
SOME WEAK TYPE ESTIMATES FOR MAXIMAL SINGULAR

INTEGRALS

SHUICHI SATO

Abstract. We consider some maximal singular integral operators having vari-
able kernels on Rn with doubling measures and prove Lp and weak type es-

timates for them under certain conditions. Also, certain weighted weak type
estimates are shown for maximal singular integrals with A1 weights of Muck-
enhoupt for the Lebesgue measure.

1. Introduction

Let T : L2(Rn, dµ) → L2(Rn, dµ) be a linear operator, where µ is a regular
Borel measure on Rn (see [10, p. 205]) such that there exists a positive constant C
satisfying

µ(B(x, r)) ≤ Cµ(B(x, r/2)) for all x ∈ Rn and r > 0

(the doubling condition) and such that µ(Rn) = ∞ and µ(E) < ∞ when E is a
compact set, where B(x, r) denotes a ball with radius r centered at x:

B(x, r) = {y ∈ Rn : |y − x| < r}.

It is known that C∞
0 (Rn) (the set of infinitely differentiable functions on Rn with

compact support) is dense in Lp(Rn, dµ) for 1 ≤ p < ∞ (see Section 5.5). Let
L∞
0 (Rn) be the set of bounded measurable functions f on Rn for which there exists

a compact set E such that f(x) = 0 for a.e.x ∈ Rn \ E with respect to µ (µ-
a.e.x); the smallest such compact set is defined to be supp(f). If f ∈ L∞

0 (Rn),
then T (f) ∈ L2(Rn, dµ) and we have values T (f)(x) meaningful for µ-a.e.x. We
assume that there exists a kernel K(x, y) which is locally integrable in Rn×Rn \∆
with respect to the product measure dµ ⊗ dµ, where ∆ = {(x, x) : x ∈ Rn}, such
that if f ∈ L∞

0 (Rn),

Tf(x) =

∫
Rn

K(x, y)f(y) dµ(y) for µ-a.e.x ∈ Rn \ supp(f).

For the kernel K we assume that the limit

lim
ϵ→0

∫
|x−y|>ϵ

K(x, y)f(y) dµ(y)

exists and equals Tf(x) for µ-a.e.x when f ∈ C∞
0 (Rn). Also, we consider the

following conditions.
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(K.1) ∫
α<|x−y|<2α

|K(x, y)| dµ(x) ≤ C1

for all y ∈ Rn and α > 0.
(K.2) ∫

α<|x−y|<2α

|K(x, y)| dµ(y) ≤ C2

for all x ∈ Rn and α > 0.
(K.3) ∫

|x−y0|≥2|y−y0|
|K(x, y)−K(x, y0)| dµ(x) ≤ C3

for all y0, y ∈ Rn.
(K.4) ∫

|y−x0|≥2|x−x0|
|K(x, y)−K(x0, y)| dµ(y) ≤ C4

for all x0, x ∈ Rn.

The following result is known.

Theorem A. Suppose that the kernel K satisfies the condition (K.3). Then the
operator T extends to a bounded linear operator from Lp(Rn, dµ) to Lp(Rn, dµ) for
every p ∈ (1, 2] and from L1(Rn, dµ) to L1,∞(Rn, dµ) (T is of weak type (1, 1)),
which means that

µ ({x ∈ Rn : |Tf(x)| > λ}) ≤ Cλ−1∥f∥1 = Cλ−1

∫
Rn

|f(x)| dµ(x), ∀λ > 0.

For Theorem A see Theorem (2.4) on Coifman-Weiss [6, pp. 74–75] and also
Theorem 1.2 on [18, p. 30]. In Theorem (2.4) of [6], the kernel K of T is assumed
to be in L2(Rn × Rn, dµ ⊗ dµ), but the proof given there can be applied to prove
Theorem A. When µ is the Lebesgue measure, we can find in [5, Chap. IV] results
related to operators T with standard kernels. See also [15, Chap. 4].

Let T∗f(x) = supα>0 |Tαf(x)|, where

Tαf(x) =

∫
|x−y|>α

K(x, y)f(y) dµ(y).

Then in this note we shall prove the following theorem.

Theorem 1.1. Suppose that the kernel K satisfies the conditions (K.2), (K.3) and
(K.4). Then T∗ extends to a bounded operator on Lp(Rn, dµ) for every p ∈ (1, 2)
and extends to an operator of weak type (1, 1).

Let

T (β)f(x) = p.v.

∫
Rn

Kβ(x, y)f(y) dµβ(y),

where

(1.1) Kβ(x, y) = k(x− y)(|x|β − |y|β), k(x) = |x|−nΩ(x′), x′ = x/|x|,

and dµβ(y) = |y|−β dy with 0 ≤ β < n (dy denotes the Lebesgue measure). We
assume that Ω is continuous on Sn−1 and

∫
Sn−1 Ω(θ) dσ(θ) = 0, where dσ denotes
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the Lebesgue surface measure on Sn−1. We further assume that Ω satisfies the Dini
condition: ∫ 1

0

ω(t)
dt

t
< ∞,

where
ω(t) = sup

{
|Ω(θ)− Ω(ζ)| : |θ − ζ| < t, θ, ζ ∈ Sn−1

}
.

We note that ω is non-decreasing and ω(t) ≤ 2∥Ω∥∞ for t > 0. As an application
of Theorem 1.1, we can show the following.

Theorem 1.2. Let n ≥ 2. We consider the maximal operator T
(β)
∗ f . Then T

(β)
∗ is

bounded on Lp(Rn, dµβ) for p ∈ (1, 2] and of weak type (1, 1).

The L2(Rn, dµβ) boundedness of T
(β)
∗ in Theorem 1.2 follows from Theorem 4.1

below in Section 4. When Ω satisfies a Lipschitz condition on Sn−1, see [6, p. 76]
about a result for T (β) analogous to Theorem 1.2.

Also, we consider weighted weak type estimates for the maximal singular inte-
grals. From now on, through this section, we assume that the measure dµ is the
Lebesgue measure dx. Let K(x, y) be locally integrable in Rn × Rn \ ∆. When
0 ≤ α < β ≤ ∞, let

A(x;α, β) = {z : α < |x− z| < β};
∆(α, β) = {(y, z) ∈ Rn × Rn : α ≤ |y − z| ≤ β}.

Let 1 ≤ r < ∞, 0 < t ≤ 1 and R > 0. We define

ωr,R(t) = sup
(y,z)∈∆(Rt/4,Rt/2)

R−n

∫
A(z;R,2R)

|Rn (K(x, y)−K(x, z))|r dx


1/r

.

We say that the kernel K satisfies the Dr-condition if

Br =
∞∑
k=0

ωr(2
−k) < ∞, where ωr(t) = sup

R>0
ωr,R(t) = sup

R>0
ωr,t−1R(t).

By the usual modifications we can also define the D∞-condition. The Dr condition
is equivalent to the (Dr) condition defined in [18] (see Section 5.1 below). We see
that the Ds condition follows from the Dr condition if s < r. It is easily shown
that the D1 condition implies (K.3).

In [16] weighted weak type estimates were proved for certain singular integrals T
under Dini conditions. At present, for certain singular integrals, weighted weak type
(1, 1) estimates can be shown without Dini conditions (see [9]), while if we focus
our attention on maximal singular integrals T∗, we see that even at present stage of
research certain Dini conditions are still needed to prove weighted weak type (1, 1)
estimates analogous for T . We shall prove the following results on weighted weak
type estimates for T∗.

Theorem 1.3. Let 1 < r < ∞. Suppose that T is bounded on Lp for some
p ∈ [r,∞). Suppose that the kernel K of T satisfies (K.2), (K.4) and the Dr

condition and that a weight w satisfies wr′ ∈ A1, where 1/r + 1/r′ = 1. Then T∗
is bounded from L1

w to L1,∞
w , which means that there exists a constant C > 0 such

that
sup
λ>0

λw ({x ∈ Rn : T∗f(x) > λ}) ≤ C∥f∥L1
w
,
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where w(E) =
∫
E
w(x) dx and ∥f∥L1

w
=
∫
Rn |f(x)|w(x) dx.

Proposition 1.4. Let w ∈ A1. Suppose that T is bounded from L1
w to L1,∞

w and
that the kernel K of T satisfies (K.2) and (K.4) conditions. Then, T∗ uniquely
extends to a positive sublinear operator on L1

w ∩ L∞ such that

sup
λ>C1∥f∥∞

λw ({x ∈ Rn : T∗f(x) > λ}) ≤ C2∥f∥L1
w

for some constants C1, C2 > 0.

