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Sobolev spaces with non-isotropic dilations and
square functions of Marcinkiewicz type

by

Shuichi Sato (Kanazawa)

Abstract. We consider the weighted Sobolev spaces associated with non-isotropic
dilations of Calderón–Torchinsky and characterize the spaces by the square functions of
Marcinkiewicz type including those defined with repeated uses of averaging operation.

1. Introduction. Let B(x, t) be a ball in Rn with radius t centered at x.
For 0 < α < 2 let

(1.1) Vα(f)(x) =

(∞�

0

∣∣∣f(x)− �

B(x,t)

f(y) dy
∣∣∣2 dt

t1+2α

)1/2

,

where
�
B(x,t) f(y) dy denotes |B(x, t)|−1

	
B(x,t) f(y) dy and |B(x, t)| the Leb-

esgue measure. In [1] the operator V1 was used to characterize the Sobolev
space W 1,p(Rn) as follows.

Theorem A. Let 1 < p < ∞. Then f belongs to W 1,p(Rn) if and only
if f ∈ Lp(Rn) and V1(f) ∈ Lp(Rn); furthermore,

∥V1(f)∥p ≃ ∥∇f∥p,

which means that there exist positive constants c1, c2 independent of f such
that

c1∥V1(f)∥p ≤ ∥∇f∥p ≤ c2∥V1(f)∥p.

Let S(Rn) be the Schwartz class of rapidly decreasing smooth functions
on Rn. Define

S0(Rn) = {f ∈ S(Rn) : f̂ vanishes near the origin},
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where the Fourier transform f̂ is defined as

f̂(ξ) =
�

Rn

f(x)e−2πi⟨x,ξ⟩ dx, ⟨x, ξ⟩ =
n∑
k=1

xkξk.

We also write F(f) for f̂ . For 0 < α < n, n ≥ 2, let Iα be the Riesz potential
operator defined by

(1.2) F(Iα(f))(ξ) = (2π|ξ|)−αf̂(ξ), f ∈ S0

(see [28, Chap. V]). Let

(1.3) Sα(f)(x) =

(∞�

0

∣∣∣Iα(f)(x)− �

B(x,t)

Iα(f)(y) dy
∣∣∣2 dt

t1+2α

)1/2

,

Then we also find the following result in [1].

Theorem B. Let 0 < α < 2 and 1 < p <∞. Then

∥Sα(f)∥p ≃ ∥f∥p.

Theorem A can be derived from this result with α = 1 when n ≥ 2.
The operator Sα is a kind of Littlewood–Paley operator. Let ψ ∈ L1(Rn)

satisfy

(1.4)
�

Rn

ψ(x) dx = 0.

Put ψt(x) = t−nψ(t−1x). Then the Littlewood–Paley function on Rn is de-
fined by

(1.5) gψ(f)(x) =

(∞�

0

|f ∗ ψt(x)|2
dt

t

)1/2

.

We can see that Sα(f) = gψ(α)(f), where

(1.6) ψ(α)(x) = Lα(x)− Φ ∗ Lα(x),

with

Lα(x) = τ(α)|x|α−n, τ(α) =
Γ (n/2− α/2)

πn/22αΓ (α/2)

and Φ = χ0, χ0 = |B(0, 1)|−1χB(0,1) (χE denotes the characteristic function
of a set E). We note that F(Lα)(ξ) = (2π|ξ|)−α, 0 < α < n.

The square function S1(f) is closely related to the Marcinkiewicz function
on R1, which is defined by

µ(f)(x) =

(∞�

0

|F (x+ t) + F (x− t)− 2F (x)|2 dt
t3

)1/2

,
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where F (x) =
	x
−∞ f(y) dy for f ∈ S(R). It is known that

(1.7) ∥µ(f)∥p ≃ ∥f∥p
for 1 < p < ∞. Also, we consider a variant of µ(f) which can be regarded
as an analogue of S1 in the one-dimensional case:

ν(f)(x) =

(∞�

0

|F (x)− F ∗ Φt(x)|2
dt

t3

)1/2

,

where Φ = (1/2)χ[−1,1]. It is known that

µ(f) = gψ(f) with ψ(x) = χ[−1,1](x) sgn(x).

By inspection, we see that ν(f) = gψ(0)(f), where ψ(0)(x) = (1/2)ψ(x) −
(1/2)ψ(1)(x) with ψ(1)(x) = xχ[−1,1](x). This would indicate that the square
functions µ(f) and ν(f) are intimately related. For the Marcinkiewicz func-
tion we refer to [14], Zygmund [32], Waterman [31].

An interesting feature of Theorem A is that it suggests the possibility of
defining the Sobolev space analogous to W 1,p(Rn) in metric measure spaces
in a reasonable way. In this note, we shall extend Theorem A to the case
of weighted Sobolev spaces with parabolic metrics of Calderón–Torchinsky
[3, 4].

Let P be an n× n real matrix, n ≥ 2, such that

(1.8) ⟨Px, x⟩ ≥ ⟨x, x⟩ for all x ∈ Rn.

A dilation group {δt}t>0 on Rn is defined by δt = tP = exp((log t)P ).
It is known that |δtx| = ⟨δtx, δtx⟩1/2 is strictly increasing as a function

of t on (0,∞) when x ̸= 0. Let ρ(x), x ̸= 0, be the unique positive real
number t such that |δt−1x| = 1, and let ρ(0) = 0. Then the norm function
ρ is continuous on Rn and infinitely differentiable in Rn \ {0} and satisfies
ρ(Atx) = tρ(x), t > 0, x ∈ Rn. We have the following properties of ρ(x) (see
[3, 5]):

(1) ρ(−x) = ρ(x) for all x ∈ Rn;
(2) ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ Rn;
(3) ρ(x) ≤ 1 if and only if |x| ≤ 1;
(4) c1ρ(x)τ1 ≤ |x| ≤ ρ(x) when |x| ≤ 1 for some c1, τ1 > 0;
(5) ρ(x) ≤ |x| ≤ c2ρ(x)

τ2 when |x| ≥ 1 for some c2, τ2 > 0.

Moreover,

(a) |δtx| ≥ t|x| for all x ∈ Rn and t ≥ 1;
(b) |δtx| ≤ t|x| for all x ∈ Rn and 0 < t ≤ 1.

