\right)$.

In the Euclidean convolution case, where Fourier transform estimates are available, this was proved independently by
J. Duoandikoetxea, 1993,
D. Watson, 1990.
§4. A basic L^{2} estimate.
Let $\psi_{j} \in C_{0}^{\infty}(\mathbb{R}), j \in \mathbb{Z}$, be such that

$$
\begin{aligned}
& \operatorname{supp}\left(\psi_{j}\right) \subset\left\{t \in \mathbb{R}: 2^{j} \leq t \leq 2^{j+2}\right\}, \quad \psi_{j} \geq 0 \\
& \sum_{j \in \mathbb{Z}} \psi_{j}(t)=1 \quad \text { for } t \neq 0 \\
& \left|(d / d t)^{m} \psi_{j}(t)\right| \leq c_{m}|t|^{-m} \quad \text { for } m=0,1,2, \ldots
\end{aligned}
$$

Let
$S_{j} L(x)=(\log 2)^{-1} h(r(x)) \int_{0}^{\infty} \psi_{j}(t) \delta_{t} K_{0}(x) d t / t, \quad \delta_{t} K_{0}(x)=t^{-\gamma} K_{0}\left(A_{t}^{-1} x\right)$,
$K_{0}(x)=K(x) \chi_{D_{0}}(x), \quad D_{0}=\left\{x \in \mathbb{R}^{n}: 1 \leq r(x) \leq 2\right\}$.
Then $\sum_{j \in \mathbb{Z}} S_{j} L=L$,

$$
T f=\sum_{j \in \mathbb{Z}} f * S_{j} L
$$

$\phi:$ a C^{∞} function, $\operatorname{supp}(\phi) \subset B(0,1) \backslash B(0,1 / 2), \int \phi=1$, $\phi(x)=\tilde{\phi}(x), \phi(x) \geq 0 \forall x \in \mathbb{R}^{n}$, where $\tilde{\phi}(x)=\phi\left(x^{-1}\right)$.
Define

$$
\Delta_{k}=\delta_{2^{k-1}} \phi-\delta_{2^{k}} \phi, \quad k \in \mathbb{Z}
$$

where

$$
\delta_{t} \phi(x)=t^{-\gamma} \phi\left(A_{t}^{-1} x\right)
$$

Lemma 1. Let $s>1, h \in \Lambda_{s}^{\eta / s^{\prime}}, \Omega \in L^{s}(\Sigma)$. Then,

$$
\left\|f * S_{j} L * \Delta_{k+j}\right\|_{2} \leq C 2^{-\epsilon|k| / s^{\prime}}\|h\|_{\Lambda_{s}^{\eta / s^{\prime}}}\|\Omega\|_{s}\|f\|_{2}
$$

If $h=1$ and $s=\infty$, this was proved by T. Tao 1999.
§5. Sketch of proof for L^{p} estimates of T.

Sketch of proof for
Theorem 1'.

$$
\|T f\|_{p} \leq C_{s}\|h\|_{\Lambda_{s}^{\eta / s^{\prime}}}\|\Omega\|_{s}\|f\|_{p}
$$

Theory of Duoandikoetxea and Rubio de Francia (1986):

- Orthogonality arguments for L^{2} estimates via Fourier transform estimates and Plancherel's theorem
- Littlewood-Paley theory
- Interpolation arguments

Our strategy is:
to employ a version of theory of Duoandikoetxea and Rubio de Francia adapted for the present situation;
replace use of Fourier transform estimates with Lemma 1 and apply Cotlar's lemma.

Littlewood-Paley inequalities.

