SOME WEAK TYPE ESTIMATES FOR MAXIMAL SINGULAR
INTEGRALS

SHUICHI SATO

ABSTRACT. We consider some maximal singular integral operators having vari-
able kernels on R™ with doubling measures and prove LP and weak type es-
timates for them under certain conditions. Also, certain weighted weak type
estimates are shown for maximal singular integrals with A; weights of Muck-
enhoupt for the Lebesgue measure.

1. INTRODUCTION

Let T : L*(R",du) — L%*(R™,du) be a linear operator, where p is a regular
Borel measure on R™ (see [10, p. 205]) such that there exists a positive constant C
satisfying

w(B(z,r)) < Cu(B(z,r/2)) forallz € R" and r >0

(the doubling condition) and such that pu(R™) = oo and p(FE) < co when F is a
compact set, where B(x,r) denotes a ball with radius r centered at x:

B(z,r)={yeR": |y —z| < r}.

It is known that C§°(R™) (the set of infinitely differentiable functions on R™ with
compact support) is dense in LP(R™,du) for 1 < p < oo (see Section 5.5). Let
L (R™) be the set of bounded measurable functions f on R™ for which there exists
a compact set E such that f(z) = 0 for a.e.xz € R™ \ E with respect to p (u-
a.e.x); the smallest such compact set is defined to be supp(f). If f € LFR"),
then T(f) € L?>(R",du) and we have values T(f)(z) meaningful for y-a.e.z. We
assume that there exists a kernel K (z,y) which is locally integrable in R” x R™\ A
with respect to the product measure dy ® dyu, where A = {(z,z) : x € R"}, such
that if f € L§°(R™),

Tf(x) = o K(z,y)f(y)du(y) for p-a.e.xz € R™ \ supp(f).

For the kernel K we assume that the limit

lim K(z,y)f(y) du(y)

e—0 ‘$7y|>6

exists and equals Tf(x) for p-a.e.xz when f € C{°(R™). Also, we consider the
following conditions.
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/ K ()| du(e) < C
a<|z—y|<2a

for all y € R™ and a > 0.
(K.2)

/ K (2,9)| du(y) < Cs
a<|z—y|<2«a

for all x € R™ and o > 0.
(K.3)

/ K (2,y) — K (2, y0)| du(z) < Cs
|z—yo|>2]y—yo|

for all yo, y € R™.
(K.4)

/ K (,3) ~ K(20,9)] dity) < O
ly—zo|=2|z—=0|

for all zg, z € R™.

The following result is known.

Theorem A. Suppose that the kernel K satisfies the condition (K.3). Then the
operator T' extends to a bounded linear operator from LP(R™, du) to LP(R™,du) for
every p € (1,2] and from L*(R™,du) to L»(R",dp) (T is of weak type (1,1)),
which means that

MWEWWH@DMKCYWWZQ”AJMMMLVD%

For Theorem A see Theorem (2.4) on Coifman-Weiss [6, pp. 74-75] and also
Theorem 1.2 on [18, p. 30]. In Theorem (2.4) of [6], the kernel K of T is assumed
to be in L?2(R™ x R™, du @ du), but the proof given there can be applied to prove
Theorem A. When g is the Lebesgue measure, we can find in [5, Chap. IV] results
related to operators T with standard kernels. See also [15, Chap. 4].

Let T. f(x) = sup, g | T f(z)|, where

i@ = [ K,

Then in this note we shall prove the following theorem.

Theorem 1.1. Suppose that the kernel K satisfies the conditions (K.2), (K.3) and
(K.4). Then T, extends to a bounded operator on LP(R™ du) for every p € (1,2)
and extends to an operator of weak type (1,1).

Let

TP f(x) = p.v. . Ks(z,y)f(y) dus(y),

where
(1.1) Ka(z,y) = k(z —y)(|lz|° — [9”), k() =|z|7"Q@"), 2’ ==/|a],

and dug(y) = |y|=P dy with 0 < B < n (dy denotes the Lebesgue measure). We
assume that  is continuous on $"~! and [, , Q(0) do(6) = 0, where do denotes
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the Lebesgue surface measure on S™~!. We further assume that (2 satisfies the Dini
condition:
! dt
w(t) — < oo,
0 t

w(t) =sup {|Q0) — Q| : [0 - ¢l <t, 0.Ce s}
We note that w is non-decreasing and w(t) < 2||Q||s for ¢ > 0. As an application
of Theorem 1.1, we can show the following.

where

Theorem 1.2. Let n > 2. We consider the mazimal operator T*(B)f. Then T*(ﬁ) 18
bounded on LP(R™, dug) for p € (1,2] and of weak type (1,1).

The L*(R"™, dug) boundedness of T ) in Theorem 1.2 follows from Theorem 4.1
below in Section 4. When ( satisfies a Lipschitz condition on S"~!, see [6, p. 76]
about a result for 7% analogous to Theorem 1.2.

Also, we consider weighted weak type estimates for the maximal singular inte-
grals. From now on, through this section, we assume that the measure du is the
Lebesgue measure dz. Let K(z,y) be locally integrable in R™ x R™ \ A. When
0<a< p<oo,let

Alm;o, B) = {z:a < |z —z[ < B}
A, ) ={(y,2) ER" xR" :a < |y — 2| < B}.
Let 1 <r<oo,0<t<1and R >0. We define
1/r

wrlt) = sup B[R (K@) - K@) ds
(y,z)EA(Rt/4,Rt/2)
A(2R,2R)

We say that the kernel K satisfies the D,.-condition if

o0
B, = ZwT(2_k) < 00, where  w,(t) = sup wy r(t) = sup w, ;-1 5(t).
P R>0 R>0

By the usual modifications we can also define the D.-condition. The D, condition
is equivalent to the (D,) condition defined in [18] (see Section 5.1 below). We see
that the Dy condition follows from the D, condition if s < r. It is easily shown
that the Dy condition implies (K.3).

In [16] weighted weak type estimates were proved for certain singular integrals T'
under Dini conditions. At present, for certain singular integrals, weighted weak type
(1,1) estimates can be shown without Dini conditions (see [9]), while if we focus
our attention on maximal singular integrals T, we see that even at present stage of
research certain Dini conditions are still needed to prove weighted weak type (1,1)
estimates analogous for T'. We shall prove the following results on weighted weak
type estimates for T.

Theorem 1.3. Let 1 < r < oo. Suppose that T is bounded on LP for some
p € [r,00). Suppose that the kernel K of T satisfies (K.2), (K.4) and the D,
condition and that a weight w satisfies w” € Ay, where 1/r +1/r' = 1. Then T,
is bounded from LY to LL°, which means that there exists a constant C > 0 such
that

sup dw ({z € R" : Ty f(x) > A\}) < O fl|Ly,
A>0
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where w(E) = [pw(z)de and || fllpy = [z. |f(2)|w(z) dz.

Proposition 1.4. Let w € A;. Suppose that T is bounded from Ll to LL> and
that the kernel K of T satisfies (K.2) and (K.4) conditions. Then, T, uniquely
extends to a positive sublinear operator on L. N L° such that

sup  Aw({z e R": T f(z) > A}) < C2Hf||Li,
A>C1l flloo

for some constants Cy,Cs > 0.