See [11] for the weight class A1 of Muckenhoupt. As an application of Proposition
1.4 and a result of [9], we have the following result for maximal singular integrals
with homogeneous convolution kernels.

Corollary 1.5. Let n ≥ 2 and define

Tf(x) = p.v.

∫
f(x− y)

Ω(y′)

|y|n
dy,

where Ω is homogeneous of degree 0 and Ω ∈ Lr(Sn−1) for some r > 1 and∫
Sn−1 Ω(θ) dσ(θ) = 0. Suppose that Ω satisfies the L1-Dini condition on Sn−1

and suppose that wr′ ∈ A1. Then, there exist positive constants C1 and C2 such
that for f ∈ L1

w ∩ L∞ we have

sup
λ>C1∥f∥∞

λw ({x ∈ Rn : T∗f(x) > λ}) ≤ C2∥f∥L1
w
.

For the Lr-Dini condition for Ω, see [16]. In [16] the L1
w-L

1,∞
w boundedness

of T is shown under the assumptions that Ω ∈ Lr and that Ω satisfies the Lr-
Dini condition, when wr′ ∈ A1. In [9], the same boundedness is proved under the
condition that Ω ∈ Lr without the Lr-Dini condition (see [8, p. 267] for the case
when Ω ∈ L∞); the proof given in [9] is based on results in [23] and [26]. An
analogous result is expected for T∗. We note that in Corollary 1.5 the Lr-Dini
condition is relaxed to the L1-Dini condition in comparison with the result of [16]
for T but the range of λ for which the supremum is taken in the conclusion of
the corollary is restricted to λ > C1∥f∥∞. See [4, 13, 20, 21, 22, 25] for singular
integrals with rough kernels; in [21, 22, 25] results on homogeneous groups can be
found.

We see an application of Theorem 1.3 to singular integrals with convolution
kernels. Let

(1.2) Tf(x) = p.v.

∫
f(x− y)K(y) dy, T∗f(x) = sup

ϵ>0

∣∣∣∣∣
∫
|y|>ϵ

f(x− y)K(y) dy

∣∣∣∣∣ ,
for f ∈ C∞

0 (Rn), where K satisfies the following.

sup
t>0

∫
A(0;t,2t)

|K(x)| dx < ∞;(1.3)

sup
y∈Rn

∫
A(0;2|y|,∞)

|K(x− y)−K(x)| dx < ∞;(1.4)

sup
0<s<t<∞

∣∣∣∣∣
∫
A(0;s,t)

K(x) dx

∣∣∣∣∣ < ∞;(1.5)

the limit lim
ϵ→0

∫
|y|>ϵ

f(x− y)K(y) dy exists for a.e.x when f ∈ C∞
0 (Rn).(1.6)
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It is known that T and T∗ extend to bounded operators on Lp(Rn), 1 < p < ∞,
and to operators of weak type (1, 1) on Rn (see [1] and [17] for T ; for T∗ see [17]
and also [18, pp. 25–26], [2, p. 72]). We note that the Dr condition, which is stated
above for variable kernels, can be formulated in the case of convolution kernels as
follows.

Br =

∞∑
k=0

ωr(2
−k) < ∞, where ωr(t) = sup

R>0
ωr,R(t)

and

ωr,R(t) = sup
w∈A(0;Rt/4,Rt/2)

R−n

∫
A(0;R,2R)

|Rn (K(x− w)−K(x))|r dx


1/r

.

Theorem 1.3 immediately implies the following weighted weak type estimates for
the maximal singular integrals T∗.

Corollary 1.6. Let r > 1. Let w be a weight such that wr′ ∈ A1. Suppose that the
kernel K satisfies (1.3), (1.5), (1.6) and the Dr condition. Then we have

sup
λ>0

λw ({x ∈ Rn : T∗f(x) > λ}) ≤ C∥f∥L1
w
,

where T∗ is as in (1.2).

We note that the Dr condition in Corollary 1.6 implies (1.4). When K is a
homogeneous kernel of the form K = |x|−nΩ(x′), see [3] for a relation between
(1.4) (the Hörmander condition [14]) and the L1 Dini condition for Ω.

We shall prove Theorem 1.1 in Section 2. The proofs of Theorem 1.3, Proposition
1.4 and Corollary 1.5 will be given in Section 3. In proving Theorems 1.1, 1.3 and
Proposition 1.4, we shall apply methods of Rivière [17] and also methods of [5,
Chap. IV] for standard kernels. In proving Corollary 1.5, we shall also use a result
of [9]. To prove Theorem 1.3 we shall apply the Dr condition to estimate T∗(b)
along with Hölder’s inequality, where b is the bad part arising from the Calderón-
Zygmund decomposition f = g + b.

The proof of Theorem 1.2 will be provided in Section 4. To establish the theorem
we need to prove the condition (K.3), which is in Lemma 4.2. We shall state the
proof of the lemma in detail. Finally, in Section 5, we shall give proofs for some
results which have been stated without proofs before.

2. Proof of Theorem 1.1

We need the following lemmas (Lemmas 2.1, 2.3 and 2.4).

Lemma 2.1. Let f ∈ L∞
0 (Rn) and 0 < δ < 1. Then

|Tαf(x)| ≤ N (1)
µ,α(f)(x) +N (2)

µ,α(f)(x) + CδMµ,δ(Tf)(x) + CδMµf(x) µ-a.e.,

where Mµf denotes the Hardy-Littlewood maximal function with respect to the mea-
sure µ:

Mµf(x) = sup
x∈B

µ(B)−1

∫
B

|f(y)| dµ(y),
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with the supremum being taken over all balls B containing x, and Mµ,δ(f) =

(Mu(|f |δ)1/δ; also

N (1)
µ,α(f)(x) = sup

z∈B(x,α/3)

∣∣∣∣∣
∫
|x−y|>α

(K(x, y)−K(z, y))f(y) dµ(y)

∣∣∣∣∣ ,
N (2)

µ,α(f)(x) = sup
z∈B(x,α/3)

∫
2α/3<|z−y|<2α

|K(z, y)||f(y)| dµ(y).

Proof. First we assume that f ∈ C∞
0 (Rn). Let B̄(x, r) = {y ∈ Rn : |y − x| ≤ r}

be the closure of a ball B(x, r). Let φx,α ∈ C∞
0 (Rn), 0 ≤ φx,α ≤ 1, φx,α = 1 on

B(x, α) and supp(φx,α) ⊂ B(x, 3α/2). For z ∈ Rn, we have

|Tαf(x)| ≤

∣∣∣∣∣
∫
|x−y|>α

K(x, y)f(y) dµ(y)(2.1)

−
∫
|z−y|>ϵ

K(z, y)(f(y)− f(y)φx,α(y)) dµ(y)

∣∣∣∣∣
+ |Tϵf(z)|+ |Tϵ(fφx,α)(z)|.

We note that

(2.2)

∫
|z−y|>ϵ

K(z, y)(f(y)− f(y)φx,α(y)) dµ(y)

=

∫
|z−y|>ϵ
|x−y|>α

K(z, y)f(y) dµ(y)−
∫
|z−y|>ϵ

K(z, y)f(y)(φx,α(y)−χB(x,α)(y)) dµ(y).

If |z − x| < α/3 and |x − y| > α, then |z − y| > 2α/3. So, if |z − x| < α/3 and
ϵ < 2α/3, we have

(2.3)

∫
|z−y|>ϵ
|x−y|>α

K(z, y)f(y) dµ(y) =

∫
|x−y|>α

K(z, y)f(y) dµ(y).

Also, we observe that if |z − x| < α/3,

(2.4)

∣∣∣∣∣
∫
|z−y|>ϵ

K(z, y)(φx,α(y)− χB(x,α)(y))f(y) dµ(y)

∣∣∣∣∣
≤
∫

|z−y|>ϵ
α<|x−y|<3α/2

|K(z, y)||f(y)| dµ(y) ≤
∫
2α/3<|z−y|<2α

|K(z, y)||f(y)| dµ(y).

Combining (2.1), (2.2), (2.3) and (2.4) and letting ϵ → 0, we have, if |z−x| < α/3,

|Tαf(x)| ≤

∣∣∣∣∣
∫
|x−y|>α

(K(x, y)−K(z, y))f(y) dµ(y)

∣∣∣∣∣(2.5)

+

∫
2α/3<|z−y|<2α

|K(z, y)||f(y)| dµ(y) + |Tf(z)|+ |T (fφx,α)(z)|.