Recall

$\phi:$ a C^{∞} function, $\operatorname{supp}(\phi) \subset B(0,1) \backslash B(0,1 / 2), \int \phi=1$, $\phi(x)=\tilde{\phi}(x), \phi(x) \geq 0 \forall x \in \mathbb{R}^{n}$, where $\tilde{\phi}(x)=\phi\left(x^{-1}\right)$,

$$
\Delta_{k}=\delta_{2^{k-1}} \phi-\delta_{2^{k}} \phi, \quad k \in \mathbb{Z}
$$

where

$$
\delta_{t} \phi(x)=t^{-\gamma} \phi\left(A_{t}^{-1} x\right) .
$$

Then $\Delta_{k}=\tilde{\Delta}_{k}$,

$$
\sum_{k} \Delta_{k}=\delta
$$

where δ is the delta function.
Lemma 2. Let $w \in A_{p}, 1<p<\infty$. Then

$$
\begin{gathered}
\left\|\sum_{k} f_{k} * \Delta_{k}\right\|_{L^{p}(w)} \leq C_{p, w}\left\|\left(\sum_{k}\left|f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(w)} \\
\left\|\left(\sum_{k}\left|f * \Delta_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(w)} \leq C_{p, w}\|f\|_{L^{p}(w)}
\end{gathered}
$$

Decompose

$$
T f=\sum_{j \in \mathbb{Z}} f * S_{j} L=\sum_{k_{1}, k_{2} \in \mathbb{Z}} U_{k_{1}, k_{2}} f
$$

where

$$
U_{k_{1}, k_{2}} f=\sum_{j} f * \Delta_{k_{1}+j} * \nu_{j} * \Delta_{k_{2}+j}, \quad \nu_{j}=S_{j} L
$$

Lemma 3. Let $1<p<\infty$.

$$
\left\|\boldsymbol{U}_{k_{1}, k_{2}} f\right\|_{p} \leq \boldsymbol{C A} 2^{-\epsilon\left(\left|k_{1}\right|+\left|k_{2}\right|\right) / s^{\prime}}\|f\|_{p}
$$

for some $\epsilon>0$, where $A=\|h\|_{\Lambda_{s}^{\eta / s^{\prime}}}\|\Omega\|_{s}, C=C(p, s)$.
Lemma 3 implies

$$
\begin{aligned}
\|\boldsymbol{T} f\|_{p} & \leq \sum_{k_{1}, k_{2}}\left\|\boldsymbol{U}_{k_{1}, k_{2}} f\right\|_{p} \leq \boldsymbol{C A} \sum_{k_{1}, k_{2}} 2^{-\epsilon\left(\left|k_{1}\right|+\left|k_{2}\right|\right) / s^{\prime}}\|f\|_{p} \\
& \leq C_{s} A\|f\|_{p} .
\end{aligned}
$$

To prove Lemma 3 we need

Lemma 4.

$$
\left\|U_{k_{1}, k_{2}} f\right\|_{2} \leq C 2^{-\epsilon\left(\left|k_{1}\right|+\left|k_{2}\right|\right) / s^{\prime}} A\|f\|_{2}
$$

for some $\epsilon>0$.
Proof of Lemma 4. Let

$$
S_{j} f=f * \Delta_{k_{1}+j} * \nu_{j} * \Delta_{k_{2}+j}, \quad \nu_{j}=S_{j} L
$$

Then

$$
U_{k_{1}, k_{2}} f=\sum_{j} S_{j} f
$$

We prove
(1) $\quad\left\|S_{j} S_{j^{\prime}}^{*} f\right\|_{2} \leq C 2^{-2 \epsilon\left(\left|k_{1}\right|+\left|k_{2}\right|\right) / s^{\prime}} 2^{-\delta\left|j-j^{\prime}\right|} A^{2}\|f\|_{2}$
and
(2) $\left\|S_{j^{\prime}}^{*} S_{j} f\right\|_{2} \leq C 2^{-2 \epsilon\left(\left|k_{1}\right|+\left|k_{2}\right|\right) / s^{\prime}} 2^{-\delta\left|j-j^{\prime}\right|} A^{2}\|f\|_{2}$,
where

$$
S_{j^{\prime}}^{*} f=f * \Delta_{k_{2}+j^{\prime}} * \tilde{\nu}_{j^{\prime}} * \Delta_{k_{1}+j^{\prime}}, \quad \tilde{\nu}_{j^{\prime}}(x)=\nu_{j^{\prime}}\left(x^{-1}\right)
$$

Then, Lemma 4 follows from the Cotlar-Knapp-Stein lemma.

Proof of (2).