Let δ∗t denote the adjoint of δt. Then we can also consider a norm function
ρ∗(x) associated with the dilation group {δ∗t }t>0, and we have properties of
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ρ∗(x) and δ∗t analogous to those of ρ(x) and δt above. It is known that a
polar coordinates expression for the Lebesgue measure

(1.9)
�

Rn

f(x) dx =

∞�

0

�

Sn−1

f(δtθ)t
γ−1s(θ) dσ(θ) dt

holds, where γ = traceP and s is a strictly positive C∞ function on Sn−1 =
{|x| = 1} and dσ is the Lebesgue surface measure on Sn−1 (see [7, 16, 29]).
We note that the condition (1.8) implies that all eigenvalues of P have real
parts greater than or equal to 1 (see [3, pp. 3–4], [13, p. 137]). So we have
γ ≥ n.

Let

(1.10) B(x, t) = {y ∈ Rn : ρ(x− y) < t}
be a ball with respect to ρ (a ρ-ball) in Rn with radius t centered at x. We say
that a weight function w belongs to the Muckenhoupt class Ap, 1 < p <∞,
if

[w]Ap = sup
B

(
|B|−1

�

B

w(x) dx
)(

|B|−1
�

B

w(x)−1/(p−1) dx
)p−1

<∞,

where the supremum is taken over all ρ-balls B in Rn. The Hardy–Littlewood
maximal operator M is defined as

M(f)(x) = sup
x∈B

|B|−1
�

B

|f(y)| dy,

where the supremum is taken over all ρ-balls B in Rn containing x. The class
A1 is defined to be the family of weight functions w such that M(w) ≤ Cw
almost everywhere; the infimum of all such C will be denoted by [w]A1 . We
denote by Lpw (or Lp(w)) the weighted Lp space with the norm defined as

∥f∥Lp
w
= ∥f∥Lp(w) =

( �

Rn

|f(x)|pw(x) dx
)1/p

.

See [2, 6, 9, 30] for results related to the weight class Ap. The following
results are known and useful.

Proposition 1.1. Let 1 < p <∞ and w ∈ Ap.

(i) The space S0 is dense in Lpw.
(ii) The maximal operator M is bounded on Lpw.
(iii) If φ ∈ S, then supt>0 |f ∗ φt| ≤ CM(f). Here and in what follows

φt(x) = t−γφ(δ−1
t x).

(iv) F(g ∗ φt)(ξ) = ĝ(ξ)φ̂(δ∗t ξ) for g, φ ∈ S.

Let β ∈ R and define the Riesz potential operator Iβ associated with the
dilations δ∗t by

(1.11) F(Iβ(f))(ξ) = ρ∗(ξ)−β f̂(ξ)
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for f ∈ S0. Let 1 < p <∞, α > 0 and w ∈ Ap. Define the weighted parabolic
Sobolev space Wα,p

w by

(1.12) Wα,p
w = {f ∈ Lpw : f = Iα(g) for some g ∈ Lpw},

where f = Iα(g) means that�

Rn

f(x)h(x) dx =
�

Rn

g(x)Iα(h) dx for all h ∈ S0.

We note that the function g ∈ Lpw is uniquely determined by f , since Iα is
a bijection on S0 and S0 is dense in Lp

′
(w−p′/p), the dual space of Lp(w),

where 1/p+ 1/p′ = 1. We write g = I−α(f). For f ∈Wα,p
w we define

(1.13) ∥f∥p,α,w = ∥f∥p,w + ∥I−α(f)∥p,w.
We have analogues of Theorems A and B in the case of non-isotropic

dilations δt with weights. Let B(x, t) be as in (1.10) and

(1.14) Bα(f)(x) =

(∞�

0

∣∣∣f(x)− �

B(x,t)

f(y) dy
∣∣∣2 dt

t1+2α

)1/2

, α > 0.

Theorem 1.2. Suppose that 1 < p < ∞, w ∈ Ap and 0 < α < 2. Then
f ∈Wα,p

w if and only if f ∈ Lpw and Bα(f) ∈ Lpw; moreover,

∥I−α(f)∥p,w ≃ ∥Bα(f)∥p,w.
Let

(1.15) Cα(f)(x) =

(∞�

0

∣∣∣Iα(f)(x)− �

B(x,t)

Iα(f)(y) dy
∣∣∣2 dt

t1+2α

)1/2

.

Then Theorem 1.2 can be derived from the following result.

Theorem 1.3. Let 1 < p < ∞, w ∈ Ap, 0 < α < 2 and let Cα be as
in (1.15). Then

∥Cα(f)∥p,w ≃ ∥f∥p,w, f ∈ S0(Rn).
The range of α in Theorem 1.2 will be extended in Theorem 4.2 by

considering square functions with repeated uses of averaging operation
�
B f .

We consider square functions generalizing Bα and Cα in (1.14) and (1.15).
Let Φ be a bounded function on Rn with compact support. We say that
Φ ∈ Mα, α ≥ 0, if Φ satisfies

(i)
	
Rn Φ(x) dx = 1;

(ii) if α ≥ 1, then

(1.16)
�

Rn

Φ(x)xa dx = 0 for all multi-indices a with 1 ≤ |a| ≤ [α],

where xa = xa11 . . . xann with a = (a1, . . . , an), |a| = a1+ · · ·+an, aj ∈ Z,
aj ≥ 0, 1 ≤ j ≤ n, and [α] = max {k ∈ Z : k ≤ α}.
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We note that Mα ⊂ Mβ if α ≥ β and Mα = Mj if j ≤ α < j + 1,
j ≥ 0, j ∈ Z. If Φ is even and 1 ≤ α < 2, we have (1.16). In particular,
χ0 = |B(0, 1)|−1χB(0,1) ∈ Mα for 0 ≤ α < 2.

Let Φ ∈ Mα and

(1.17) Gα(f)(x) =

(∞�

0

|f(x)− Φt ∗ f(x)|2
dt

t1+2α

)1/2

, α > 0.