To prove (2.5) for f ∈ L∞
0 (Rn), we take a sequence {fk}∞k=1 in C∞

0 (Rn) such that
fk → f in L2(dµ) and µ-a.e. and such that {fk} is uniformly bounded: |fk| ≤ M
and supp(fk) ⊂ E for a compact set E independent of k (for a sequence which
satisfies the L2(dµ) convergence, see Section 5.5 and then it is easily seen that we
can choose {fk} which also complies with the other requirements). Next, we apply
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the inequality (2.5) to each fk. Then by a limiting arguments in letting k → ∞,
we get (2.5) for f .

Therefore, for f ∈ L∞
0 (Rn) we see that

|Tαf(x)| ≤ N (1)
µ,α(f)(x) +N (2)

µ,α(f)(x) + inf
z∈B(x,α/3)

(|Tf(z)|+ |T (fφx,α)(z)|) .(2.6)

We estimate the last term as follows. Let 0 < δ < 1. Then

inf
z∈B(x,α/3)

(|Tf(z)|+ |T (fφx,α)(z)|)(2.7)

≤
(

inf
z∈B(x,α/3)

(
|Tf(z)|δ + |T (fφx,α)(z)|δ

))1/δ

≤

(
−
∫
B(x,α/3)

|Tf(z)|δ dµ(z) +−
∫
B(x,α/3)

|T (fφx,α)(z)|δ dµ(z)

)1/δ

≤ Cδ

(
−
∫
B(x,α/3)

|Tf(z)|δ dµ(z)

)1/δ

+ Cδ

(
−
∫
B(x,α/3)

|T (fφx,α)(z)|δ dµ(z)

)1/δ

,

where −
∫
E
g dµ = µ(E)−1

∫
E
g dµ. To estimate the last integral, we apply the fol-

lowing well-known result (see Section 5.3 for the proof).

Lemma 2.2. Let (E, ν) be a measure space with ν(E) < ∞. Let 0 < δ < 1. For a
non-negative measurable function F on E, suppose that

ν{x ∈ E : F (x) > λ} ≤ 1

λ
A for all λ > 0.

Then ∫
E

F (x)δ dν(x) ≤ 1

1− δ
Aδν(E)1−δ.

Since T is of weak type (1, 1) by Theorem A, using Lemma 2.2 we see that

(2.8) −
∫
B(x,α/3)

|T (fφx,α)(z)|δ dµ(z)

≤ Cδ

(
−
∫
B(x,3α/2)

|f(z)| dµ(z)

)δ

≤ Cδ(Mµf(x))
δ.

By (2.6), (2.7) and (2.8), we have the conclusion of Lemma 2.1. �

Lemma 2.3. Let {Qm}∞m=1 be a family of non-overlapping dyadic cubes. Let Bm

be the smallest ball such that Qm ⊂ B̄m. Let {hm} be a sequence of functions in
L∞
0 (Rn) such that

(1) supp(hm) ⊂ Qm;
(2)

∫
hm(x) dµ(x) = 0;

(3) ∥hm∥1 ≤ Cµ(Bm).
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Let B∗
m = B(xm, 8rm), where Bm = B(xm, rm). Let E = ∪B∗

m. Suppose that the
kernel K of T satisfies the (K.2) and (K.3) conditions. Let h =

∑
hm. Then there

exists a constant C0 > 0 such that

µ ({x ∈ Ec : T∗(h)(x) > C0}) ≤ C
∞∑

m=1

µ(Bm),

where Ec = Rn \ E.

Proof. We consider the integral

Tα(hm)(x) =

∫
|x−y|>α

K(x, y)hm(y) dµ(y) for x /∈ E.

Fix x ∈ Ec and α > 0. We divide the set N0(x, α) of positive integers m for
which Tα(hm)(x) ̸= 0 into three pieces N1(x, α), N2(x, α), N3(x, α) as follows.

N1(x, α) = {m ∈ N0(x, α) : α ≤ rm},
N2(x, α) = {m ∈ N0(x, α) : rm < α, x /∈ B(xm, 2α)},

N3(x, α) = {m ∈ N0(x, α) : rm ≤ α/4, x ∈ B(xm, 2α)}.

We observe that the case α/4 < rm < α and x ∈ B(xm, 2α) is excluded, since if
α/4 < rm < α, then B(xm, 2α) ⊂ B(xm, 8rm), and so x /∈ B(xm, 2α).

Let m ∈ N1(x, α). If y ∈ B̄(xm, rm), we have |x− y| > α, since

|x− y| ≥ |x− xm| − |xm − y| ≥ 8rm − rm = 7rm > α.

Therefore

(2.9)

∫
|x−y|>α

K(x, y)hm(y) dµ(y) =

∫
K(x, y)hm(y) dµ(y)

=

∫
(K(x, y)−K(x, xm))hm(y) dµ(y).

Let m ∈ N2(x, α). Then we have |x− y| > α for y ∈ B̄(xm, rm), since

|x− y| ≥ |x− xm| − |xm − y| ≥ 2α− rm > 2α− α = α.

Thus we also have (2.9) in this case.
Let m ∈ N3(x, α). Then for y ∈ B̄(xm, rm) we have |x− y| < (4/9)α, since

|x− y| ≤ |x− xm| − |xm − y| < 2α+ rm ≤ 2α+ α/4 = 9α/4.

Therefore

(2.10)

∫
|x−y|>α

K(x, y)hm(y) dµ(y) =

∫
α<|x−y|<9α/4

K(x, y)hm(y) dµ(y).

For x ∈ Ec and α > 0, we decompose

(2.11) Tα(h)(x) =
∑

m∈N1(x,α)∪N2(x,α)

Tα(hm)(x) +
∑

m∈N3(x,α)

Tα(hm)(x).

We first estimate
∑

m∈N3(x,α)
Tα(hm)(x). We observe that

(2.12) Qm ⊂ A(x;α/2, 9α/4) for m ∈ N3(x, α).

We have already seen that Qm ⊂ B(x, 9α/4). Since Tα(hm)(x) ̸= 0, there is
y0 ∈ Qm such that |x− y0| > α. Therefore, if y ∈ Qm, then

|x− y| ≥ |x− y0| − |y0 − y| > α− 2rm ≥ α− α/2 = α/2.
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This completes the proof of (2.12).
Let

mx,α(hm) = µ(Qm)−1

∫
A(x;α,9α/4)

hm(y) dµ(y).

Then

|mx,α(hm)| ≤ µ(Qm)−1∥hm∥1 ≤ Cµ(Qm)−1µ(Bm) ≤ C.

We write∫
α<|x−y|<9α/4

K(x, y)hm(y) dµ(y)

=

∫
Qm

K(x, y)
(
χA(x;α,9α/4)(y)hm(y)−mx,α(hm)

)
dµ(y) +mx,α(hm)

∫
Qm

K(x, y) dµ(y)

=

∫
Qm

(K(x, y)−K(x, xm))
(
χA(x;α,9α/4)(y)hm(y)−mx,α(hm)

)
dµ(y)

+mx,α(hm)

∫
Qm

K(x, y) dµ(y)

Then we see that∣∣∣∣∣
∫
α<|x−y|<9α/4

K(x, y)hm(y) dµ(y)

∣∣∣∣∣
≤
∫

Qm

|K(x, y)−K(x, xm)| (|hm(y)|+ C) dµ(y) + C

∫
Qm

|K(x, y)| dµ(y).

Applying (2.12), we see that∑
m∈N3(x,α)

∣∣∣∣∣
∫
α<|x−y|<9α/4

K(x, y)hm(y) dµ(y)

∣∣∣∣∣(2.13)

≤
∑

m∈N3(x,α)

∫
Qm

|K(x, y)−K(x, xm)| (|hm(y)|+ C) dµ(y)

+ C

∫
A(x;α/2,9α/4)

|K(x, y)| dµ(y)

≤
∑

m∈N3(x,α)

∫
Qm

|K(x, y)−K(x, xm)| (|hm(y)|+ C) dµ(y) +B,

where the last inequality follows from (K.2).
Let x ∈ Ec. Then, using (2.10) and (2.13), we have

(2.14) sup
α>0

∑
m∈N3(x,α)

|Tα(hm)(x)|

≤
∞∑

m=1

∫
Qm

|K(x, y)−K(x, xm)| (|hm(y)|+ C) dµ(y) +B.
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By (2.14) we see that

µ

x ∈ Ec : sup
α>0

∑
m∈N3(x,α)

|Tα(hm)(x)| > 1 +B




(2.15)

≤ µ

({
x ∈ Ec :

∞∑
m=1

∫
Qm

|K(x, y)−K(x, xm)| (|hm(y)|+ C) dµ(y) > 1

})

≤
∞∑

m=1

∫
Qm

∫
B(xm,8rm)c

|K(x, y)−K(x, xm)| dµ(x) (|hm(y)|+ C) dµ(y)

≤ C
∞∑

m=1

∫
Qm

(|hm(y)|+ C) dµ(y)

≤ C

∞∑
m=1

(∥hm∥1 + µ(Qm)) ≤ C

∞∑
m=1

µ(Bm),

where the third inequality follows from (K.3).
Next we estimate

∑
m∈N1(x,α)∪N2(x,α)

Tα(hm)(x). Let x ∈ Ec. If m ∈ N1(x, α)∪
N2(x, α), we have (2.9). It follows that

sup
α>0

∑
m∈N1(x,α)∪N2(x,α)

|Tα(hm)(x)| ≤
∞∑

m=1

∫
Qm

|K(x, y)−K(x, xm)||hm(y)| dµ(y).