See [11] for the weight class A; of Muckenhoupt. As an application of Proposition
1.4 and a result of [9], we have the following result for maximal singular integrals
with homogeneous convolution kernels.

Corollary 1.5. Let n > 2 and define
Q !
7f(0) = pa. [ 10— )

where Q) is homogeneous of degree 0 and Q € L"(S™Y) for some r > 1 and
Jgn-1 Q0)do(0) = 0. Suppose that Q satisfies the L'-Dini condition on S™*
and suppose that w” € A Then, there exist positive constants Cy and Cy such
that for f € LY N L> we have
sup  dw({z € R": Tof() > A} < Callfllny,-
A>C1l fllso

For the L"-Dini condition for €2, see [16]. In [16] the L.-Ll:>° boundedness
of T is shown under the assumptions that € L" and that € satisfies the L"-
Dini condition, when w” € A;. In [9], the same boundedness is proved under the
condition that 2 € L" without the L"-Dini condition (see [8, p. 267] for the case
when Q € L*); the proof given in [9] is based on results in [23] and [26]. An
analogous result is expected for T,. We note that in Corollary 1.5 the L"-Dini
condition is relaxed to the L!-Dini condition in comparison with the result of [16]
for T' but the range of A for which the supremum is taken in the conclusion of
the corollary is restricted to A > C1||f|leo- See [4, 13, 20, 21, 22, 25] for singular
integrals with rough kernels; in [21, 22, 25] results on homogeneous groups can be
found.

We see an application of Theorem 1.3 to singular integrals with convolution
kernels. Let

dy,

(12) Tf(z)=p.v. / f& - K@) dy, Tof(z) =sup

e>0

/|> [z —y)K(y) dy|,

for f € C§°(R™), where K satisfies the following.

(1.3) sup/ |K (z)| dz < oo
t>0 J A(05t,2t)
(1.4) sup / |K(x —y) — K(2)| dz < oo;
y€ER™ JA(0;2]y|,00)
(1.5) sup / K(x)dr| < oo;
0<s<t<oo |J A(0;s,t)
(1.6)  the limit lim f(z —y)K(y) dy exists for a.e.x when f € C5°(R").

e—0 ly|>e
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It is known that T and T, extend to bounded operators on LP(R™), 1 < p < oo,
and to operators of weak type (1,1) on R™ (see [1] and [17] for T'; for T, see [17]
and also [18, pp. 25-26], [2, p. 72]). We note that the D, condition, which is stated
above for variable kernels, can be formulated in the case of convolution kernels as
follows.

oo
B, = Zwr(Q’k) < 00, where w,(t) = sup w, g(t)
k=0 R>0

and
1/r

wrr(t) = sup R / |R" (K(x —w) — K(z))|" dz
weA(0O;Rt/4,Rt/2)
A(0;R,2R)
Theorem 1.3 immediately implies the following weighted weak type estimates for
the maximal singular integrals T.

Corollary 1.6. Letr > 1. Let w be a weight such that w” € A Suppose that the
kernel K satisfies (1.3), (1.5), (1.6) and the D, condition. Then we have

sup dw ({z € R" : T, f(z) > A}) < C| Ly,
A>0

where Ty is as in (1.2).

We note that the D, condition in Corollary 1.6 implies (1.4). When K is a
homogeneous kernel of the form K = |z|7"Q(a’), see [3] for a relation between
(1.4) (the Hérmander condition [14]) and the L! Dini condition for Q.

We shall prove Theorem 1.1 in Section 2. The proofs of Theorem 1.3, Proposition
1.4 and Corollary 1.5 will be given in Section 3. In proving Theorems 1.1, 1.3 and
Proposition 1.4, we shall apply methods of Riviére [17] and also methods of [5,
Chap. TV] for standard kernels. In proving Corollary 1.5, we shall also use a result
of [9]. To prove Theorem 1.3 we shall apply the D, condition to estimate T} (b)
along with Holder’s inequality, where b is the bad part arising from the Calderdén-
Zygmund decomposition f = g + b.

The proof of Theorem 1.2 will be provided in Section 4. To establish the theorem
we need to prove the condition (K.3), which is in Lemma 4.2. We shall state the
proof of the lemma in detail. Finally, in Section 5, we shall give proofs for some
results which have been stated without proofs before.

2. PROOF OF THEOREM 1.1
We need the following lemmas (Lemmas 2.1, 2.3 and 2.4).
Lemma 2.1. Let f € LFP(R™) and 0 < § < 1. Then
I Tof(2)] < NEL(F) (@) + N2L(F) (@) + CsMyus(TF) () + CsMuf(z)  pea.e.,

where M,, f denotes the Hardy-Littlewood mazimal function with respect to the mea-
sure

M, f(z) = sup pu(B)~" /B £ )| duy),

zeB



6 SHUICHI SATO

with the supremum being taken over all balls B containing =, and M, s(f) =
(Mu(I£1°)"/%; also

NO(f)z)=  sup / (K (2,y) — K (=, 9))f(y) du(y)]
2€B(z,0/3) |/ |z—y|>a

N (f)z)=  sup / K ()| ()] dialy).
z€B(z,0/3) J2a/3<|2—y|<2c

Proof. First we assume that f € C§°(R"). Let B(x,r) = {y € R" : |y — 2| < 7}
be the closure of a ball B(z,7). Let ¢z € CP(R™), 0 < g0 <1, g0 =1o0n
B(z,a) and supp(pz.) C B(z,3a/2). For z € R", we have

en S| K )

- /| L KGDU®) =~ 10)enav) duty)

H T f (D) + [ Te(fpr,a) (2)]-
We note that

2) [ KU 0o 4

[y KCf@ )~ [ K1) f0)(ra ) = X(a (1) i)
je—y|>a vl
If |z —z| < a/3 and |x — y| > «, then |z — y| > 2a/3. So, if |z — x| < a/3 and
€ < 2a/3, we have

23 [ K fdw) = [ K ) du)

|z—y|>a lz—y|>a

Also, we observe that if |z — z| < /3,

(2.4)

/ " K (2,9)(0r.0(y) — X5 ) F ) du(y)

K llf ) duty) < [ Kl )] duty).

l2—y|>e 2a/3<|z—y| <2

a<|z—y|<3a/2
Combining (2.1), (2.2), (2.3) and (2.4) and letting e — 0, we have, if |z — z| < a/3,

(25) |Taf(2)| <

/|— N (K(z,y) — K(2,9))f(y) du(y)

T / K (2 )1 )] dia() + 1T + IT(Feoma) (2)]
2a/3<|z2—y| <2«

To prove (2.5) for f € Ly (R™), we take a sequence { f}32; in C§°(R™) such that
fr. — f in L?(dp) and p-a.e. and such that {fi} is uniformly bounded: |f| < M
and supp(fx) C E for a compact set E independent of k (for a sequence which
satisfies the L?(du) convergence, see Section 5.5 and then it is easily seen that we
can choose { f} which also complies with the other requirements). Next, we apply
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the inequality (2.5) to each fr. Then by a limiting arguments in letting k — oo,
we get (2.5) for f.