We note that if Φ = χ0 in (1.17), we get Bα of (1.14). Also, let Φ ∈ Mα and

(1.18)

Hα(f)(x) =

(∞�

0

|Iα(f)(x)− Φt ∗ Iα(f)(x)|2
dt

t1+2α

)1/2

, 0 < α < γ.

If we set Φ = χ0 in (1.18), we get Cα of (1.15) for 0 < α < 2.
We prove the following.

Theorem 1.4. Let Hα be as in (1.18) and 0 < α < γ, 1 < p < ∞,
w ∈ Ap. Then

∥Hα(f)∥p,w ≃ ∥f∥p,w, f ∈ S0(Rn).

Applying Theorem 1.4, we obtain the following.

Theorem 1.5. Suppose that 1 < p < ∞, w ∈ Ap and 0 < α < γ. Let
Gα be as in (1.17). Then f ∈ Wα,p

w if and only if f ∈ Lpw and Gα(f) ∈ Lpw;
furthermore,

∥I−α(f)∥p,w ≃ ∥Gα(f)∥p,w.
Theorems 1.2 and 1.3 follow from Theorems 1.5 and 1.4, respectively.

The proofs of Theorems 1.4 and 1.5 will be given in Section 3. To prove
Theorem 1.4, we consider the Littlewood–Paley functions

(1.19) gψ(f)(x) =

(∞�

0

|f ∗ ψt(x)|2
dt

t

)1/2

,

where ψt(x) = t−γψ(δ−1
t x) with ψ ∈ L1(Rn) satisfying (1.4). Then we can

see that Hα(f) = gψ(α) for some ψ(α) analogous to the one in (1.6). We shall
prove Theorem 1.4 by applying Theorem 2.1 below in Section 2, which is a
result for parabolic Littlewood–Paley functions complementing the bound-
edness result given in [25] and generalizing [22, Corollary 2.11] to the case
of non-isotropic dilations.

The proof of Theorem 2.1 will be completed by applying Theorem 2.8,
which provides the estimates

(1.20) ∥f∥p,w ≤ C∥gψ(f)∥p,w
under certain conditions. Theorem 2.8 is deduced from Corollary 2.7, which
is a result on the invertibility of Fourier multipliers homogeneous of degree 0
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with respect to δ∗t generalizing [22, Corollary 2.6] to the case of general homo-
geneity. Corollary 2.7 will follow from a more general result (Theorem 2.3).

Here we review some recent developments of the theory related to the
results given in this note after the article [1] (see also the remarks at the end
of this note).

Theorem A was generalized to the weighted Sobolev spaces in [10]. Also,
Theorems A and B were extended to the weighted Sobolev spaces in [19] by
applying a theorem of [17] for the boundedness of Littlewood–Paley functions
gψ in (1.5) on the weighted Lp spaces, which is partly a special case of
Theorem 2.1.

In [19] it was shown that the theorem of [17] is particularly suitable for
handling the square functions in Theorem 1.4 for the case of the Euclidean
structures (with the Euclidean norm and the ordinary dilation). Some results
of [19] were generalized in [22] by introducing the function class Mα and by
proving the weighted Lp norm equivalence between gψ(f) in (1.5) and f ,
part of which was not included in [17]; the estimates in (1.20) in the case of
the Euclidean structures for a sufficiently large class of ψ and p ∈ (1,∞),
w ∈ Ap were absent from [17].

In [20] and [22], discrete parameter versions of Littlewood–Paley func-
tions gψ(f) in (1.5) of the form

∆ψ(f)(x) =
( ∞∑
k=−∞

|f ∗ ψ2k(x)|2
)1/2

are also applied to characterize Sobolev spaces. See also [10] and [21] for
applications of the square function

Dα(f)(x) =

(∞�

0

∣∣∣t−α �

Sn−1

(f(x− tθ)− f(x)) dσ(θ)
∣∣∣2 dt

t

)1/2

in the theory of Sobolev spaces.
In Section 4, we shall establish another characterization of the Sobolev

spaces Wα,p
w similar to Theorem 1.2 (Theorem 4.2), which is novel even in

the case of the Euclidean structures. In Theorem 1.2, the averaging operator�
B f is used to define the square function Bα(f) in (1.14), which is applied

to characterize Wα,p
w for α ∈ (0, 2). In Theorem 4.2 we shall extend the range

of α by introducing square functions which are defined with repeated uses
of the averaging operation.

Finally, in Section 5 we shall illustrate by example how the Sobolev spaces
Wα,p
w defined above can be characterized by distributional derivatives in

some cases, by the arguments similar to the one in [28, Chap. V, proof of
Theorem 3].
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2. Invertibility of Fourier multipliers homogeneous with respect
to δ∗t and Littlewood–Paley operators. We consider a majorant of ψ
defined by

Hψ(x) = h(ρ(x)) = sup
ρ(y)≥ρ(x)

|ψ(y)|

and two seminorms Bϵ and Du defined as

Bϵ(ψ) =
�

|x|>1

|ψ(x)| |x|ϵ dx for ϵ > 0,

Du(ψ) =
( �

|x|<1

|ψ(x)|u dx
)1/u

for u > 1.

In proving Theorem 1.4 we apply the following result.

Theorem 2.1. Suppose that ψ ∈ L1(Rn) satisfies (1.4). Let ϵ > 0, u > 1
and Cj > 0, 1 ≤ j ≤ 3. Suppose that

(1) Bϵ(ψ) ≤ C1;
(2) Du(ψ) ≤ C2;
(3) ∥Hψ∥1 ≤ C3.

Then gψ defined by (1.19) is bounded on Lpw:

(2.1) ∥gψ(f)∥p,w ≤ C∥f∥p,w for all p ∈ (1,∞) and w ∈ Ap,

where the constant C depends only on p, w, ϵ, u and Cj, 1 ≤ j ≤ 3, and
does not otherwise depend on ψ. If we further assume the non-degeneracy
condition

(2.2) sup
t>0

|ψ̂(δ∗t ξ)| > 0 for ξ ̸= 0,

then we also have the reverse inequality of (2.1) and hence

∥gψ(f)∥p,w ≃ ∥f∥p,w for all p ∈ (1,∞) and w ∈ Ap.