Therefore, arguing as in the proof of (2.15), we have

(2.16) µ

x ∈ Ec : sup
α>0

∑
m∈N3(x,α)

|Tα(hm)(x)| > 1


 ≤ C

∞∑
m=1

µ(Bm).

Combining (2.15) and (2.16) and recalling (2.11), we arrive at the estimate

µ ({x ∈ Ec : T∗(h)(x) > 2 +B}) ≤ C
∞∑

m=1

µ(Bm).

This completes the proof of Lemma 2.3. �

Lemma 2.4. Let 1 ≤ p < ∞, f ∈ L∞
0 (Rn). Let v be a weight function. Then

f = g + b, where g and b have the following properties.

(1) |g(x)| ≤ 1 µ-a.e.;
(2) ∥g∥Lp(v dµ) ≤ C∥f∥Lp(M(v) dµ);

(3) b =
∑∞

m=1 bm;
(4) there exists a family {Qm}∞m=1 of non-overlapping dyadic cubes such that

supp(bm) ⊂ Qm;

(5)
∫
bm(x) dµ(x) = 0;

(6) ∥bm∥1 ≤ Cµ(Qm);
(7)

∑∞
m=1

∫
Qm

v(x) dµ(x) ≤ C∥f∥pLp(Mµ(v) dµ)
.

This lemma is stated in a more general form as weighted estimates than needed in
the proof of Theorem 1.1; the weighted version will be applied in proving Theorem
1.3.
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Proof of Lemma 2.4. Decompose f = f1 + f2, where

f1(x) =

{
f(x) if |f(x)| > 1/2,

0 otherwise.

We apply the ordinary Calderón-Zygmund decomposition at height 1/2 with mea-
sure µ to f1 to get the following.

(i) f1 = k + b;
(ii) |k(x)| ≤ 1/2 µ-a.e.;
(iii) ∥k∥L1(v dµ) ≤ C∥f1∥L1(Mµ(v) dµ);

(iv) b =
∑∞

m=1, where bm satisfies the properties (4), (5), (6) of Lemma 2.4 with
a family {Qm}∞m=1 of non-overlapping dyadic cubes;

(v)
∑∞

m=1

∫
Qm

v(x) dµ(x) ≤ C∥f1∥L1(Mµ(v) dµ).

Proof is similar to the case where µ is the Lebesgue measure (see [11, pp. 141–144]
and [6, Chap. III, §2]; see also Section 5.6).

Let f = g + b, where g = k + f2 and b, k are as above. Then by (ii) we have
|g| ≤ |k|+ |f2| ≤ 1, which is part (1). Also by (ii) and (iii) we see that

∥k∥pLp(v dµ) ≤ (1/2)p−1∥k∥L1(v dµ)

≤ C∥f1∥L1(Mµ(v dµ)) ≤ C∥f1∥pLp(Mµ(v) dµ)
≤ C∥f∥pLp(Mµ(v) dµ)

.

Since, clearly, ∥f2∥Lp(v dµ) ≤ ∥f∥Lp(v dµ) ≤ ∥f∥Lp(Mµ(v) dµ), we see that

∥g∥Lp(v dµ) ≤ ∥k∥Lp(v dµ) + ∥f2∥Lp(v dµ) ≤ C∥f∥Lp(Mµ(v) dµ),

which proves part (2). Applying (v), we have

∞∑
m=1

∫
Qm

v(x) dµ(x) ≤ C∥f1∥L1(Mµ(v) dµ)

≤ C2p−1∥f1∥pLp(Mµ(v) dµ)
≤ C2p−1∥f∥pLp(Mµ(v) dµ)

,

which proves part (7). �

Now we can complete the proof of Theorem 1.1. For f ∈ L∞
0 (Rn), by Lemma

2.1 we have

(2.17) |T∗f(x)| ≤ N (1)
µ (f)(x) +N (2)

µ (f)(x) + CδMµ,δ(Tf)(x) + CδMµf(x),

where N
(i)
µ (f)(x) = supα>0 N

(i)
µ,αf(x) for i = 1, 2. From (K.4) it follows that

(2.18) ∥N (1)
µ (f)∥∞ ≤ C1∥f∥∞.

Also, (K.2) implies that

(2.19) ∥N (2)
µ (f)∥∞ ≤ C2∥f∥∞.

To estimateMµ,δ(Tf) we need the following result (see Section 5.4 for the proof).

Lemma 2.5. Suppose that a weight w satisfies that∫
{x∈Rn:Mµ(f)(x)>λ}

w(x) dµ(x) ≤ Cλ−1

∫
|f(x)|w(x) dµ(x)
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for all λ > 0. Then we see that Mµ is of Riesz weak type (see [12, p. 111] ):∫
{x∈Rn:Mµ(f)(x)>λ}

w(x) dµ(x) ≤ Cλ−1

∫
{x∈Rn:Mµ(f)(x)>λ}

|f(x)|w(x) dµ(x), ∀λ > 0.

This lemma is stated more generally with a weight w than needed in the proof
of Theorem 1.1; the weighted version will be used in Section 3.

Using Lemma 2.2 with the estimates in Theorem A

µ ({|Tf | > λ}) ≤ Cλ−1∥f∥1, ∀λ > 0

and Lemma 2.5 with w = 1, we have

µ ({Mµ,δ(Tf) > λ}) ≤ Cλ−δ

∫
Mµ,δ(Tf)>λ

|Tf |δ dµ(x)

≤ Cδλ
−δµ ({Mµ,δ(Tf) > λ})1−δ ∥f∥δ1,

which implies that

(2.20) µ ({Mµ,δ(Tf) > λ}) ≤ Cλ−1∥f∥1, ∀λ > 0.

We note that Lemma 2.5 can be applied with w = 1, since Mµ is of weak type
(1, 1).

Let f ∈ L∞
0 and f = g+ b, b =

∑
bm, and cubes {Qm} be as in Lemma 2.4 with

p = 1 and v = 1. Let Bm be the ball with the same center and diameter as Qm.
Then by (2.17), (2.18), (2.19) and (2.20) we see that

µ ({T∗(g) > C1 + C2 + 2}) ≤ µ ({CδMµ,δ(Tg) > 1}) + µ ({CδMµ(g) > 1})(2.21)

≤ C∥g∥1 ≤ C∥f∥1.
Let Bm = B(xm, rm) and E = ∪∞

m=1B(xm, 8rm). Then by applying Lemma 2.3,
we have

(2.22) µ ({T∗(b) > C0}) ≤ µ(E) + µ ({x ∈ Ec : T∗(b)(x) > C0})

≤ C
∞∑

m=1

µ(Bm) ≤ C∥f∥1,

where the last inequality follows from part (7) of Lemma 2.4 with v = 1. Combining
(2.21) and (2.22), we see that

(2.23) µ ({T∗(f) > C0 + C1 + C2 + 2}) ≤ C∥f∥1.
Next, let us apply Lemma 2.4 with p = 2, v = 1 and decompose f = g+ b. Then

arguing as in (2.21), by Chebyshev’s inequality, the L2 boundedness of T , the Lp

boundedness of Mµ, 1 < p < ∞, and part (2) of Lemma 2.4 with v = 1, we have

(2.24) µ ({T∗(g) > C1 + C2 + 2})
≤ µ ({CδMµ,δ(Tg) > 1}) + µ ({CδMµ(g) > 1}) ≤ C∥g∥22 ≤ C∥f∥22.

Let E be as in (2.22). Then by Lemma 2.3 and part (7) of Lemma 2.4 with v = 1
and p = 2, we see that

(2.25) µ ({T∗(b) > C0}) ≤ µ(E) + µ ({x ∈ Ec : T∗(b)(x) > C0})

≤ C

∞∑
m=1

µ(Bm) ≤ C∥f∥22.
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Using (2.24) and (2.25), we have

(2.26) µ ({T∗(f) > C0 + C1 + C2 + 2}) ≤ C∥f∥22.
From (2.23) and (2.26) we can deduce that T∗ extends to a sublinear operator of
weak type (1, 1) and of weak type (2, 2). Interpolating these two estimates, we see
that T∗ is bounded on Lr, 1 < r < 2. This completes the proof of Theorem 1.1.