Therefore, for f € Li°(R™) we see that
(2.6) |Taf(2)] < NL(F) () + NEL(H)() + (TG +T(fpr.a)(2)])-

ZEB(£ o/3)

We estimate the last term as follows. Let 0 < § < 1. Then

(2.7) inf (|Tf(2)]+ |T(fpz.a)(2)])

z€B(z,a/3)

(z,/3)

1/5
5 A s
< (]{S(m,a/?)) T f(2)]° du(z )+]{3($’a/3) IT(fpu.a)(2)| du ))
1/8
5
<G (]{? N CIETE ))

1/6
+Cs (][ |T(f¢w,a)(z)|5dﬂ(z)> ,
B(z,a/3)

where ngd,u = p(E)~! ngdu. To estimate the last integral, we apply the fol-
lowing well-known result (see Section 5.3 for the proof).

1/6
< (zeBinf (|Tf(z)|6 + |T(f90r,a)(z>|6)>

Lemma 2.2. Let (E,v) be a measure space with v(E) < co. Let 0 < d < 1. For a
non-negative measurable function F' on E, suppose that

V{xEE:F(x)>)\}§§A for all A > 0.
Then

1 1—
/EF(x)édu(x)g mA%(m 9

Since T is of weak type (1,1) by Theorem A, using Lemma 2.2 we see that

(2.8) ][ IT(f po0)(2)|? dpi(z)
B(z,0/3)

5
<G5 (][ £ (=) d#(2)> < C5(My f(2)°.
B(z,3a/2)

By (2.6), (2.7) and (2.8), we have the conclusion of Lemma 2.1. O

Lemma 2.3. Let {Qn}3_; be a family of non-overlapping dyadic cubes. Let By,
be the smallest ball such that Q, C By,. Let {h;,} be a sequence of functions in
L (R™) such that

(1 ) supp( m) C Qm,
(2) f hon() dia(z) = 0
(3) Hhm||1 S Cu( m)-
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Let B}, = B(xm, 8rm), where By, = B(Tym,Tm). Let E = UB},. Suppose that the
kernel K of T satisfies the (K.2) and (K.3) conditions. Let h = hy,. Then there
exists a constant Cy > 0 such that

p({z € EC: T.(h)(x) > Co}) Z

where B¢ =R"\ E.
Proof. We consider the integral
. () (0) = | K@) duty) oo g B
T—Y| >

Fix z € E¢ and o > 0. We divide the set Ny(x, ) of positive integers m for
which T, (h,)(z) # 0 into three pieces Ni(x, a), No(x, ), N3(z, ) as follows.

Ni(z,a) ={m € Ny(z,a) : a < 1, },
No(z,a) ={m € No(z, ) : 7, < o,z & B(x, 2a0)},
Ns(z,a) = {m € No(z,a) : rpp, < /4,2 € B(xp,2)}.

We observe that the case a/4 < rp, < a and x € B(zy,, 2a) is excluded, since if
a/d <1y < a, then B(zy,, 2a) C B(Zm,8rm), and so x & B(xm, 2a).
Let m € Ny(z, ). If y € B(xym,Tm), we have |z — y| > «, since

|z —y| > |2 — xm| — |Tm —y| = 8rm — T, = Trm >

Therefore

(2.9) / R K(z,y)hm /K 2, Y) R (y) diu(y)
_ /(K(Jc,y) — K(x,20))hun (y) du(y).

Let m € Na(x, ). Then we have |z — y| > a for y € B(zy,, ), since
lx —y| > | —zm| — |2m —y| > 20— 1 > 20— a = a.

Thus we also have (2.9) in this case.

Let m € N3(x, ). Then for y € B(xp, ) we have |z — y| < (4/9)«, since
|z —y| < |z —2zm| = |2m —y| <2a+ 71y <20+ /4 =9a/4.

Therefore
2.10 K(z,y)h, d = K(xz,y)h, d .
(2.10) /| K (6) ) / o K ) ()

For x € E° and a > 0, we decompose

(2.11) To(h)(z) = > To(hm)(@)+ > Talhm)(@).
meEN; (z,a)UN2 (z,00) meENs(z,a)

We first estimate °,,cn, (4,a) Ta(hm)(z). We observe that

(2.12) Qm C A(z;0/2,9a/4)  for m € N3(z, «).

We have already seen that @,, C B(z,9«/4). Since Ty (hy)(x) # 0, there is
Yo € Qm such that |x — yo| > «. Therefore, if y € @Q,,, then

|l —yl >z —yol — |yo —y| > a—2r, >a—a/2=a/2
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This completes the proof of (2.12).

Let
i) = (@) () ().
A(z;a,90/4)
Then
Mo (hm)| < ﬂ(Qm)71||hmHl < C,U(Qm)ilﬂ(Bm) <C.
We write

/ K (2, y)hon () duly)
a<|z—y|<9a/4

= /K(%y) (XA(ia90/2) W) P (y) — Mz (Bim)) du(y)+mz,a(hm>/K(m,y) du(y)
O Qo

/ (K (2 9) — K(2,2m)) (X Ao/ 5 () — 11 ()) i)
Qm

+mm,a(hm)/K(w7y)du(y)
O

Then we see that

/ K (2, y)hm(y) dia(y)
a<|z—y|<9a/4

< / K (2,9) — K (2, 2)| (hon ()] + C) dpa(y) + C / K (2, )] du(y).
Qm Qm
Applying (2.12), we see that

(2.13) >

meEN3 (z,a)

/ K (2, 9)hm(y) du(y)
a<|z—y|<9a/4

< Y 1K@y - K@) (ha)] + ©) dut)

meEN3 (a:,a)Qm

v [ K@)
A(z;a/2,9a/4)

< ¥ / K (2,9) — K(@,20)| (1 ()] + C) dpu(y) + B,

meEN3 (fc,a)Qm

where the last inequality follows from (K.2).
Let z € E°. Then, using (2.10) and (2.13), we have

(2.14) sup > |To(hm)(@)|

<3 / K (2,y) — K (2, 2)] (hn ()] + C) dia(y) + B.
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By (2.14) we see that
(2.15)

u =N D sup Z ‘Ta(hm)(x)l >1+B

a>0 meENs(z,a)

<u ({er Z/ K (@, 2)] (h(y)] + C) dp(y) > 1})

= Z / /B(:Cm,&"m)c y) - K(l‘,xm)| d,u(x) (|hm(y)| + C) d,u(y)

<C Z / (1)) + C) di(y)

<C Z ([hmlls + 1(Qm)) < C Z w(Bm),
m=1 m=1

where the third inequality follows from (K.3).
Next we estimate >, oy, (z.0)UN, (2,0) Lo (hm)(@). Let 2 € E€. If m € Ny(z,a) U
Ny (z, a), we have (2.9). It follows that

sp Y Z/ K (2, 2m) | ()] dpi(y).

a>0 meN; (z,a)UN2 (x,00)

Therefore, arguing as in the proof of (2.15), we have

(2.16) i x € E°: sup Z |To (b)) ()] > 1 <C Z By)

a>0meNg(m,a) m=1

Combining (2.15) and (2.16) and recalling (2.11), we arrive at the estimate

(oo}
plle € B T()(x) > 2+ BY) < C Y u(By)
m=1
This completes the proof of Lemma 2.3. (]
Lemma 2.4. Let 1 < p < oo, f € LP(R™). Let v be a weight function. Then
f=g+b, where g and b have the following properties.