By [25, Theorem 1.1], which generalizes a result of [17] to the case of non-
isotropic dilations, we have the boundedness (2.1) under conditions (1)–(3)
of Theorem 2.1, and the quantitative property of the constant C specified
follows by checking the proof in [25]. The proof of [25, Theorem 1.1] is based
on estimates for oscillatory integrals in [18].

Remark 2.2. If there exist positive numbers σ1, σ2 such that

|ψ(x)| ≤ C(1 + ρ(x)−1)γ−σ1(1 + ρ(x))−γ−σ2 for all x ∈ Rn,
then conditions (1)–(3) of Theorem 2.1 are satisfied with some ϵ, u and Cj ,
1 ≤ j ≤ 3. To see this, the formula (1.9) is useful.

To prove the reverse inequality of (2.1), we apply a result on the in-
vertibility on weighted Lp spaces of Fourier multipliers homogeneous with
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respect to δ∗t . Let m ∈ L∞(Rn), w ∈ Ap, 1 < p <∞. The Fourier multiplier
operator Tm is defined by

(2.3) Tm(f)(x) =
�

Rn

m(ξ)f̂(ξ)e2πi⟨x,ξ⟩ dξ.

We say that m is a Fourier multiplier for Lpw and write m ∈ Mp
w (we also

write Mp(w) for Mp
w) if there exists a constant C > 0 such that

(2.4) ∥Tm(f)∥p,w ≤ C∥f∥p,w for all f ∈ S.

We define ∥m∥Mp(w) to be the infimum of the constants C satisfying (2.4).
Since S is dense in Lpw, we have a unique extension of Tm to a bounded
linear operator on Lpw if m ∈ Mp

w. We observe that Mp(w) = Mp′(w̃−p′/p)
by duality, where w̃(x) = w(−x). See [12] for relevant results.

We need the following result generalizing [22, Theorem 2.5] to the case
of non-isotropic dilations.

Theorem 2.3. Let m be a bounded function on Rn which is continuous
on Rn \ {0}. Suppose that m is homogeneous of degree 0 with respect to δ∗t
and that m(ξ) ̸= 0 for all ξ ∈ Rn \ {0}. Also, suppose that m ∈ M r

v for
all r ∈ (1,∞) and all v ∈ Ar. Let 1 < p < ∞, w ∈ Ap and let F (z) be
holomorphic in D = C \ {0}. Then F (m(ξ)) ∈Mp

w.

For m ∈ Mp
w, 1 < p < ∞, w ∈ Ap, we consider the spectral radius

operator
ρp,w(m) = lim

k→∞
∥mk∥1/kMp(w).

To prove Theorem 2.3, we need the following.

Proposition 2.4. Suppose that 1 < p < ∞, w ∈ Ap and m ∈ L∞(Rn).
Let m be homogeneous of degree 0 with respect to the dilations δ∗t and contin-
uous on Sn−1. Assume that m ∈M r

v for all r ∈ (1,∞) and all v ∈ Ar. Then,
for any ϵ > 0, there exists ℓ ∈ Mp

w which is homogeneous of degree 0 with
respect to δ∗t and in C∞(Rn\{0}) such that ∥m−ℓ∥∞ < ϵ and ρp,w(m−ℓ) < ϵ.

To prove Proposition 2.4, we apply the following lemmas.

Lemma 2.5. Let η ∈C∞(R), supp η⊂ [1, 2], η≥ 0 and
	∞
0 |η(t)|2 dt/t=1.

Define a real function ψ in S0(Rn) by ψ̂(ξ) = η(ρ∗(ξ)). Then

∥gψ(f)∥p,w ≃ ∥f∥p,w for all p ∈ (1,∞) and w ∈ Ap.

Lemma 2.6. Suppose that m ∈ L∞(Rn), m ∈ C∞(Rn\{0}) and that m is
homogeneous of degree 0 with respect to δ∗t . Then m ∈Mp

w for all p ∈ (1,∞)
and w ∈ Ap and

∥m∥Mp(w) ≤ C sup
1≤ρ∗(ξ)≤2, |a|≤[γ]+1

|(∂ξ)am(ξ)|
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with a constant C independent of m, where (∂ξ)
a = (∂/∂ξ1)

a1 . . . (∂/∂ξn)
an

with a = (a1, . . . , an), aj ∈ Z, aj ≥ 0, 1 ≤ j ≤ n.

Proof of Lemma 2.5. By [25, Theorem 1.1] we see that ∥gψ(f)∥p,w ≤
C∥f∥p,w for all p ∈ (1,∞) and w ∈ Ap. To prove the reverse inequality we
note that ∥gψ(f)∥2 = ∥f∥2. Thus the polarization implies that for real-valued
f, h ∈ S,

4
�

Rn

f(x)h(x) dx =
�

Rn

(f(x) + h(x))2 dx−
�

Rn

(f(x)− h(x))2 dx

=
�

Rn

(gψ(f + h)(x))2 dx−
�

Rn

(gψ(f − h)(x))2 dx

= 4
�

Rn

∞�

0

f ∗ ψt(x)h ∗ ψt(x)
dt

t
dx.

Therefore, by the inequalities of Schwarz and Hölder we have∣∣∣ �

Rn

f(x)h(x) dx
∣∣∣ ≤ ∥gψ(f)∥p,w∥gψ(h)∥p′,w−p′/p ≤ C∥gψ(f)∥p,w∥h∥p′,w−p′/p .

Taking the supremum over h with ∥h∥p′,w−p′/p ≤ 1, we find that ∥f∥p,w ≤
C∥gψ(f)∥p,w, from which we can derive the desired estimates for complex-
valued functions.

Proof of Lemma 2.6. Let ψ be as in Lemma 2.5 and define ψm by
F(ψm)(ξ) = ψ̂(ξ)m(ξ). Then gψ(Tmf) = gψm(f). So, by Lemma 2.5 for
w ∈ Ap, 1 < p <∞, we have

(2.5) ∥Tmf∥p,w ≤ C∥gψ(Tmf)∥p,w = C∥gψm(f)∥p,w.
Since ψm ∈ S0, gψm is bounded on Lpw. To specify the operator bounds, we
apply the estimates (2.1). It is sufficient to observe the following estimates:

|ψm(x)| =
∣∣∣ �

Rn

ψ̂(ξ)m(ξ)e2πi⟨x,ξ⟩ dξ
∣∣∣(2.6)

≤ C(1 + |x|)−[γ]−1 sup
1≤ρ∗(ξ)≤2, |a|≤[γ]+1

|(∂ξ)am(ξ)|,

which follows by integration by parts, with the constant C independent of m.
Combining (2.5), (2.6) and the estimates (2.1), we obtain the conclusion.