Remark 2.6. Let 2 < s < ∞. If we further assume in Theorem 1.1 that T is
bounded on Ls(Rn, dµ), then we can prove the Lr boundedness of T∗ for 1 < r < s,
since then we can apply Lemma 2.4 with p = s in the proof given above for Theorem
1.1, where Lemma 2.4 has been applied with p = 2, to get the weak type (s, s)
boundedness of T∗.

3. Proofs of Theorem 1.3, Proposition 1.4 and Corollary 1.5

In this section we assume that the measure µ is the Lebesgue measure. For
t > 0, let Mt(f) = (M(|f |t))1/t, where M denotes the Hardy-Littlewood maximal
operator with respect to the Lebesgue measure.

Lemma 3.1. Let 1 < r < ∞. Suppose that K satisfies the Dr condition. Let
u > 0. Then

sup
y∈B(y0,u)

∫
|x−y0|>2u

|K(x, y)−K(x, y0)||g(x)| dx ≤ C inf
z∈B(y0,u)

Mr′(g)(z).

Proof. Let y ∈ B(y0, u), y ̸= y0. Then, using Hölder’s inequality, we have∫
|x−y0|>2u

|K(x, y)−K(x, y0)||g(x)| dx

=

∞∑
k=1

∫
A(y0;2ku,2k+1u)

|K(x, y)−K(x, y0)||g(x)| dx

≤
∞∑
k=1

 ∫
A(y0;2ku,2k+1u)

|K(x, y)−K(x, y0)|r dx


1/r ∫

A(y0;2ku,2k+1u)

|g(x)|r
′
dx


1/r′

≤ C

∞∑
k=1

ωr

(
22−ku−1|y − y0|

)(
(2ku)−n

∫
B(y0,2k+1u)

|g(x)|r
′
dx

)1/r′

.

To estimate ωr

(
22−ku−1|y − y0|

)
, we apply the following result (see Section 5.2 for

the proof).

Lemma 3.2. Let 0 < t ≤ s ≤ 2t ≤ 1. Then

ωr(s) ≤ C(ωr(t) + ωr(2t)).

Let 2−m−1 ≤ u−1|y − y0| < 2−m, m ≥ 0, m ∈ Z (the set of integers). Then by
Lemma 3.2,

ωr

(
22−ku−1|y − y0|

)
≤ C(ωr(2

−k−m) + ωr(2
−k−m+1)),

which implies
∞∑
k=1

ωr

(
22−ku−1|y − y0|

)
≤ C

∞∑
k=0

ωr(2
−k).
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Thus we have

∞∑
k=1

ωr

(
2−k+1u−1|y − y0|

)(
(2ku)−n

∫
B(y0,2k+1u)

|g(x)|r
′
dx

)1/r′

≤ C inf
z∈B(y0,u)

Mr′g(z)

( ∞∑
k=1

ωr

(
2−k+1u−1|y − y0|

))
≤ C inf

z∈B(y0,u)
Mr′g(z).

This completes the proof of Lemma 3.1. �

Lemma 3.3. Let families {Qm}∞m=1 of non-overlapping dyadic cubes and {Bm}∞m=1

of balls be as in Lemma 2.3. Let {hm} be a sequence of functions in L∞
0 (Rn) related

to Qm and Bm as in Lemma 2.3 with the Lebesgue measure in place of the measure
µ; so hm satisfies that

(1) supp(hm) ⊂ Qm;
(2)

∫
hm(x) dx = 0;

(3) ∥hm∥1 ≤ C|Bm|.

Also, let B∗
m = B(xm, 8rm), Bm = B(xm, rm) and E = ∪B∗

m, as in Lemma 2.3.
Suppose that the kernel K of T satisfies the (K.2) and the Dr condition for some
r > 1. Let v be a weight function and h =

∑
hm. Then there exists a constant

C0 > 0 such that

v ({x ∈ Ec : T∗(h)(x) > C0}) ≤ C
∞∑

m=1

inf
z∈Bm

Mr′(v)(z)|Bm|.

Proof. We take care of the integral

Tα(hm)(x) =

∫
|x−y|>α

K(x, y)hm(y) dy for x /∈ E.

Fixing x ∈ Ec and α > 0, we consider sets of positive integers N1(x, α), N2(x, α)
and N3(x, α) as in the proof of Lemma 2.3 with the Lebesgue measure in place of
µ. Then we have

(3.1) Tα(h)(x) =
∑

m∈N1(x,α)∪N2(x,α)

Tα(hm)(x) +
∑

m∈N3(x,α)

Tα(hm)(x).

As in the proof of Lemma 2.3, using (K.2), we have

(3.2) sup
α>0

∑
m∈N3(x,α)

|Tα(hm)(x)|

≤
∞∑

m=1

∫
Qm

|K(x, y)−K(x, xm)| (|hm(y)|+ C) dy +B.
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By (3.2) we see that

v

x ∈ Ec : sup
α>0

∑
m∈N3(x,α)

|Tα(hm)(x)| > 1 +B


(3.3)

≤ v

({
x ∈ Ec :

∞∑
m=1

∫
Qm

|K(x, y)−K(x, xm)| (|hm(y)|+ C) dy > 1

})

≤
∞∑

m=1

∫
Qm

∫
B(xm,8rm)c

|K(x, y)−K(x, xm)| v(x) dx (|hm(y)|+ C) dy

≤ C
∞∑

m=1

inf
z∈B(xm,rm)

Mr′(v)(z)

∫
Qm

(|hm(y)|+ C) dy

≤ C
∞∑

m=1

inf
z∈B(xm,rm)

Mr′(v)(z)|Bm|,

where the third inequality follows from Lemma 3.1.
We now consider

∑
m∈N1(x,α)∪N2(x,α)

Tα(hm)(x), x ∈ Ec. If m ∈ N1(x, α) ∪
N2(x, α), as in the proof of Lemma 2.3, we have

sup
α>0

∑
m∈N1(x,α)∪N2(x,α)

|Tα(hm)(x)| ≤
∞∑

m=1

∫
Qm

|K(x, y)−K(x, xm)||hm(y)| dy.

Thus, arguing as in the proof of (3.3), we see that

(3.4) v

x ∈ Ec : sup
α>0

∑
m∈N1(x,α)∪N2(x,α)

|Tα(hm)(x)| > 1




≤ C
∞∑

m=1

inf
z∈B(xm,rm)

Mr′(v)(z)|Bm|.

By (3.1), (3.3) and (3.4), we have

v ({x ∈ Ec : T∗(h)(x) > 2 +B}) ≤ C
∞∑

m=1

inf
z∈B(xm,rm)

Mr′(v)(z)|Bm|.

This proves Lemma 3.3. �

The proof of Theorem 1.3 is as follows. Let f ∈ L∞
0 . By Lemma 2.1 we have

(3.5) |T∗f(x)| ≤ N (1)(f)(x) +N (2)(f)(x) + CδMδ(Tf)(x) + CδMf(x),

where N (i)f is N
(i)
µ (f) with the measure µ replaced by the Lebesgue measure,

i = 1, 2. From (K.4) it follows that

(3.6) ∥N (1)(f)∥∞ ≤ C1∥f∥∞.

Also, (K.2) implies that

(3.7) ∥N (2)(f)∥∞ ≤ C2∥f∥∞.

Let w ∈ A1 be as in Theorem 1.3. Using Lemma 2.5 and Lemma 2.2 with the
estimates

w ({|Tf | > λ}) ≤ Cλ−1∥f∥1,w, ∀λ > 0,
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which can be found in [18, III, Theorem 1.2], where ∥f∥1,w = ∥f∥L1
w
, we have

w ({Mδ(Tf) > λ}) ≤ Cλ−δ

∫
Mδ(Tf)>λ

|Tf(x)|δw(x) dx

≤ Cδλ
−δ∥f∥δ1,ww ({Mδ(Tf) > λ})1−δ

,

which implies that

(3.8) w ({Mδ(Tf) > λ}) ≤ Cλ−1∥f∥1,w, ∀λ > 0.

Let f ∈ L∞
0 and f = g + b, b =

∑
bm, and {Qm} be as in Lemma 2.4 with µ

replaced by the Lebesgue measure and with p = 1 and v = w. Then by (3.5), (3.6),
(3.7) and (3.8) we see that

w ({T∗(g) > C1 + C2 + 2}) ≤ w ({CδMδ(Tg) > 1}) + w ({CδM(g) > 1})(3.9)

≤ C∥g∥1,w ≤ C∥f∥1,w.