(1) lg(@)[ <1 p-ae;

(2) HgHLP(vdu) < Ol fller () duy

(3) Em 1 bm?

(4) there exists a family {Q,,}2°_; of non-overlapping dyadic cubes such that

supp (b)) C Qum;

5) [ b —0;
( ) Hbm||1 < Cu(Qm)
(1) Yoot o, v(@) du(@) < CUFIT 0 (ar, (0 die)-

This lemma is stated in a more general form as weighted estimates than needed in
the proof of Theorem 1.1; the weighted version will be applied in proving Theorem
1.3.
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Proof of Lemma 2.4. Decompose f = fi + fo, where

fi(a) = {f<w> if |£(2)] > 1/2

0 otherwise.

We apply the ordinary Calderén-Zygmund decomposition at height 1/2 with mea-
sure p to f1 to get the following.

(i) fi=k+b
(i) |k(2)| < 1/2 p-a.e.;
(iii) Hk”Ll(ud,u) < C”leLl(Mﬂ(v) dp);
(iv) b=>".°_,, where b, satisfies the properties (4), (5), (6) of Lemma 2.4 with
a family {Qm}m , of non-overlapping dyadic cubes;
(V) Yoot Jo,, v(@) du(@) < CllfillLr (v, () ap-

Proof is similar to the case where p is the Lebesgue measure (see [11, pp. 141-144]
and [6, Chap. III, §2]; see also Section 5.6).

Let f = g+ b, where g = k + f> and b, k are as above. Then by (ii) we have
lg| < |k| + |f2] <1, which is part (1). Also by (ii) and (iii) we see that

1Rl oy ay < (/2P 1Kl 22 (0 ap)
< CHleL1 M, (vdp)) < CHfl”Lp M, (v) du) < C”fHLP(M“ (v) du)”
Since, clearly, || f2llzrwaw) < Ifllzewan) < I flle(ar,w) du). We see that

lgllzewan) < IklLewan) + 1f2llzewan < ClFllLeas, ) du)s
which proves part (2). Applying (v), we have

Z/ z) < O\l fill Ly (v, (v) d)

< C2 AN vty iy S C2 7 W (a0 iy

which proves part (7). O

Now we can complete the proof of Theorem 1.1. For f € L§°(R™), by Lemma
2.1 we have

(2.17)  |Tuf(x)] < NO(f)(@) + NP (f)(@) + CsMyus(Tf)(x) + Cs M, f (),

where Ny)(f)(x) = SUP,~g N,(f?lf(:c) for i = 1,2. From (K.4) it follows that

(2.18) N (Dlloo < Crll e
Also, (K.2) implies that
(2.19) INZ (Hlloo < Collf oo

To estimate M, s(T'f) we need the following result (see Section 5.4 for the proof).
Lemma 2.5. Suppose that a weight w satisfies that

w@)du(o) < OX 1 [ 17 (o) dutz)

{zeR™: M, (f)(z)>X}
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for all A > 0. Then we see that M, is of Riesz weak type (see [12, p. 111] ):

@) <ext [ @l du), o,
{z€R™: M, (f)(x)>A} {z€R™: M, (f)(x)>A}

This lemma is stated more generally with a weight w than needed in the proof
of Theorem 1.1; the weighted version will be used in Section 3.
Using Lemma 2.2 with the estimates in Theorem A

p({ITf] > A} <OX Y fll, YA>0
and Lemma 2.5 with w = 1, we have
B (1) > M) <0 [ TP du(z)
M, s(Tf)>A
< CsA u ({ M5 (TF) > AN IIF11S,
which implies that
(2.20) p({M,s(Tf)>A}) <CA Y flli, YA>o0.

We note that Lemma 2.5 can be applied with w = 1, since M, is of weak type
(1,1).

Let f € LF and f = g+b, b= > by, and cubes {Q,,} be as in Lemma 2.4 with
p=1and v = 1. Let B,, be the ball with the same center and diameter as @Q,,.
Then by (2.17), (2.18), (2.19) and (2.20) we see that

(2.21) p({Tu(9) > Cr + Co + 2}) < p({CsM,,,5(Tg) > 1}) + p({CsMy(g) > 1})
< Cligl < C|lflh-
Let By, = B(2m,rm) and E = US_; B(zm, 87, ). Then by applying Lemma 2.3,

we have
(2.22) p({Tu(0) > Co}) < p(E) + p({z € E: T, (b)(x) > Co})
<O wBy) < Cllfh,
m=1
where the last inequality follows from part (7) of Lemma 2.4 with v = 1. Combining
(2.21) and (2.22), we see that

(2.23) p({T(f) > Co+ C1 + C2 +2}) < C||f]1.

Next, let us apply Lemma 2.4 with p = 2, v = 1 and decompose f = g+b. Then
arguing as in (2.21), by Chebyshev’s inequality, the L? boundedness of T', the L?
boundedness of M,,, 1 < p < oo, and part (2) of Lemma 2.4 with v = 1, we have

(224) p({Tulg) > C1 + C +2})
< 1 ({CsM,us(Tg) > 1))+ ({CsMo(g) > 13) < Cllgll3 < CIISI3.

Let E be as in (2.22). Then by Lemma 2.3 and part (7) of Lemma 2.4 with v =1
and p = 2, we see that

(2.25) p({Tu(b) > Co}) < w(E) + p({z € E°: Ti(b)(x) > Co})

<0 u(B) < CIIE.
m=1
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Using (2.24) and (2.25), we have

(2.26) p({T(f) > Co + C1 + Co + 2}) < O f]5.

From (2.23) and (2.26) we can deduce that T, extends to a sublinear operator of
weak type (1,1) and of weak type (2,2). Interpolating these two estimates, we see
that T} is bounded on L", 1 < r < 2. This completes the proof of Theorem 1.1.

Remark 2.6. Let 2 < s < oo. If we further assume in Theorem 1.1 that T is
bounded on L*(R"™, du), then we can prove the L™ boundedness of T, for 1 < r < s,
since then we can apply Lemma 2.4 with p = s in the proof given above for Theorem
1.1, where Lemma 2.4 has been applied with p = 2, to get the weak type (s, s)
boundedness of T.

3. PROOFS OF THEOREM 1.3, PROPOSITION 1.4 AND COROLLARY 1.5

In this section we assume that the measure p is the Lebesgue measure. For
t >0, let M(f) = (M(|f[*))"/t, where M denotes the Hardy-Littlewood maximal
operator with respect to the Lebesgue measure.