Proof of Proposition 2.4. As in [11], [22], we take a sequence {φj}∞j=1 of
functions on the orthogonal group O(n) with the following properties:

(1) each φj is infinitely differentiable, non-negative and
	
O(n) φj(A) dA = 1,

where dA is the Haar measure on O(n);
(2) for any neighborhood U of the identity of O(n), there exists a positive

integer N such that supp(φj) ⊂ U for j ≥ N .
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For ξ ∈ Sn−1, let
m̃j(ξ) =

�

O(n)

m(Aξ)φj(A) dA.

Then m̃j is C∞ on Sn−1 (see [11, pp. 123–124]). For ξ ∈ Rn \ {0}, let

mj(ξ) = m̃j(δ
∗
ρ∗(ξ)−1ξ).

Then mj is homogeneous of degree 0 with respect to δ∗t , mj ∈ C∞(Rn \ {0})
and mj = m̃j on Sn−1.

We prove

(2.7) ρr,v(mj) ≤ ∥m∥∞, r ∈ (1,∞), v ∈ Ar.

For this it suffices to show that

∥mk
j ∥Mr(v) ≤ Cjk

[γ]+1∥m∥k∞,
where Cj is independent of k. This follows by Lemma 2.6, since

sup
1≤ρ∗(ξ)≤2, |a|≤[γ]+1

|(∂ξ)amj(ξ)
k| ≤ Cjk

[γ]+1∥m∥k∞.

To see this, it is helpful to refer to [11, pp. 123–124].
Since mj → m as j → ∞ uniformly on Sn−1, we can take ℓ = mj for j

large enough to get ∥m − ℓ∥∞ < ϵ. Let p ∈ (1,∞), w ∈ Ap. Confirming
that a result analogous to [22, Proposition 2.2] holds true in the setting of
non-isotropic dilations, we can find r > 1, s > 1 and θ ∈ (0, 1) such that
ws ∈ Ar and

∥(m−mj)
k∥Mp(w) ≤ ∥(m−mj)

k∥1−θ∞ ∥(m−mj)
k∥θMr(ws).

Thus
ρp,w(m−mj) ≤ ∥m−mj∥1−θ∞ ρr,ws(m−mj)

θ.

Since
ρr,ws(m−mj) ≤ ρr,ws(m) + ρr,ws(mj)

(see Riesz–Nagy [15, p. 426]), it follows that

ρp,w(m−mj) ≤ ∥m−mj∥1−θ∞ (ρr,ws(m) + ρr,ws(mj))
θ

≤ ∥m−mj∥1−θ∞ (ρr,ws(m) + ∥m∥∞)θ,

where the last inequality follows from (2.7). Since ∥m−mj∥∞ → 0 as j → ∞,
for a given ϵ > 0, taking ℓ = mj with j large enough, we have ρp,w(m−ℓ) < ϵ
and ∥m− ℓ∥∞ < ϵ.

Proof of Theorem 2.3. The proof is similar to that of [22, Theorem 2.5].
Let

ϵ0 =
1
4 min
ξ∈Sn−1

|m(ξ)|.
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Applying Proposition 2.4, we can find ℓ ∈Mp
w which is homogeneous of de-

gree 0 with respect to δ∗t and belongs to C∞(Rn\{0}) such that ∥m− ℓ∥∞ <
ϵ0 and ρp,w(m− ℓ) < ϵ0. Let C : ℓ(ξ) + 2ϵ0e

iθ, 0 ≤ θ ≤ 2π, be a circle in D.
Apply Cauchy’s formula to get

(2.8) F (m(ξ)) =
1

2πi

�

C

F (ζ)

ζ −m(ξ)
dζ =

ϵ0
π

2π�

0

F (ℓ(ξ) + 2ϵ0e
iθ)

2ϵ0eiθ + ℓ(ξ)−m(ξ)
eiθ dθ

for ξ ∈ Rn \ {0}. We expand the integrand in the last integral into a power
series by using

(2.9)
eiθ

2ϵ0eiθ + ℓ(ξ)−m(ξ)
=

1

2ϵ0

∞∑
k=0

(
m(ξ)− ℓ(ξ)

2ϵ0eiθ

)k
,

where the series converges uniformly in θ ∈ [0, 2π] since∣∣∣∣m(ξ)− ℓ(ξ)

2ϵ0eiθ

∣∣∣∣ ≤ 1

2
.

Substituting (2.9) in (2.8), we have

(2.10) F (m(ξ)) =
1

2π

∞∑
k=0

(
m(ξ)− ℓ(ξ)

2ϵ0

)k
Nk(ξ),

where

Nk(ξ) =

2π�

0

F (ℓ(ξ) + 2ϵ0e
iθ)e−ikθ dθ

and the series on the right hand side of (2.10) converges uniformly in ξ ∈
Rn \ {0}, since∣∣∣∣m(ξ)− ℓ(ξ)

2ϵ0

∣∣∣∣ ≤ 1

2
, ϵ0 ≤ |ℓ(ξ) + 2ϵ0e

iθ| ≤ ∥m∥∞ + 3ϵ0.

Also, Nk(ξ) is homogeneous of degree 0 with respect to δ∗t and infinitely
differentiable in Rn \ {0} and

sup
1≤ρ∗(ξ)≤2, |a|≤[γ]+1

|(∂ξ)aNk(ξ)| ≤ C

with C independent of k. Therefore, by Lemma 2.6 we have ∥Nk∥Mp(w) ≤ C
with a constant C independent of k. Thus we see that

∞∑
k=0

(2ϵ0)
−k∥(m− ℓ)k∥Mp(w)∥Nk∥Mp(w) ≤ C

∞∑
k=0

(2ϵ0)
−k∥(m− ℓ)k∥Mp(w),

and the last series converges since ∥(m − ℓ)k∥Mp(w) ≤ ϵk0 if k is sufficiently
large. From this and (2.10) we can infer that F (m) ∈Mp

w.