Let Bm be a ball with the same center and diameter as Qm. Let B∗
m = B(xm, rm)

and E = ∪∞
m=1B(xm, 8rm). Then by applying Lemma 3.3 with b in place of h, we

have

(3.10) w ({T∗(b) > C0}) ≤ w(E) + w ({x ∈ Ec : T∗(b)(x) > C0})

≤ C
∞∑

m=1

inf
z∈Bm

Mr′(w)(z)|Bm| ≤ C∥f∥1,w,

where the last inequality follows from part (7) of Lemma 2.4 with p = 1 and the
fact that Mr′(w) ≤ Cw a.e. Combining (3.9) and (3.10), we see that

(3.11) w ({T∗(f) > C0 + C1 + C2 + 2}) ≤ C∥f∥1,w.

From (3.11) and the sublinearity of T∗, we can deduce that T∗ extends to a
sublinear operator of weak type (1, 1) with respect to weight w. This completes the
proof of Theorem 1.3.

Proofs of Proposition 1.4 and Corollary 1.5 will be given in what follows. Let
T and w be as in Proposition 1.4. Let f ∈ L∞

0 (Rn). We recall (3.5). Since the
L1
w-L

1,∞
w boundedness of T is assumed, we have (3.8). By the conditions (K.4) and

(K.2) we have (3.6) and (3.7), respectively. Therefore we see that for λ > 0

w ({T∗(f) > (C1 + C2)∥f∥∞ + 2λ})
≤ w ({CδMδ(Tf) > λ}) + w ({CδM(f) > λ})
≤ Cλ−1∥f∥1,w.

This implies that if λ > 2(C1 + C2)∥f∥∞,

w ({T∗(f) > λ}) ≤ 4Cλ−1∥f∥1,w.

This completes the proof of Proposition 1.4 for f ∈ L∞
0 (Rn). The sublinear operator

T∗ can be uniquely extended to L1
w ∩ L∞. The proof is by standard methods. We

omit the details.
Let Ω and w be as in Corollary 1.5. Let K(x, y) = |x − y|−nΩ((x − y)′). Then

the condition (K.2) obviously holds and the L1 Dini condition of Ω implies (K.4).
Further, the L1

w-L
1,∞
w boundedness follows from [9, Corollary 1]. Thus we can apply

Proposition 1.4 to get the conclusion of Corollary 1.5.
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4. Proof of Theorem 1.2

Let w ∈ A2 (see [11] for the Muckenhoupt weight class A2). Put

K(x, y) = k(x− y)(w(x)− w(y)), k(x) = h(|x|)Ω(x
′)

|x|n
,

where h is a bounded function on [0,∞) and Ω is a bounded function on Sn−1 such
that

∫
Sn−1 Ω(θ) dσ(θ) = 0. Define dµ(y) = w(y)−1 dy and

Tf(x) = lim
ϵ→0

Tϵf(x) = lim
ϵ→0

∫
|x−y|>ϵ

K(x, y)f(y) dµ(y), T∗f(x) = sup
ϵ>0

|Tϵf(x)|.

We have the following result.

Theorem 4.1. Let n ≥ 2. Then the maximal operator T∗ is bounded on L2(Rn, dµ).

Proof. Let

Sϵf(x) =

∫
|x−y|>ϵ

k(x− y)f(y) dy.

Then we see that

Tϵf(x) = −Sϵf(x) + w(x)Sϵ(w
−1f)(x).

Let S∗f(x) = supϵ>0 |Sϵf(x)|. Then it is known that S∗ is bounded on L2(Rn, v dx)
for v ∈ A2 (see [7, Corollary 4.2]). Thus, since w,w−1 ∈ A2, we have∫

|T∗f(x)|2 dµ ≤ 2

∫
|S∗f(x)|2w(x)−1 dx+ 2

∫
|S∗(w

−1f)|2w(x) dx

≤ C

∫
|f(x)|2w(x)−1 dx = C

∫
|f(x)|2 dµ(x).

This completes the proof. �

It is known that |x|−β ∈ A1 for 0 ≤ β < n and A1 ⊂ A2.

Lemma 4.2. Let Kβ(x, y) be as in (1.1). Then Kβ satisfies the condition (K.3)
with the measure dµβ :∫

|x−y0|≥2|y−y0|
|Kβ(x, y)−Kβ(x, y0)| dµβ(x) ≤ C

for all y0, y ∈ Rn.

When Ω satisfies a Lipschitz condition, a result similar to this is stated on [6, p.
76] without a proof.

Proof of Lemma 4.2. We first observe that

(4.1)

∫
|x−y0|≥2|y−y0|

|Kβ(x, y)−Kβ(x, y0)| dµβ(x)

≤
∫
|x−y0|≥2|y−y0|

|k(x− y)− k(x− y0)| dx

+

∫
|x−y0|≥2|y−y0|

∣∣k(x− y)|y|β − k(x− y0)|y0|β
∣∣ |x|−β dx.
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The first integral on the right hand side is estimated as in [24, Chap. II, §4]. The
second integral on the right hand side is majorized by the sum of the following two
integrals.

I =

∫
|x−y0|≥2|y−y0|

|k(x− y)− k(x− y0)| |y|β |x|−β dx,

J =

∫
|x−y0|≥2|y−y0|

|k(x− y0)|
∣∣|y0|β − |y|β

∣∣ |x|−β dx.

We estimate I and J separately. To estimate I, we note that

(4.2) |k(z − u)− k(z)|
≤ Cω(c|u|/|z|)|z|−n + C∥Ω∥∞(|u|/|z|)|z|−n ≤ Cω̃(c|u|/|z|)|z|−n

if |z| ≥ 2|u|, where ω̃(t) = ω(t) + t (see [24, Chap. II, §4]). We split the region
of integration in I into three parts and decompose I into three pieces accordingly:
I = I1 + I2 + I3, where

I1 =

∫
|x−y0|≥2|y−y0|

|x|>2|y0|

|k(x− y)− k(x− y0)| |y|β |x|−β dx,

I2 =

∫
|x−y0|≥2|y−y0|

|x|<|y0|/2

|k(x− y)− k(x− y0)| |y|β |x|−β dx,

I3 =

∫
|x−y0|≥2|y−y0|
|y0|/2≤|x|≤2|y0|

|k(x− y)− k(x− y0)| |y|β |x|−β dx.

Let |y0| > |y|/2. Then by (4.2) we have

I1 ≤ C|y|β
∫
|x|>2|y0|

ω̃(c|y − y0|/|x− y0|)|x− y0|−n|x|−β dx

≤ C|y|β
∫
|x|>2|y0|

ω̃(2c|y − y0|/|x|)|x|−n−β dx

≤ C|y|β |y0|−β

∫
|x|>2|y0|

ω̃(2c|y − y0|/|x|)|x|−n dx

= C|y|β |y0|−β

∫
|x|>c|y0|/|y−y0|

ω̃(1/|x|)|x|−n dx

= C|y|β |y0|−β

∫ c|y−y0|/|y0|

0

ω̃(t) dt/t ≤ C

∫ c

0

ω̃(t) dt/t

for some constants c, C > 0. Similarly, I2 is estimated as follows.

I2 ≤ C|y|β
∫
|x|<|y0|/2

ω̃(c|y − y0|/|x− y0|)|x− y0|−n|x|−β dx

≤ C|y|β |y0|−n

∫
|x|<|y0|/2

|x|−β dx

≤ C|y|β |y0|−n|y0|n−β ≤ C.
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Also, we see that

I3 ≤ C|y|β
∫
|x−y0|≥2|y−y0|
|y0|/2≤|x|≤2|y0|

ω̃(c|y − y0|/|x− y0|)|x− y0|−n|x|−β dx

≤ C|y|β |y0|−β

∫
|z|≥2|y−y0|

ω̃(c|y − y0|/|z|)|z|−n dx

≤ C|y|β |y0|−β

∫ c

0

ω̃(t) dt/t ≤ C.

Next, we assume that |y0| ≤ |y|/2 and estimate Ij , 1 ≤ j ≤ 3. To estimate I1 we
note that if |x − y0| > 2|y − y0| and |y0| ≤ |y|/2, then |x| > |y|/2. Using this and
(4.2), we have

I1 ≤ C|y|β
∫
|x−y0|≥2|y−y0|

|x|>2|y0|

ω̃(c|y − y0|/|x− y0|)|x− y0|−n|x|−β dx

≤ C|y|β
∫
|x|≥|y|/2

ω̃(c|y|/|x|)|x|−n−β dx

≤ C

∫
|x|≥|y|/2

ω̃(c|y|/|x|)|x|−n dx

= C

∫ c

0

ω̃(t) dt/t ≤ C.