Lemma 3.1. Let 1 < r < oco. Suppose that K satisfies the D, condition. Let
u > 0. Then

sup / K (z,y) — K@, y0)lg@)|dz < C _inf My (g)(2).
yE€B(yo,u) J|z—yo|>2u z€B(yo,u)

Proof. Let y € B(yo,u), y # yo. Then, using Holder’s inequality, we have

/l— |>2 K (2,y) — K (2, 90)ll9(x)] dz

o0

-/ K (w,) = K(z.g0) () do
=1 A(yo;2kw,2k+1y)
1/r 1/r'
S| [ e -Kewld [ le@ras
k=1 (yo;2Fu,2k+1u) (yo;2ku,2k+ 1)
00 1/r'
<Oy w2ty -wl) (@0 [ g(@) dx)
k=1 B(yo,2F*1u)

To estimate wy (227%u~*|y — yo|), we apply the following result (see Section 5.2 for
the proof).

Lemma 3.2. Let 0 <t <s<2t<1. Then
wr(8) < Cwr(t) + wr(2)).

Let 2771 <=ty —yo| < 27™, m > 0, m € Z (the set of integers). Then by
Lemma 3.2,

wr (2275 y = gol) < Clwp(2757™) +wp (2707,

which implies

Zwr (227 Fu ™y — yol) < CZwT(Q_k).
k=1 k=0
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Thus we have

(y0,2F+1u)

iwr (27k+1u71|y_y0|) (Qku)fn/ |g(z)|7“' - 1/r
k=1 B

<C inf Mgz wy (27 )y — <C inf M,g(z).
<C__jnf g()(; ( ly=ol) | <C__inf = Myg(2)

This completes the proof of Lemma 3.1. O

Lemma 3.3. Let families {Qm }55_1 of non-overlapping dyadic cubes and { By, }59_4
of balls be as in Lemma 2.3. Let {hn,} be a sequence of functions in L (R™) related
to Qm and By, as in Lemma 2.3 with the Lebesgue measure in place of the measure
1; so hy, satisfies that

(2) fhm(x) dx = 0;
(3) hmllr < C|Bul.

Also, let B, = B(xm,8"m), Bm = B(Xm,mm) and E = UB},, as in Lemma 2.3.

Suppose that the kernel K of T satisfies the (K.2) and the D, condition for some
r > 1. Let v be a weight function and h = > hy,. Then there exists a constant
Co > 0 such that

v({z € EC: Tu(h)(z) > Co}) <C ) inf My (0)(2)| Bl
m=1 m

Proof. We take care of the integral

To(hm)(z) = / K(z,y)hm(y)dy forxz ¢ E.

lz—y|>a
Fixing © € E° and « > 0, we consider sets of positive integers Ny (z, o), No(z, @)

and N3(z, ) as in the proof of Lemma 2.3 with the Lebesgue measure in place of
. Then we have

(3.1) To(h)(z) = Z To(hm)(x) + Z To(hom) ().

meN; (z,a)UN2 (z,a) meN;3(z,a)

As in the proof of Lemma 2.3, using (K.2), we have

(3.2) sup Z T () ()]

a>0 meN3 (z,a)

<> / 1K)~ Koz (0] + )y + .
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By (3.2) we see that

(33) vl ze€E:sup Y [Ta(hm)(z)|>1+B

a>0 meN;z(z,a)

<{$€Ec Z/ K(x, )| (|hm(y)| + C) dy > 1})
< Z/ / zm,s%)c (z,y) — K(x,zm)|v(x) dz (|hn(y)| + C) dy

<CZ inf T/(v)(z)/ (hm()| +C) d

ZEB(wnu"'m m

<C’Z inf M, (v)(2)|Bml,

2€B(Tm,rm )

where the thlrd 1nequahty follows from Lemma 3.1.
We now consider 3 cn, (2 a)uN, (2,0) Lo (hm)(2), z € E€. If m € Ni(z,0) U
Ny (z,a), as in the proof of Lemma 2.3, we have

sip Y Tl @) < Z/ K (2 200) [ (4) .
>0 Ny (2,0)UNa (,0)

Thus, arguing as in the proof of (3.3), we see that

(34) v|<{zeE:sup > | T (B ) ()| > 1

a>0 meEN; (z,a)UNg (z,0x)

CZ inf M, (0)(2)[ Bl

zEB(a:m,Tm

By (3.1), (3.3) and (3.4), we have

v({er“:T*(h)()>2+B}<C’Z inf M. (v)(2)| Bl

ZGB(mm,rm)
This proves Lemma 3.3. (]
The proof of Theorem 1.3 is as follows. Let f € L3°. By Lemma 2.1 we have
(3.5) T f ()] < NO(f)(@) + NO(f)(2) + CsMs(Tf) () + CsM f (),

where N f is Nfbi)( f) with the measure p replaced by the Lebesgue measure,
i =1,2. From (K.4) it follows that

(3.6) INO(F) oo < Chllf]loo-
Also, (K.2) implies that
(3.7) IN®(F)]loo < Collfloo-

Let w € A; be as in Theorem 1.3. Using Lemma 2.5 and Lemma 2.2 with the
estimates

w{ITf1>A}) < CATM I f 1w, YA>0,
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which can be found in [18, III, Theorem 1.2], where || f]

1w = || fllzy,, we have

w({Ms(Tf) > A}) <CA° T f(@) | w(z) de
Ms(Tf)>N

< AT f11S ww ({Ms(TF) > A)'°,
which implies that
(3.8) w{(Ms(Tf) > \}) < CA Y flliws YA > 0.

Let f € L and f = g+b, b => by, and {Q.,} be as in Lemma 2.4 with
replaced by the Lebesgue measure and with p = 1 and v = w. Then by (3.5), (3.6),
(3.7) and (3.8) we see that
3.9)  w({Ti(g) > Cr + C2 +2}) <w({CsM5(Tg) > 1}) +w ({CsM(g) > 1})

< Clglhw < Cllfll1w-
Let By, be a ball with the same center and diameter as @,,. Let B}, = B(Zp, Tm)

and E = U_, B(@m, 87py,). Then by applying Lemma 3.3 with b in place of h, we
have

(310) w({T.(b) > Co}) < w(E) +w ({x € B*: T.(0)(x) > Co})
<Y int My()()]Bnl < Clf

where the last inequality follows from part (7) of Lemma 2.4 with p = 1 and the
fact that M, (w) < Cw a.e. Combining (3.9) and (3.10), we see that

(3.11) w({T(f) > Co+ C1 + Cy +2}) < C f1,w-

From (3.11) and the sublinearity of T, we can deduce that T, extends to a
sublinear operator of weak type (1, 1) with respect to weight w. This completes the
proof of Theorem 1.3.

Proofs of Proposition 1.4 and Corollary 1.5 will be given in what follows. Let
T and w be as in Proposition 1.4. Let f € L§°(R™). We recall (3.5). Since the
LL-LL> boundedness of T is assumed, we have (3.8). By the conditions (K.4) and
(K.2) we have (3.6) and (3.7), respectively. Therefore we see that for A > 0

w({T(f) > (C1 + Co) | flloo + 22})
< w({CsMs(Tf) > Ab) +w({CsM(f) > A})
< ONHIF -
This implies that if A > 2(C1 + C2)|| flco,
w ({Tu(f) > A}) <ACA | fll1 -

This completes the proof of Proposition 1.4 for f € L5 (R™). The sublinear operator
T, can be uniquely extended to L., N L°. The proof is by standard methods. We
omit the details.