By Theorem 2.3 in particular we have the following.
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Corollary 2.7. Let 1 < p < ∞ and w ∈ Ap. Suppose that m is homo-
geneous of degree 0 with respect to δ∗t and that m ∈ M r

v for all r ∈ (1,∞)
and all v ∈ Ar. Assume further that m is continuous on Sn−1 and does not
vanish there. Then m−1 ∈Mp

w.

Proof. Take F (z) = 1/z in Theorem 2.3.

Applying Corollary 2.7 in the theory of Littlewood–Paley functions, we
can prove the following.

Theorem 2.8. Let ψ ∈ L1(Rn) satisfy (1.4). Suppose that ∥gψ(f)∥r,v ≤
Cr,v∥f∥r,v, f ∈ S, for all r ∈ (1,∞) and all v ∈ Ar and that m(ξ) =	∞
0 |ψ̂(δ∗t ξ)|2 dt/t is continuous and strictly positive on Sn−1. Let f ∈ S.

Then
∥f∥p,w ≤ Cp,w∥gψ(f)∥p,w

for all p ∈ (1,∞) and all w ∈ Ap.

To prove Theorem 2.8, we also need the following lemma.

Lemma 2.9. Suppose that ∥gψ(f)∥r,v ≤ Cr,v∥f∥r,v, f ∈ S, for all r ∈
(1,∞) and all v ∈ Ar. If m(ξ) is defined as in Theorem 2.8 and 1 < p <∞,
w ∈ Ap, then m ∈Mp

w.

Proof. For ϵ ∈ (0, 1), let

Ψ (ϵ)(x) =

ϵ−1�

ϵ

�

Rn

ψt(x+ y)ψ̄t(y) dy
dt

t
,

where ψ̄t denotes the complex conjugate. We note that

F(Ψ (ϵ))(ξ) =

ϵ−1�

ϵ

ψ̂(δ∗t tξ)
ˆ̄ψ(−δ∗t ξ)

dt

t
=

ϵ−1�

ϵ

|ψ̂(δ∗t ξ)|2
dt

t
=: m(ϵ)(ξ).

Therefore Ψ (ϵ) ∗ f = Tm(ϵ)f . We observe that

Ψ (ϵ) ∗ f(x) =
ϵ−1�

ϵ

�

Rn

ψt ∗ f(y)ψ̄t(y − x) dy
dt

t
;

�

Rn

Ψ (ϵ) ∗ f(x)h(x) dx =

ϵ−1�

ϵ

�

Rn

ψt ∗ f(y)ψ̄t ∗ h(y) dy
dt

t

for f, h ∈ S. Thus by the inequalities of Schwarz and Hölder we have∣∣∣ �

Rn

Ψ (ϵ) ∗ f(x)h(x) dx
∣∣∣ ≤ �

Rn

gψ(f)(y)gψ(h̄)(y) dy

≤ ∥gψ(f)∥p,w∥gψ(h̄)∥p′,w−p′/p

≤ C∥gψ(f)∥p,w∥h∥p′,w−p′/p .
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Taking the supremum over functions h with ∥h∥p′,w−p′/p ≤ 1, we have

∥Tm(ϵ)f∥p,w ≤ C∥gψ(f)∥p,w.

Letting ϵ→ 0 and noting m(ϵ) → m, we have

(2.11) ∥Tmf∥p,w ≤ C∥gψ(f)∥p,w.

Since ∥gψ(f)∥p,w ≤ C∥f∥p,w, we see that m ∈Mp
w.

Proof of Theorem 2.8. Let m be as in Theorem 2.8. Then by Lemma 2.9,
m ∈Mp

w for all p ∈ (1,∞) and w ∈ Ap. So we can apply Corollary 2.7 to m
to conclude that m−1 ∈Mp

w if 1 < p <∞, w ∈ Ap and hence by (2.11),

∥f∥p,w = ∥Tm−1Tmf∥p,w ≤ C∥Tmf∥p,w ≤ C∥gψ(f)∥p,w
for f ∈ S, which implies the conclusion.

Proof of Theorem 2.1. It remains to prove the reverse inequality of (2.1).
If m(ξ) =

	∞
0 |ψ̂(δ∗t ξ)|2 dt/t, then by the non-degeneracy (2.2) we have m(ξ)

̸= 0 for ξ ̸= 0. Therefore, by Theorem 2.8 we only have to show that m is
continuous on Sn−1. In [25], it has been shown that

2k+1�

2k

|ψ̂(δ∗t ξ)|2
dt

t
≤ Cmin(|δ∗2kξ|

ϵ, |δ∗2kξ|
−ϵ)

for ξ ∈ Sn−1 and k ∈ Z with some ϵ > 0 (see [25, Lemmas 3.1 and 3.3]). By
analogues for δ∗t of (a), (b) for δt in Section 1, it follows that

2k+1�

2k

|ψ̂(δ∗t ξ)|2
dt

t
≤ Cmin(2kϵ, 2−kϵ).

This implies that

ϵ−1�

ϵ

|ψ̂(δ∗t ξ)|2
dt

t
→

∞�

0

|ψ̂(δ∗t ξ)|2
dt

t
as ϵ→ 0

uniformly in ξ ∈ Sn−1. We note that
	ϵ−1

ϵ |ψ̂(δ∗t ξ)|2 dt/t is continuous on Sn−1

for each fixed ϵ > 0. Thus the continuity of m on Sn−1 follows by uniform
convergence.

Remark 2.10. Let ψ(j) ∈ L1(Rn) for j = 1, 2, . . . , ℓ. Suppose that ψ(j)

satisfies (1.4) and (1)–(3) of Theorem 2.1 for every j, 1 ≤ j ≤ ℓ. Let

Ψ(x) = (ψ(1)(x), . . . , ψ(ℓ)(x)),

Ψt(x) = (ψ
(1)
t (x), . . . , ψ

(ℓ)
t (x)), F(Ψt)(ξ) = (F(ψ

(1)
t )(ξ), . . . ,F(ψ

(ℓ)
t )(ξ)).
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We further assume that

(2.12) sup
t>0

|F (Ψt) (ξ)| = sup
t>0

( ℓ∑
j=1

|F(ψ(j))(δ∗t ξ)|2
)1/2

> 0, ∀ξ ∈ Rn\{0}.