By Lemma 1 and $\left\|\Delta_{k_{2}+j} * \Delta_{k_{2}+j^{\prime}}\right\|_{1} \leq C 2^{-\delta\left|j-j^{\prime}\right|}$,

$$
\begin{aligned}
& \left\|f *\left(\Delta_{k_{1}+j} * \nu_{j}\right) *\left(\Delta_{k_{2}+j} * \Delta_{k_{2}+j^{\prime}}\right) *\left(\tilde{\nu}_{j^{\prime}} * \Delta_{k_{1}+j^{\prime}}\right)\right\|_{2} \\
& \leq C 2^{-\epsilon\left|k_{1}\right| / s^{\prime}} A\left\|f *\left(\Delta_{k_{1}+j} * \nu_{j}\right) *\left(\Delta_{k_{2}+j} * \Delta_{k_{2}+j^{\prime}}\right)\right\|_{2} \\
& \leq C 2^{-\epsilon\left|k_{1}\right| / s^{\prime}} 2^{-\delta\left|j-j^{\prime}\right|} A\left\|f *\left(\Delta_{k_{1}+j} * \nu_{j}\right)\right\|_{2}, \\
& \leq C 2^{-2 \epsilon\left|k_{1}\right| / s^{\prime}} 2^{-\delta\left|j-j^{\prime}\right|} A^{2}\|f\|_{2} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \left\|f * \Delta_{k_{1}+j} *\left(\nu_{j} * \Delta_{k_{2}+j}\right) *\left(\Delta_{k_{2}+j^{\prime}} * \tilde{\nu}_{j^{\prime}}\right) * \Delta_{k_{1}+j^{\prime}}\right\|_{2} \\
& \leq C 2^{-\epsilon\left|k_{2}\right| / s^{\prime}} A\left\|f * \Delta_{k_{1}+j} *\left(\nu_{j} * \Delta_{k_{2}+j}\right)\right\|_{2} \\
& \leq C 2^{-2 \epsilon\left|k_{2}\right| / s^{\prime}} A^{2}\|f\|_{2}
\end{aligned}
$$

Taking the geometric mean we have

$$
\begin{aligned}
\| f * \Delta_{k_{1}+j} * \nu_{j} * \Delta_{k_{2}+j} * \Delta_{k_{2}+j^{\prime}} * & \tilde{\nu}_{j^{\prime}} * \Delta_{k_{1}+j^{\prime}} \|_{2} \\
& \leq C 2^{-\epsilon\left|k_{1}\right| / s^{\prime}} 2^{-\epsilon\left|k_{2}\right| / s^{\prime}} 2^{-\delta\left|j-j^{\prime}\right| / 2} A\|f\|_{2}
\end{aligned}
$$

Similarly, we can prove (1).

Let

$$
M_{L} f(x)=\sup _{j}|f *| S_{j} L(x)| |
$$

Lemma 5.

$$
\left\|M_{L} f\right\|_{p} \leq C_{s} A\|f\|_{p}, \quad \text { for } p>1
$$

where $\boldsymbol{A}=\|h\|_{\Lambda_{s}^{\eta / s^{\prime}} \mid}\|\Omega\|_{s}$.
By duality we may assume $1<p<2$. Let

$$
\begin{gathered}
1 / p=(1-\theta) / r+\theta / 2, \quad \theta \in(0,1), \quad r \in(1,2) \\
1 / r-1 / 2=1 /(2 u), \quad u>1
\end{gathered}
$$

Lemma 5 with $p=u$ implies the vector valued inequality

$$
\left\|\left(\sum\left|g_{k} * \nu_{k}\right|^{2}\right)^{1 / 2}\right\|_{r} \leq C A\left\|\left(\sum\left|g_{k}\right|^{2}\right)^{1 / 2}\right\|_{r}, \quad \nu_{k}=S_{k} L
$$

From this and the Littlewood-Paley theory (Lemma 2)

$$
\begin{aligned}
\left\|U_{k_{1}, k_{2}} f\right\|_{r} & =\left\|\sum_{j} f * \Delta_{k_{1}+j} * \nu_{j} * \Delta_{k_{2}+j}\right\|_{r}, \quad \nu_{j}=S_{j} L \\
& \leq C\left\|\left(\sum_{j}\left|f * \Delta_{k_{1}+j} * \nu_{j}\right|^{2}\right)^{1 / 2}\right\|_{r} \\
& \leq C A\left\|\left(\sum_{j}\left|f * \Delta_{k_{1}+j}\right|^{2}\right)^{1 / 2}\right\|_{r} \\
& \leq C A\|f\|_{r}
\end{aligned}
$$