Let Q and w be as in Corollary 1.5. Let K(z,y) = |z — y|"Q((x — y)’). Then
the condition (K.2) obviously holds and the L' Dini condition of  implies (K.4).
Further, the Ll -L1°° boundedness follows from [9, Corollary 1]. Thus we can apply
Proposition 1.4 to get the conclusion of Corollary 1.5.
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4. PROOF OF THEOREM 1.2
Let w € Ay (see [11] for the Muckenhoupt weight class Ay). Put
Q(z")

|

K(z,y) = k(z —y)(w(x) —wly)),  k(x)=h(z)

where h is a bounded function on [0, 00) and 2 is a bounded function on S"~! such
that [q._, Q(0) do(f) = 0. Define du(y) = w(y)~' dy and

Tf(x) = lim T f(z) = lim K(z,y)f(y)du(y),  Tf(x) = sup|Tf(z)].

e—0 |z—y|>e >0

We have the following result.
Theorem 4.1. Letn > 2. Then the mazimal operator T, is bounded on L*(R™, dy).
Proof. Let

sq@ =  Ka-ufeay

Then we see that

Tef(z) = =Scf(x) + w(2)Se(w™ f)(@).

Let S, f(x) = sup.sq |Scf(x)|. Then it is known that S, is bounded on L*(R", v dx)
for v € Ay (see [7, Corollary 4.2]). Thus, since w, w1 € Ay, we have

/uumwwusz/WmewmrHM+2/uuw*nmedw
SC/U@me*M=C/umPW@»

This completes the proof. (I
It is known that |z|=% € A; for 0 < 8 <n and A; C As.

Lemma 4.2. Let Kg(z,y) be as in (1.1). Then Kg satisfies the condition (K.3)
with the measure dpug :

/ [Ka.9) ~ Kslo,ao) dus() < €
lz—yol=2]y—yol

for all yo, y € R™.

When ( satisfies a Lipschitz condition, a result similar to this is stated on [6, p.
76] without a proof.

Proof of Lemma 4.2. We first observe that
wy [ () = Kol o) dis(2)
lz—yo|>2[y—yol
</ k(e =) = bz = o) da
lz—yo|>2]y—yo|

+/ k(@ — lyl® — k(@ — yo)lol?| o] da.
|z—yo|>2]y—yo|
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The first integral on the right hand side is estimated as in [24, Chap. II, §4]. The
second integral on the right hand side is majorized by the sum of the following two
integrals.

- k(@ — y) — k(z — yo) Jyl° |l da,
|[z—yo|>2|y—yol
1= k@ = y0)l [lyol? — [y1?| |2l da.
|z—yo|>2]y—yol
We estimate I and J separately. To estimate I, we note that
(4.2) |k(z —u) — k(2)|
< Cw(cful/[2N)|z]7" + CllQlso (ul/|2])[2] 7™ < Cw(clul/[2])|z| "

if |z| > 2|u|, where @(t) = w(t) +t (see [24, Chap. II, §4]). We split the region
of integration in I into three parts and decompose I into three pieces accordingly:
I = ]1 + IQ + 137 where

_ _ o) — _ Bl p|—B
1= [ oty 1K = 9) = Ko = o) 917l dn

lz[>2]yol

— ) — _ Bl|—B
Ba= [y oty 6@ =) = B = o)l ool d,
|z|<|yol/2

Iy = [k(z —y) — k(x —yo)| ly|’|z|~" da.

 Jlz—yol>2[y—yol
lyol/2<]2[<2]yo|

Let |yo| > |y|/2. Then by (4.2) we have
n<Cll? [ ately—ol/le = oDl — ol el do
|z[>2]yo
<l [ By wl/faDle] "7 de
|z[>2]yo|
<ClulPluol [ Beely = wol el ol " do

lz[>2]yol

= Cly/®|yol / (1) |z])la| ™ da
[z|>clyol/|ly—yol

cly=yol/lyol c
:C|y|’8\yo|_ﬁ/ () dt/t < c/ @(t) dt/t
0 0

for some constants ¢, C' > 0. Similarly, I is estimated as follows.

B<Cll’ [ ately—ol/le ol — ol el o
[z]<lyol/2
<Clllwl ™ [ el P
lz<|yol/2

< ClylPlyol"lyo|" " < C.
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Also, we see that

Is < Clyl” [ oo @l = vol/ |2 = yol) & — yo| 7|2~ da
lyol/2< 2] <2]yol
<ClulPlwol ™ [ el wol/ DIl do
121221y —yol

< ClylPlyol / S(t)dt)t < C.
0

Next, we assume that |yo| < |y|/2 and estimate I}, 1 < j < 3. To estimate I; we
note that if |z — yo| > 2|y — yo| and |yo| < |y|/2, then |z| > |y|/2. Using this and
(4.2), we have

<l [ ooy Bl = s0l/le = o)z = ol ol o
|| >2]yol

< Clyl? / B(clyl/|2]) ||~ da
|z|>y|/2

<C w(clyl/fa])]|™" de

> [yl/2
= c/ S(t)dt/t < C.
0

As above, if |z — yo| > 2]y — yo| and |yo| < |y|/2, then |x| > |y|/2. On the other
hand, in the region of integration of Iy we have |z| < |yo|/2. Thus |z| < |y|/4,
which is incompatible with |z| > |y|/2. So, the region of integration of I is empty
and we discard Is.

Finally we estimate I3. We note that if | — yo| > 2]y — yol, |yo| < |y|/2 and

|z| < 2|yol, then |y| < |x —yo| < 3|y|/2. Therefore, we see that
B o _ _ —aunlT |8

<Ol [, saty—ye) ©ly = y0l/|z = yol)le —yo x| dz

lyol/2<]=|<2lyol

< Cly\ﬁ\yol‘ﬁlyl‘”/ da
lyol/2< |2 <2[yol
= Cly|®lyo| P |yl " |yo|™ = Cly|®"|yo|"# < C.
This completes the estimates for I.

We now estimate J. As in the case of I, we decompose J analogously: J =
J1 + Jo + J3, where

_ _ B _ |8 -8
T = sty 1@ = w0) ol = 191 ]2 da.

[z|>2[yo]
_ _ B _ |8 -8
T = sty 1@ = w0) Il = Iyl ]2 da.
|| <|yol/2
_ _ B _ 1.8 -B
T = ity 15 = )] 001" = 917] ol .

lyol/2<] | <2]yo]
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We first assume that |yo| > |y|/2. Then

J1 < C|lyol® = 1y |z — yol x| F da
[z >2]yo

< C|lyol® - |y/°| 2|7 da
|2y
< C(lyol® + |y1”)|yol # < C.

Jo is estimated as follows.

Jo < C|lyol” = 1yl | — yo| "~ da
jal<lwol /2

<Cllwl® = ool ™ [ el P e
lz|<|yol/2
< Cllyol” + Y1) lyol " Iyo|"~* < C.
To estimate J3, first we assume that |yo| > 2|y|. Then

To £ C ol = W] [, gy 1 0l el P

lyol/2< ]| <2|yo]
§C||y0|ﬁ—|y|ﬁ‘|y0\_ﬁ/ |z —yo| " dx < C.
lyol<|z—yol<3|yol
Next, assume that |y|/2 < |yo| < 2]y|. Then, using the inequality
llyol® — lyl°| < Clyo — yllyol®~,

which follows by the mean value theorem, we see that

Js < Clyo — yllol*! / & — yo| | da

|z—yo|>2|y—yol
lyol/2<]z<2|yol

SC|y0|B71|yo\fﬁ/ |z — yo| " da
|z—yo|<3lyo|
< Clyol*yo| w0l < C.