Let
f ∗ Ψt(x) = (f ∗ ψ(1)

t (x), . . . , f ∗ ψ(ℓ)
t (x))

and

gΨ (f)(x) =

(∞�

0

|f ∗ Ψt(x)|2
dt

t

)1/2

, |f ∗ Ψt(x)| =
( ℓ∑
j=1

|f ∗ ψ(j)
t (x)|2

)1/2
.

Then by Theorem 2.1 we have ∥gΨ (f)∥p,w ≤ C∥f∥p,w. We can also prove the
reverse inequality by adapting the arguments given above when ℓ = 1 for
the present situation, applying the non-degeneracy (2.12). Thus

(2.13) ∥gΨ (f)∥p,w ≃ ∥f∥p,w.

Example. We give an example in the case of the Euclidean structures
(ρ(x) = |x|, δt(x) = tx) for which we can apply Remark 2.10 to get the
norm equivalence in (2.13). Let Pt(x) be the Poisson kernel on the upper
half-space Rn × (0,∞) defined by

Pt(x) = cn
t

(|x|2 + t2)(n+1)/2
=

�

Rn

e−2πt|ξ|e2πi⟨x,ξ⟩ dξ.

Let ψ(j)(x) = (∂/∂xj)P1(x), 1 ≤ j ≤ n. Then

F(ψ(j))(ξ) = 2πiξje
−2π|ξ|.

We can see that all the requirements in Remark 2.10 for ψ(j), 1 ≤ j ≤ n,
needed in the proof of (2.13) are fulfilled; in particular, (2.12) follows from

|F(Ψt)(ξ)| = 2πt|ξ|e−2πt|ξ|.

Thus we have (2.13) for Ψ = ((∂/∂x1)P1, . . . , (∂/∂xn)P1).

3. Proofs of Theorems 1.4 and 1.5. We apply the following estimates
in proving Theorem 1.4.

Lemma 3.1. Let F be a function in C∞(Rn \ {0}) which is homogeneous
of degree d with respect to δt. Then for ρ(x) ≥ 1 we have

|(∂x)aF (x)| ≤ Caρ(x)
d−|a|

for all multi-indices a with a positive constant Ca independent of x.

Proof. We write δt = (δij(t)), 1 ≤ i, j ≤ n. We have tdF (x) = F (δtx).
Differentiating both sides by using the chain rule on the right hand side, we
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have

td(∂x)
aF (x) =

[( n∏
j=1

( n∑
i=1

δij(t)∂/∂xi

)aj)
F
]
(δtx).

Substituting t = ρ(x)−1 in this equation, we have

|(∂x)aF (x)| ≤ C
(

sup
|b|=|a|,ρ(x)=1

|(∂x)bF (x)|
)(

sup
1≤i≤n,1≤j≤n

δij(ρ(x)
−1)

)|a|
ρ(x)d.

This implies what we need, since |δij(t)| ≤ Ct for 0 < t ≤ 1 by (b) of
Section 1.

Proof of Theorem 1.4. Let 0 < α < γ and Lα = F−1(ρ∗(ξ)−α). Then Lα
is homogeneous of degree α−γ with respect to δt and belongs to C∞(Rn\{0})
(see [4, pp. 162–165]). Let ψ(α) = Lα − Lα ∗ Φ. Then Hα(f) = gψ(α)(f).

We easily see that

(3.1) |ψ(α)(x)| ≤ Cρ(x)α−γ for ρ(x) ≤ 2.

Since
ψ(α)(x) =

�

Rn

(Lα(x)− Lα(x− y))Φ(y) dy,

and
|(∂x)aLα(x)| ≤ Caρ(x)

α−γ−|a| for ρ(x) ≥ 2

for all multi-indices a by Lemma 3.1, using Taylor’s formula with (1.16) and
noting that Φ is compactly supported, we see that

(3.2) |ψ(α)(x)| ≤ Cρ(x)α−γ−[α]−1 for ρ(x) ≥ 2,

where α−γ− [α]−1 < −γ. By (3.1), (3.2) and (1.9) it follows that ψ(α) ∈ L1

(see Remark 2.2). Also, we have

|F(ψ(α))(ξ)| = |ρ∗(ξ)−α(1− Φ̂(ξ))| ≤ Cρ∗(ξ)−α|ξ|[α]+1 ≤ Cρ∗(ξ)−α+[α]+1

for ρ∗(ξ) ≤ 1 by the analogue for ρ∗ of (4) for ρ of Section 1. So we have
F(ψ(α))(0) = 0, i.e.,

	
ψ(α) = 0; combining this with (3.1), (3.2) and (5) for

ρ of Section 1 we see that conditions (1)–(3) of Theorem 2.1 are satisfied for
ψ(α). Further, it is easy to see that

sup
t>0

|F(ψ(α))(δ∗t ξ)| > 0

for ξ ̸= 0. Thus all the assumptions of Theorem 2.1 are fulfilled for ψ(α) and
the conclusion of Theorem 1.4 follows by applying Theorem 2.1 to gψ(α) .

Remark 3.2. If ψ(α) is as in (1.6), in the case of the Euclidean norm
and the ordinary dilation, to prove ∥f∥p,w ≤ C∥gψ(α)(f)∥p,w, 0 < α < 2,
1 < p < ∞, w ∈ Ap, we can also apply the polarization technique as in the
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proof of Lemma 2.5 (see also [19]) instead of using Theorem 2.1 with the non-
degeneracy condition (2.2), which is applicable in a more general situation
of Theorem 1.4. This is the case because F(ψ(α)) is a radial function.

To prove Theorem 1.5 we prepare the following lemmas.

Lemma 3.3. Let 1 < p < ∞, w ∈ Ap and f ∈ Lpw. For a positive
integer m, let f(m) = fχEm , where

Em = {x ∈ Rn : |x| ≤ m, |f(x)| ≤ m}.

Then f(m) → f almost everywhere and in Lpw as m→ ∞.