As above, if |x− y0| ≥ 2|y − y0| and |y0| ≤ |y|/2, then |x| ≥ |y|/2. On the other
hand, in the region of integration of I2 we have |x| < |y0|/2. Thus |x| < |y|/4,
which is incompatible with |x| ≥ |y|/2. So, the region of integration of I2 is empty
and we discard I2.

Finally we estimate I3. We note that if |x − y0| ≥ 2|y − y0|, |y0| ≤ |y|/2 and
|x| ≤ 2|y0|, then |y| < |x− y0| ≤ 3|y|/2. Therefore, we see that

I3 ≤ C|y|β
∫
|x−y0|≥2|y−y0|
|y0|/2≤|x|≤2|y0|

ω̃(c|y − y0|/|x− y0|)|x− y0|−n|x|−β dx

≤ C|y|β |y0|−β |y|−n

∫
|y0|/2≤|x|≤2|y0|

dx

= C|y|β |y0|−β |y|−n|y0|n = C|y|β−n|y0|n−β ≤ C.

This completes the estimates for I.
We now estimate J . As in the case of I, we decompose J analogously: J =

J1 + J2 + J3, where

J1 =

∫
|x−y0|≥2|y−y0|

|x|>2|y0|

|k(x− y0)|
∣∣|y0|β − |y|β

∣∣ |x|−β dx,

J2 =

∫
|x−y0|≥2|y−y0|

|x|<|y0|/2

|k(x− y0)|
∣∣|y0|β − |y|β

∣∣ |x|−β dx,

J3 =

∫
|x−y0|≥2|y−y0|
|y0|/2≤|x|≤2|y0|

|k(x− y0)|
∣∣|y0|β − |y|β

∣∣ |x|−β dx.
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We first assume that |y0| > |y|/2. Then

J1 ≤ C
∣∣|y0|β − |y|β

∣∣ ∫
|x|>2|y0|

|x− y0|−n|x|−β dx

≤ C
∣∣|y0|β − |y|β

∣∣ ∫
|x|>2|y0|

|x|−n−β dx

≤ C(|y0|β + |y|β)|y0|−β ≤ C.

J2 is estimated as follows.

J2 ≤ C
∣∣|y0|β − |y|β

∣∣ ∫
|x|<|y0|/2

|x− y0|−n|x|−β dx

≤ C
∣∣|y0|β − |y|β

∣∣ |y0|−n

∫
|x|<|y0|/2

|x|−β dx

≤ C(|y0|β + |y|β)|y0|−n|y0|n−β ≤ C.

To estimate J3, first we assume that |y0| > 2|y|. Then

J3 ≤ C
∣∣|y0|β − |y|β

∣∣ ∫
|x−y0|≥2|y−y0|
|y0|/2≤|x|≤2|y0|

|x− y0|−n|x|−β dx

≤ C
∣∣|y0|β − |y|β

∣∣ |y0|−β

∫
|y0|<|x−y0|≤3|y0|

|x− y0|−n dx ≤ C.

Next, assume that |y|/2 < |y0| ≤ 2|y|. Then, using the inequality∣∣|y0|β − |y|β
∣∣ ≤ C|y0 − y||y0|β−1,

which follows by the mean value theorem, we see that

J3 ≤ C|y0 − y||y0|β−1

∫
|x−y0|≥2|y−y0|
|y0|/2≤|x|≤2|y0|

|x− y0|−n|x|−β dx

≤ C|y0|β−1|y0|−β

∫
|x−y0|≤3|y0|

|x− y0|−n+1 dx

≤ C|y0|β−1|y0|−β |y0| ≤ C.

Next, assuming |y0| ≤ |y|/2, J1, J2 and J3 are estimated as follows.

J1 ≤ C
∣∣|y0|β − |y|β

∣∣ ∫
|x−y0|≥2|y−y0|

|x|>2|y0|

|x− y0|−n|x|−β dx

≤ C
∣∣|y0|β − |y|β

∣∣ ∫
|x−y0|≥|y|

|x− y0|−n−β dx

≤ C(|y0|β + |y|β)|y|−β ≤ C.

As in the case of I2, the region of integration of J2 is empty. So, J2 is excluded.
Finally, we estimate J3 as follows.

J3 ≤ C
∣∣|y0|β − |y|β

∣∣ ∫
|x−y0|≥2|y−y0|
|y0|/2≤|x|≤2|y0|

|x− y0|−n|x|−β dx

≤ C
∣∣|y0|β − |y|β

∣∣ |y − y0|−n|y0|−β

∫
|y0|/2≤|x|≤2|y0|

dx

≤ C|y|β |y|−n|y0|−β |y0|n = C|y|β−n|y0|n−β ≤ C.
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This completes the estimates for J .
Combining the estimates for I and J , we have desired bounds for the second

integral in (4.1), which finishes the proof of Lemma 4.2. �
Lemma 4.3. Let Kβ be as in Lemma 4.2. Then Kβ satisfies the condition (K.2)
with the measure dµβ.

Proof. Let

Iα =

∫
α<|x−y|<2α

∣∣k(x− y)(|x|β − |y|β)
∣∣ |y|−β dy

=

∫
α<|y|<2α

∣∣k(y)(|x|β − |x− y|β)
∣∣ |x− y|−β dy.

We write Iα = Iα,1 + Iα,2 + Iα,3, where

Iα,1 =

∫
α<|y|<2α
|y|<|x|/2

∣∣k(y)(|x|β − |x− y|β)
∣∣ |x− y|−β dy,

Iα,2 =

∫
α<|y|<2α
|y|>2|x|

∣∣k(y)(|x|β − |x− y|β)
∣∣ |x− y|−β dy,

Iα,3 =

∫
α<|y|<2α

|x|/2≤|y|≤2|x|

∣∣k(y)(|x|β − |x− y|β)
∣∣ |x− y|−β dy.

By straightforward computations, we have

Iα,1 ≤ C

∫
α<|y|<2α

|y|−n dy ≤ C;

Iα,2 ≤
∫
α<|y|<2α
|y|>2|x|

|y|−n(|x|β |y|−β + 1) dy

≤ C

∫
α<|y|<2α

|y|−n dy +

∫
|y|>2|x|

|x|β |y|−n−β dy ≤ C;

Iα,3 ≤ C

∫
α<|y|<2α

|x|/2≤|y|≤2|x|

|y|−n(|x|β |x− y|−β + 1) dy

≤ C

∫
α<|y|<2α

|y|−n dy + C|x|β−n

∫
|x−y|≤3|x|

|x− y|−β dy

≤ C + C|x|β−n|x|n−β ≤ C.

This completes the proof. �
Lemma 4.4. Let Kβ(x, y) be as in Lemma 4.2. Then Kβ satisfies the condition
(K.4) with the measure dµβ.

Proof. Let L(x, y) = Kβ(y, x). Then Kβ satisfies the (K.4) condition if and only if
L satisfies the (K.3) condition. We note that

L(x, y) = k̃(x− y)(|x|β − |y|β),

where k̃(x) = −k(−x). Since k̃ has properties similar to those of k which are
required in Lemma 4.2, L satisfies (K.3) by Lemma 4.2 and hence Kβ satisfies
(K.4). �
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Now we can give the proof of Theorem 1.2. T (β) is bounded on L2(Rn, dµβ) by
Theorem 4.1. By Lemmas 4.2, 4.3 and 4.4, we see that Kβ satisfies (K.3), (K2)
and (K.4), respectively. Thus by Theorem 1.1 we have the conclusion of Theorem

1.2 except for the L2(Rn, dµβ) boundedness of T
(β)
∗ , which is in Theorem 4.1.

5. Appendix

Let K(x, y) be locally integrable in Rn ×Rn \∆ with the Lebesgue measure. In
this section we show that the Dr condition for K is equivalent to the (Dr) condition
for K on [18, p. 30]. Also, proofs of Lemmas 2.2, 2.5 and 3.2 will be provided.
Furthermore, we see two results stated above relative to the regular Borel measure
µ as in Section 1; one is approximation by functions of C∞

0 for functions in Lp(dµ),
1 ≤ p < ∞, and the other is Calderón-Zygmund decomposition for L1(dµ).

5.1. Equivalence of the conditions Dr and (Dr). For a positive integer k and
1 ≤ r < ∞, let

ck = sup
y,z∈Rn

(
|Sk(y, z)|−n

∫
Sk(y,z)

||Sk(y, z)|n (K(x, y)−K(x, z))|r dx

)1/r

,

where Sk(y, z) = A(z; 2k|y − z|, 2k+1|y − z|). When r = ∞, ck is defined by usual
modifications. We recall that K satisfies the (Dr) condition if

∞∑
k=1

ck < ∞.