Interpolating between this and the estimate in Lemma 4 $\left(\left\|U_{k_{1}, k_{2}} f\right\|_{2} \leq C 2^{-\epsilon\left(\left|k_{1}\right|+\left|k_{2}\right|\right) / s^{\prime}} A\|f\|_{2}\right)$,

$$
\left\|U_{k_{1}, k_{2}} f\right\|_{p} \leq C 2^{-\epsilon \theta\left(\left|k_{1}\right|+\left|k_{2}\right|\right) / s^{\prime}} A\|f\|_{p}
$$

since $1 / p=(1-\theta) / r+\theta / 2$.

Sketch of proof of Theorem 1.
Let $\rho \geq 2$. Let $\psi_{j} \in C_{0}^{\infty}(\mathbb{R}), j \in \mathbb{Z}$, be such that

$$
\begin{aligned}
& \operatorname{supp}\left(\psi_{j}\right) \subset\left\{t \in \mathbb{R}: \rho^{j} \leq t \leq \rho^{j+2}\right\}, \quad \psi_{j} \geq 0 \\
& \sum_{j \in \mathbb{Z}} \psi_{j}(t)=1 \quad \text { for } t \neq 0 \\
& \left|(d / d t)^{m} \psi_{j}(t)\right| \leq c_{m}|t|^{-m} \quad \text { for } m=0,1,2, \ldots,
\end{aligned}
$$

where c_{m} is independent of ρ. Let

$$
S_{j} L(x)=(\log 2)^{-1} h(r(x)) \int_{0}^{\infty} \psi_{j}(t) \delta_{t} K_{0}(x) d t / t
$$

Then $\sum_{j \in \mathbb{Z}} S_{j} L=L$,

$$
T f=\sum_{j \in \mathbb{Z}} f * S_{j} L
$$

We choose $\rho=2^{s^{\prime}}$. Then, repeat the proof of Theorem 1^{\prime} and check the constants carefully.
§6. Weak type (1.1) estimates on \mathbb{R}^{2}.
Let

$$
\begin{gathered}
T f(x)=\mathrm{p} \cdot \mathrm{v} \cdot \int f(y) K(x-y) d y \\
K(x)=\Omega\left(x^{\prime}\right) r(x)^{-\gamma}, \quad x^{\prime}=A_{r(x)^{-1}} x \text { for } x \neq 0 .
\end{gathered}
$$

Theorem A (A. Seeger 1996).

Suppose that $A_{t} x=t x$ and $r(x)=|x|, x \in \mathbb{R}^{n}, n \geq 2, \quad \Omega \in L \log L(\Sigma)$.
Then, the operator T is of weak type (1,1), i.e.,

$$
|\{|T f|>\lambda\}| \leq \frac{C}{\lambda}\|f\|_{1}, \quad \lambda>0
$$

Theorem B (T. Tao 1999).
Let

$$
A_{t} x=\left(t^{a_{1}} x_{1}, t^{a_{2}} x_{2}, \ldots, t^{a_{n}} x_{n}\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$.
Suppose that $\Omega \in L \log L(\Sigma)$. Then T is of weak type $(1,1)$.

In fact, T. Tao proved the weak type $(1,1)$ boundedness for singular integrals on general homogeneous groups.

Let $A_{t}=t^{P}=\exp ((\log t) P)$, where P is an arbitrary $n \times n$ real matrix whose eigenvalues have positive real parts.
Let K be a locally integrable function on $\mathbb{R}^{n} \backslash\{0\}$ satisfying

$$
\begin{gathered}
K\left(A_{t} x\right)=t^{-\gamma} K(x) \quad \text { for all } t>0 \text { and } x \in \mathbb{R}^{n} \backslash\{0\} ; \\
\int_{a<r(x)<b} K(x) d x=0 \quad \text { for all } a, b \text { with } a<b,
\end{gathered}
$$

where $\gamma=$ trace $P, r(x)$ is a norm function for \boldsymbol{A}_{t}. We can define Ω, Σ and $L \log L(\Sigma)$ similarly to the case where A_{t} is diagonal.