Next, assuming |yo| < |y|/2, J1, J2 and Js are estimated as follows.

= C Nl = 1P| [ 2= 0l "l o
] >2]yol

<Cllwl =1l [ e[ de
lz—yo|>]yl
< Cllyol” + y1)lyl =7 < C.
As in the case of I, the region of integration of Jy is empty. So, J is excluded.
Finally, we estimate Js as follows.

J3 <C ||y0\3 - |y\3| [m—yazzw—m |z — yol ™|z ~F da

lyol/2< x| <2[yol

< C|lyol? — 1yl?| |y—yo|*“|yo|*ﬂ/ dz
lyol/2< x| <2]yo|

< ClylPlyl ™" yol Plyol™ = ClylP " |yo|"# < C.
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This completes the estimates for J.
Combining the estimates for I and J, we have desired bounds for the second
integral in (4.1), which finishes the proof of Lemma 4.2. O

Lemma 4.3. Let K3 be as in Lemma 4.2. Then Kg satisfies the condition (K.2)
with the measure dpug.

Proof. Let
lo = / [k(z —y)(Jz]” = [y?)| [yl =" dy
a<|z—y|<2«a

- / k() (12l® — |z — 41%)]| |z — y|~* dy.
a<|y|<2«a

We write Iy, = In 1 + 1o 2 + 14,3, Where

Lot = [, _o1eza [E@)(21” = |2 = y|P)| |z — 4|7 dy,
lyl<|z|/2

Lo = |, yjesa F@ (217 = 2 = y?) ]z =417 dy,
ly|>2|=|

Log= [\ yicaa B2l =z —y")] |z —y|™" dy.

lz]/2<]y|<2|=|
By straightforward computations, we have

La<C| s
a<|y|<2a

Ino < ly| 7" (2% y| = + 1) dy

a<|y|<2a
ly|>2|z]

<c Iyl dy + / j2lPly| "B dy < C;
a<|y|<2a ly|>2]z|

Las <C [ Wl el =yl 4 1) dy
lz]/2<y|<2]|x|
<c g+ Clal?™ [ eyl ay
a<|y|<2a lz—y|<3|]
< C+ Cla|’~"|z|" P < C.
This completes the proof. O

Lemma 4.4. Let Kg(z,y) be as in Lemma 4.2. Then Kpg satisfies the condition
(K.4) with the measure dug.

Proof. Let L(x,y) = Kg(y,z). Then Kz satisfies the (K.4) condition if and only if
L satisfies the (K.3) condition. We note that

L(z,y) = k(z —y)(J2|* - |y|?),

where k(z) = —k(—z). Since k has properties similar to those of k which are
required in Lemma 4.2, L satisfies (K.3) by Lemma 4.2 and hence Kz satisfies
(K.4). O
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Now we can give the proof of Theorem 1.2. T®) is bounded on L?(R", dug) by
Theorem 4.1. By Lemmas 4.2, 4.3 and 4.4, we see that Kg satisfies (K.3), (K2)
and (K.4), respectively. Thus by Theorem 1.1 we have the conclusion of Theorem

1.2 except for the L?(R", dug) boundedness of T”, which is in Theorem 4.1.

5. APPENDIX

Let K(z,y) be locally integrable in R”™ x R™ \ A with the Lebesgue measure. In
this section we show that the D, condition for K is equivalent to the (D,) condition
for K on [18, p. 30]. Also, proofs of Lemmas 2.2, 2.5 and 3.2 will be provided.
Furthermore, we see two results stated above relative to the regular Borel measure
w as in Section 1; one is approximation by functions of C§° for functions in LP(du),
1 < p < oo, and the other is Calderén-Zygmund decomposition for L!(dpu).

5.1. Equivalence of the conditions D, and (D,). For a positive integer k and
1 <r <oo, let

1/r
B <|sk<y,z>-" / ||sk<y,z>"<K<x,y>—f<<w,zwdw) ,
y,zER™ Sk(y,z)

where Si(y,2) = A(z; 2%y — 2|, 28|y — 2|). When r = oo, ¢}, is defined by usual
modifications. We recall that K satisfies the (D,.) condition if

oo
Z Cc < 00.
k=1

We also write w}(27%) = cy.
We see that w(27%) and w,(27F) are related as follows.

Proposition 5.1. Let k € 7. There exists a positive constant ¢ such that

(5.1) wi27F) < (27N fork > 1,

(5.2) wr(27F) <c(wr@ Y +wi(27F?)  for k> 0.

Proof. For y,z € R™ with y # z, let R = 2|y — z|. Then (y,2) € A(R/4, R/2) and

ISk(yw)l‘"/S( )IISk(y7Z)I"(K(w7y)—K(w,Z))IT dx

_ 0(2’“_1}%)_”/ (25 R (K (2,y) — K(z,2))|" do
A(z;2F—1R,225—1R)

< Cuw, (27511,
which proves (5.1).
Conversely, let R > 0 and (y,2) € A(R/4,R/2). Then R/4 < |y — z| < R/2.
Thus
A(2; 28R, 2" R) € A(z; 28y — 2|, 28 P3|y — 2).
Using this, we can easily see that (5.2) holds. O

By Proposition 5.1 we have

ciwr(Z_k) < iw:(Q_k) < Cin(Q_k)
k=0 k=1 k=0
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for positive constants ¢, C, which implies the equivalence between the D, and (D,.)
conditions.

5.2. Proof of Lemma 3.2. We observe that

A(z;s7 'R, 257 R) C A(z; (2t) 'R, t 'R)U A(2;t 'R, 2t ' R)
for R > 0 under the assumption of the lemma, where A denotes the closure
of A in R". Using this in the integral of w, ;-1z(s) in the definition w,(s) =
SUP g~ Wrs—1R(S), We get the conclusion of Lemma 3.2.
5.3. Proof of Lemma 2.2. We use the formula:

/ F(z)’ dv(x) = /OO viz € E: F(x) > \}oX"1d\.
E 0

See Rudin [19, Theorem 8.16 on p. 172]. The proof is straightforward as follows.