We also write ω∗
r (2

−k) = ck.
We see that ω∗

r (2
−k) and ωr(2

−k) are related as follows.

Proposition 5.1. Let k ∈ Z. There exists a positive constant c such that

ω∗
r (2

−k) ≤ cωr(2
−k+1) for k ≥ 1;(5.1)

ωr(2
−k) ≤ c(ω∗

r (2
−k−1) + ω∗

r (2
−k−2)) for k ≥ 0.(5.2)

Proof. For y, z ∈ Rn with y ̸= z, let R = 2|y − z|. Then (y, z) ∈ ∆(R/4, R/2) and

|Sk(y, z)|−n

∫
Sk(y,z)

||Sk(y, z)|n (K(x, y)−K(x, z))|r dx

= C(2k−1R)−n

∫
A(z;2k−1R,22k−1R)

∣∣(2k−1R)n (K(x, y)−K(x, z))
∣∣r dx

≤ Cωr(2
−k+1),

which proves (5.1).
Conversely, let R > 0 and (y, z) ∈ ∆(R/4, R/2). Then R/4 ≤ |y − z| ≤ R/2.

Thus

A(z; 2kR, 2k+1R) ⊂ A(z; 2k+1|y − z|, 2k+3|y − z|).
Using this, we can easily see that (5.2) holds. �

By Proposition 5.1 we have

c
∞∑
k=0

ωr(2
−k) ≤

∞∑
k=1

ω∗
r (2

−k) ≤ C
∞∑
k=0

ωr(2
−k)
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for positive constants c, C, which implies the equivalence between the Dr and (Dr)
conditions.

5.2. Proof of Lemma 3.2. We observe that

A(z; s−1R, 2s−1R) ⊂ Ā(z; (2t)−1R, t−1R) ∪A(z; t−1R, 2t−1R)

for R > 0 under the assumption of the lemma, where Ā denotes the closure
of A in Rn. Using this in the integral of ωr,s−1R(s) in the definition ωr(s) =
supR>0 ωr,s−1R(s), we get the conclusion of Lemma 3.2.

5.3. Proof of Lemma 2.2. We use the formula:∫
E

F (x)δ dν(x) =

∫ ∞

0

ν{x ∈ E : F (x) > λ}δλδ−1 dλ.

See Rudin [19, Theorem 8.16 on p. 172]. The proof is straightforward as follows.∫
E

F (x)δ dν(x) ≤
∫ ∞

0

min(ν(E), λ−1A)δλδ−1 dλ

=

∫ A/ν(E)

0

ν(E)δλδ−1 dλ+

∫ ∞

A/ν(E)

Aδλδ−2 dλ

= ν(E)(A/ν(E))δ +A
δ

1− δ
(A/ν(E))δ−1

=
1

1− δ
Aδν(E)1−δ,

which completes the proof.

5.4. Proof of Lemma 2.5. Let Oλ(f) = {x ∈ Rn : Mµ(f)(x) > λ}. If x ∈ Oλ(f),
there exists a ball B such that x ∈ B and −

∫
B
|f | dµ(y) > λ. Then for z ∈ B,

Mµ(f)(z) ≥ −
∫
B
|f | dµ(y) > λ. Therefore, B ⊂ Oλ(f) and hence

−
∫
B

|f |χOλ(f) dµ(y) = −
∫
B

|f | dµ(y) > λ,

which implies x ∈ Oλ(fχOλ(f)). It follows that Oλ(f) ⊂ Oλ(fχOλ(f)). Using this
and the assumption for w, we have∫

{x∈Rn:Mµ(f)(x)>λ}

w(x) dµ(x) =

∫
Oλ(f)

w(x) dµ(x) ≤
∫

Oλ(fχOλ(f))

w(x) dµ(x)

=

∫
{x∈Rn:Mµ(fχOλ(f))(x)>λ}

w(x) dµ(x)

≤ Cλ−1

∫
Rn

|f(x)|χOλ(f)(x)w(x) dµ(x)

= Cλ−1

∫
{x∈Rn:Mµ(f)(x)>λ}

|f(x)|w(x) dµ(x),

which completes the proof.
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5.5. Approximation by C∞
0 in Lp(dµ), 1 ≤ p < ∞. Let µ be the regular Borel

measure as in Section 1. Then, the set C∞
0 (Rn) is dense in Lp(Rn, dµ) for 1 ≤ p <

∞. This can be shown as follows. Let f ∈ Lp(Rn, dµ). Given ϵ > 0 we can find a
function g which is continuous and compactly supported such that ∥f − g∥p < ϵ/2

(see [10, pp. 210–211]). Let g(δ) = g ∗ ϕδ, 0 < δ < 1, where ϕ ∈ C∞
0 (Rn),∫

Rn ϕ(x) dx = 1 and ϕδ(x) = δ−nϕ(δ−1x). Then g(δ) ∈ C∞
0 (Rn) and we easily see

that g(δ) → g uniformly on Rn as δ → 0 and supp(g(δ)) ⊂ E for some compact set
E independent of δ. This implies that ∥g − g(δ0)∥p < ϵ/2 for some δ0. Thus

∥f − g(δ0)∥p ≤ ∥f − g∥p + ∥g − g(δ0)∥p < ϵ,

which implies what we claimed.

5.6. Calderón-Zygmund decomposition for L1(dµ). Let f ∈ L1(Rn, dµ) and
λ > 0, where µ is as in Section 1. As in the case where µ is the Lebesgue measure,
using the doubling condition of µ, by the stopping time arguments, we can find a

family {Q̃m}∞m=1 of disjoint right open dyadic cubes such that

λ < µ(Q̃m)−1

∫
Q̃m

|f(x)| dµ(x) ≤ Cλ,

where a right open interval has a form [a1, b1) × · · · × [an, bn). Let U = ∪Q̃m.
Then |f | ≤ λ (µ-a.e.) on U c, which can be shown by applying the weak type (1, 1)
boundedness of Mµ and the fact that the set of continuous functions with compact
support is dense in L1(Rn, dµ) (see [10, pp. 210–211]). Define

g(x) = f(x)χUc(x) +
∑
m

(
µ(Q̃m)−1

∫
Q̃m

|f | dµ
)
χQ̃m

(x),

b =
∑
m

bm, bm(x) = f(x)χQ̃m
(x)−

(
µ(Q̃m)−1

∫
Q̃m

|f | dµ
)
χQ̃m

(x).

Let Qm be the closure of Q̃m in Rn. Then supp(bm) ⊂ Qm,
∫
bm dµ = 0, ∥bm∥1 ≤

Cλµ(Qm), f = g + b and {Qm} is a family of non-overlapping cubes. Also, for a
weight function v, we have

∥g∥L1(v dµ) ≤ C∥f∥L1(Mµ(v) dµ),(5.3) ∑
m

∫
Qm

v(x) dµ(x) ≤ Cλ−1∥f∥L1(Mµ(v) dµ).(5.4)

Proof of (5.3). Since v ≤ Mµ(v) (µ-a.e.), we have∫
|f(x)|χUc(x)v(x) dµ(x) ≤

∫
|f(x)|Mµ(v)(x) dµ(x).

Also, since µ(Q̃m)−1
∫
Q̃m

v dµ ≤ CMµ(v)(z) for z ∈ Q̃m, which can be shown by

the doubling condition for µ, we have∑
m

(
µ(Q̃m)−1

∫
Q̃m

|f | dµ
)∫

Q̃m

v(x) dµ(x) ≤ C
∑
m

inf
z∈Q̃m

Mµ(v)(z)

∫
Q̃m

|f | dµ

≤ C
∑
m

∫
Q̃m

|f |Mµ(v) dµ ≤ C

∫
|f |Mµ(v) dµ.

Combining results, we get (5.3). �
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Proof of (5.4). Since

1 < λ−1µ(Q̃m)−1

∫
Q̃m

|f | dµ,

using the doubling condition for µ as in the proof of (5.3), we see that∑
m

∫
Qm

v dµ ≤
∑
m

λ−1µ(Q̃m)−1

∫
Q̃m

|f | dµ
∫
Qm

v dµ

≤
∑
m

Cλ−1 inf
z∈Qm

Mµ(v)(z)

∫
Q̃m

|f | dµ

≤
∑
m

Cλ−1

∫
Q̃m

|f |Mµ(v) dµ

≤ Cλ−1∥f∥L1(Mµ(v) dµ).

This completes the proof of (5.4). �
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