Theorem 6.

Suppose that $n=2$ and $\Omega \in L \log L(\Sigma)$. Then, the operator T is of weak type $(1,1)$.

There exists a non-singular real matrix Q such that $Q^{-1} P Q$ is one of the following Jordan canonical forms:

$$
P_{1}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right), \quad P_{2}=\left(\begin{array}{cc}
\alpha & 0 \\
1 & \alpha
\end{array}\right), \quad P_{3}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right)
$$

where $\alpha, \beta>0$. So, we have three kinds of dilations

$$
\left(\begin{array}{cc}
t^{\alpha} & 0 \\
0 & t^{\beta}
\end{array}\right), \quad t^{\alpha}\left(\begin{array}{cc}
1 & 0 \\
\log t & 1
\end{array}\right), \quad t^{\alpha}\left(\begin{array}{cc}
\cos (\beta \log t) & \sin (\beta \log t) \\
-\sin (\beta \log t) & \cos (\beta \log t)
\end{array}\right) .
$$

The case where $\boldsymbol{P}=\boldsymbol{P}_{1}$ is handled by Theorem B. We have to consider the cases $P=P_{2}$ and $P=P_{3}$.

A proof of Theorem 6 follows closely the methods of T. Tao, as the Fourier transform is not readily available in this context. But we need some new estimates and arguments which do not occur in the work of T. Tao. To handle the case $\boldsymbol{P}=P_{3}$, we apply a trick that may have difficulty in extending to higher dimensions.

References

[1] A. P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), 297-306.
[2] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1-64.
[3] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.
[4] Y. Chen, Y. Ding and D. Fan, A parabolic singular integral operator with rough kernel, J. Aust. Math. Soc. 84 (2008), 163-179.
[5] M. Christ, Hilbert transforms along curves I. Nilpotent groups, Ann. of Math. 122 (1985), 575-596.
[6] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
[7] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque no. 57, Soc. Math. France, 1978.
[8] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes, Lecture Notes in Math. 242, SpringerVerlag, Berlin and New York, 1971.
[9] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1993), 869-880.
[10] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[11] D. Fan and S. Sato, Weighted weak type $(1,1)$ estimates for singular integrals and Littlewood-Paley functions, Studia Math. 163 (2004), 119-136.
[12] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Appl. Math. 92, Addison Wesley Longman, 1998.
[13] A. Nagel, N. Rivière and S. Wainger, On Hilbert transforms along curves, II, Amer. J. Math. 98 (1976), 395-403.
[14] A. Nagel and E. M. Stein, Lectures on pseudo-differential operators, Mathematical Notes 24, Princeton University Press, Princeton, NJ, 1979.
[15] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I. Oscillatory integrals, J. Func. Anal. 73 (1987), 179-194.
[16] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, II. Singular kernels supported on submanifolds, J. Func. Anal. 78 (1988), 56-84.
[17] N. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278.
[18] J.L. Rubio de Francia, Factorization theory and A_{p} weights, Amer. J. Math. 106 (1984), 533-547.
[19] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), 7-48.
[20] S. Sato, Estimates for singular integrals and extrapolation, Studia Math. 192 (2009), 219-233.
[21] S. Sato, Estimates for singular integrals along surfaces of revolution, J. Aust. Math. Soc. 86 (2009), 413-430.
[22] S. Sato, Weak type $(1,1)$ estimates for parabolic singular integrals, Proc. Edinb. Math. Soc. (to appear).
[23] A. Seeger, Singular integral operators with rough convolution kernels, J. Amer. Math. Soc. 9 (1996), 95-105.
[24] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
[25] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
[26] T. Tao, The weak-type $(1,1)$ of $\boldsymbol{L} \log \boldsymbol{L}$ homogeneous convolution operator, Indiana Univ. Math. J. 48 (1999), 1547-1584.
[27] D. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), 389-399.