/F S dv(x / min( ATLA)SN L dA
A/v(E 0o
= / ( YOATLaN + / AN T2 d)\
0 AJv(E)

= W(B)(AE)) + A (Afr(E))

_ Y e
*1_6AV(E) ’

which completes the proof.
5.4. Proof of Lemma 2.5. Let O\(f) = {z € R" : M,,(f)(x) > A}. If 2 € Ox(f),

there exists a ball B such that © € B and {,|f|du(y) > X. Then for z € B,
M, (f)(z) > {5 |fldu(y) > A. Therefore, B C O(f) and hence

£ 171x0u) du) = £, 171 duto)

which implies 2 € Ox(fxo,(s))- It follows that Ox(f) C Ox(fxo,(f)). Using this
and the assumption for w, we have

w@d@) = [ w@di < [ w)du

{z€R™: M, (f)(z)>A} Ox(f) Ox(fxoy(s))

- / w(z) du(z)

{z€R™: M, (fx0, (1)) (x)>A}
<oa! / 1F() X0 () (@) w() dp)

— ot / 1 (@) () dpu(z),
{zeR™: M, (f)(z)>N}

which completes the proof.
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5.5. Approximation by C§° in LP(du), 1 < p < oo. Let u be the regular Borel
measure as in Section 1. Then, the set C§°(R™) is dense in LP(R", du) for 1 < p <
oo. This can be shown as follows. Let f € LP(R",du). Given € > 0 we can find a
function ¢ which is continuous and compactly supported such that || f — g/, < €/2
(see [10, pp. 210-211]). Let ¢® = gx ¢5, 0 < § < 1, where ¢ € C§°(R™),
Jgn ¢(x) dz =1 and ¢s(2) = 6 "¢(6 ). Then g9 € Cg°(R") and we easily see
that g(® — g uniformly on R™ as § — 0 and supp(g(®) C E for some compact set
E independent of §. This implies that ||g — ¢(®)|, < €/2 for some J;. Thus

1F =g <1 = gllp+ g = 9Nl < e,
which implies what we claimed.
5.6. Calderén-Zygmund decomposition for L!(du). Let f € L*(R™,du) and
A > 0, where p is as in Section 1. As in the case where p is the Lebesgue measure,

using the doubling condition of u, by the stopping time arguments, we can find a
family {Q, }5°_; of disjoint right open dyadic cubes such that

A< @) [ 1@ dulz) < O

m

where a right open interval has a form [aj,b1) X -+ X [an,b,). Let U = U@m.
Then |f| < A (p-a.e.) on U, which can be shown by applying the weak type (1,1)
boundedness of M), and the fact that the set of continuous functions with compact
support is dense in L'(R™, du) (see [10, pp. 210-211]). Define

g(x) = f(x)xv-(z Z < ! /@m Ifldu> X5, (%),

= b bm@)—f(x)xém(x)—(u(ém)l L 1f1du) g, (o)

m

Let Q,, be the closure of Q,, in R™. Then supp(bm) C Qum, [ b dpp =0, ||y ]l1 <
CAM(Qm), f =g+ band {@} is a family of non-overlapping cubes. Also, for a
weight function v, we have

(53) Hg”Ll(vdu < C”f”Ll(M“(U) dup)s
(5.4) > / ) < Ol (vt -

Proof of (5.3). Since v < M, (v) (u-a.e.), we have

[ 7@l @@ dut@) < [ 17@)|M,(0) ) ).

Also, since (1(Qm)™ fQ vdp < CM,(v)(z) for z € Qym, which can be shown by
the doubling condition for u, we have

Z(u@m)l[ |f|du)/~ o@)du(z) <C Y inf M()()/é 7l dp

m Qm Qm m zean m

<OY [ 1@ dn <0 [ 1w dn

Combining results, we get (5.3). O
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Proof of (5.4). Since

1< A (@) / Fldu,

m

using the doubling condition for u as in the proof of (5.3), we see that

Z/vaduﬁzklu(@m)l/ém |f|du/ vdp

m

<O inf M) /@m |f]

<ot [ M) dn

S CX MLt (M. 0) dp) -

This completes the proof of (5.4). O

(1
2]

(4]
(5]
(6]
(7]
(8]
[9]
(10]
(11]
(12]
(13]
(14]
(15]
[16]

[17]
(18]

[19]
20]

REFERENCES

A. Benedek, A. P. Calder6n and R. Panzone, Convolution operators on Banach space valued
functions, Proc. Nat. Acad. Sci. U. S. A. 48 (1962), 356-365.

A.P. Calderén, M. Weiss and A. Zygmund, On the existence of singular integrals, Proc.
Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1967, pp. 56-73.

A.P. Calder6n and A. Zygmund, A note on singular integrals, Studia Math. 65 (1979), 77-87.
M. Christ and J.L. Rubio de Francia, Weak type (1,1) bounds for rough operators, II, Invent.
Math. vol 93, 1988, 225-237.

R. R. Coifman and Y. Meyer, Au dela des opérateurs pseudo-différentiels, Astérisque no. 57,
Soc. Math. France, 1978.

R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces
Homogenes, Lecture Notes in Math. 242, Springer-Verlag, Berlin and New York, 1971.

J. Duoandikoetxea and J. L. Rubio de Francia, Mazimal and singular integral operators via
Fourier transform estimates, Invent. Math. 84 (1986), 541-561.

D. Fan and S. Sato, Weak type (1,1) estimates for Marcinkiewicz integrals with rough kernels,
Tohoku Math. J. 53 (2001), 265—284.

D. Fan and S. Sato, Weighted weak type (1,1) estimates for singular integrals and Littlewood-
Paley functions, Studia Math. 163 (2004), 119-136.

G. B. Folland, Real Analysis Modern Techniques and Their Applications, 1984, A Wiley-
Interscience Publication.

J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics,
1985, North-Holland.

D. J. H. Garling, Inequalities A Journey into Linear Analysis, Cambridge University Press,
2007.

S. Hofmann, Weighted weak-type (1, 1) inequalities for rough operators, Proc. Amer. Math.
Soc. vol 107, 1989, 423-435.

L. Hérmander, Estimates for translation invariant operators in LP spaces, Acta Math. 104
(1960), 93-139.

J.-L. Journé, Calderdn-Zygmund Operators, Pseudo-Differential Operators and the Cauchy
Integral of Calderon, Lecture Notes in Math. vol. 994, 1983, Springer-Verlag.

D.S. Kurtz and R.L. Wheeden, Results on weighted norm inequalities for multipliers, Trans.
Amer. Math. Soc. 255 (1979), 343-362.

N. Riviere, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278.

J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderdn-Zygmund theory for operator-
valued kernels, Adv. in Math. 62 (1986), 7—48.

W. Rudin, Real and Complexr Analysis, third edition, 1987, McGraw-Hill.

S. Sato, Weak type (1,1) estimates for parabolic singular integrals, Proc. Edinb. Math. Soc.
54 (2011), 221-247.



26

SHUICHI SATO

[21] S. Sato, Estimates for singular integrals on homogeneous groups, J. Math. Anal. Appl. 400

(2013), 311-330.

[22] S. Sato, Weighted weak type (1,1) estimates for singular integrals with non-isotropic homo-

geneity, Ark. Mat. 54 (2016), 157-180.

[23] A. Seeger, Singular integral operators with rough convolution kernels, J. Amer. Math. Soc.

vol 9, 1996, 95-105.

[24] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, 1970, Princeton

Univ. Press.

[25] T. Tao, The weak-type (1,1) of Llog L homogeneous convolution operator, Indiana Univ.

Math. J. vol 48, 1999, 1547-1584.

[26] A. Vargas, Weighted weak type (1,1) bounds for rough operators, J. London Math. Soc. (2)

vol 54, 1996, 297-310.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, KANAZAWA UNIVERSITY, KANAZAWA

920-1192, JAPAN

E-mail address: shuichipm@gmail.com