Lemma 3.4. Let p, w and f be as in Lemma 3.3. Let φ be an infinitely
differentiable, non-negative function on Rn such that φ(ξ) = 1 for ρ∗(ξ) ≤ 1,
supp(φ) ⊂ {ρ∗(ξ) ≤ 2} and φ(ξ) = φ0(ρ

∗(ξ)) for some φ0 on R. Define
ζ(ϵ) ∈ S0 by

ζ(ϵ)(ξ) = φ(δ∗ϵ ξ)− φ(δ∗ϵ−1ξ), ϵ ∈ (0, 1/2).

Note that ζ(ϵ)(ξ) = ζ(ϵ/2)(ξ)ζ(ϵ)(ξ). Let f (ϵ) = f ∗ F−1(ζ(ϵ)). Then f (ϵ) → f
almost everywhere and in Lpw as ϵ→ 0.

Proof of Lemma 3.3. The pointwise convergence is obvious and the norm
convergence follows from Lebesgue’s dominated convergence theorem since
|f(m)| ≤ |f |.

Proof of Lemma 3.4. If f ∈ S, we easily see that f (ϵ) → f pointwise as
ϵ→ 0. Therefore, for f ∈ Lpw, we have∥∥∥ lim sup

ϵ→0
|f (ϵ) − f |

∥∥∥
p,w

≤
∥∥∥ lim sup

ϵ→0
|(f − h)(ϵ) − (f − h)|

∥∥∥
p,w

≤ C∥M(f − h)∥p,w ≤ C∥f − h∥p,w

for any h∈S. As S is dense in Lpw, it follows that lim supϵ→0 |f (ϵ)(x)−f(x)|=0
a.e., which implies pointwise convergence. Norm convergence follows from
pointwise convergence and the dominated convergence theorem since |f (ϵ)| ≤
CM(f) ∈ Lpw.

Proof of Theorem 1.5. Define fm,ϵ = (f(m))
(ϵ) for f ∈ Lpw. Then fm,ϵ∈S0.

By Theorem 1.4, we see that

(3.3) ∥Gα(fm,ϵ)∥p,w = ∥Hα(I−αfm,ϵ)∥p,w ≃ ∥I(ϵ/2)
−α fm,ϵ∥p,w,

where I(ϵ/2)
β (f) = F−1(ζ(ϵ/2)(ρ∗)−β)∗f , β ∈ R, for f ∈ Lpw and we have used

the equality I−αfm,ϵ = I(ϵ/2)
−α fm,ϵ. Using Lemma 3.3, we see that fm,ϵ → f (ϵ)

in Lpw, since

∥fm,ϵ − f (ϵ)∥p,w ≤ C∥M(f(m) − f)∥p,w ≤ C∥f(m) − f∥p,w



18 S. Sato

and also fm,ϵ → f (ϵ) pointwise, since

|fm,ϵ(x)− f (ϵ)(x)| =
∣∣∣ �(f(m)(y)− f(y))F−1(ζ(ϵ))(x− y) dy

∣∣∣
≤ ∥f(m) − f∥p,w

( �
|F−1(ζ(ϵ))(x− y)|p′w(y)−p′/p dy

)
.

Thus fm,ϵ−Φt ∗ fm,ϵ → f (ϵ)−Φt ∗ f (ϵ) a.e. as m→ ∞ and by (3.3) we have,
via Fatou’s lemma,

∥Gα(f (ϵ))∥p,w ≤ lim inf
m→∞

∥Gα(fm,ϵ)∥p,w

≤ C lim inf
m→∞

∥I(ϵ/2)
−α fm,ϵ∥p,w = C∥I(ϵ/2)

−α f (ϵ)∥p,w,

where the last equality follows since I(ϵ/2)
−α is bounded on Lpw. Thus we see

that Gα(f (ϵ)) ∈ Lpw. In fact, we also have the reverse inequality. To see this
we first note that

∥Gα(f (ϵ))−Gα(fm,ϵ)∥p,w ≤ ∥Gα(f (ϵ) − fm,ϵ)∥p,w(3.4)

= ∥Gα((f − f(m))
(ϵ))∥p,w.

Since

(f(k)−f(m))
(ϵ)−Φt ∗ (f(k)−f(m))

(ϵ) → (f −f(m))
(ϵ)−Φt ∗ (f −f(m))

(ϵ) a.e.

as k → ∞, by Fatou’s lemma we have

(3.5) ∥Gα((f − f(m))
(ϵ))∥p,w ≤ lim inf

k→∞
∥Gα((f(k) − f(m))

(ϵ))∥p,w.

Since (f(k) − f(m))
(ϵ) ∈ S0, by Theorem 1.4 we have

∥Gα((f(k) − f(m))
(ϵ))∥p,w ≃ ∥I−α((f(k) − f(m))

(ϵ))∥p,w
= ∥I(ϵ/2)

−α ((f(k) − f(m))
(ϵ))∥p,w.

Since f(m) → f in Lpw, this implies that

lim
k,m→∞

∥Gα((f(k) − f(m))
(ϵ))∥p,w = 0.

Thus by (3.4) and (3.5), it follows that Gα(fm,ϵ) → Gα(f
(ϵ)) in Lpw as

m→ ∞. Therefore, letting m→ ∞ in (3.3), we have

(3.6) ∥Gα(f (ϵ))∥p,w ≃ ∥I(ϵ/2)
−α f (ϵ)∥p,w.

Suppose that f ∈Wα,p
w and let g = I−α(f). We show that

(3.7) I(ϵ/2)
−α f (ϵ) = g(ϵ)

as follows. For h ∈ S0 we have�
g(ϵ)Iα(h) dx = lim

m→∞

�
gm,ϵIα(h) dx = lim

m→∞

�
I(ϵ/2)
α (gm,ϵ)h dx

=
�
I(ϵ/2)
α (g(ϵ))h dx.
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Also,
�
g(ϵ)Iα(h) dx = lim

m→∞

�
gm,ϵIα(h) dx

= lim
m→∞

�
g(m)Iα(h(ϵ)) dx =

�
gIα(h(ϵ)) dx.

By the definition of g = I−α(f),
	
gIα(h(ϵ)) dx =

	
fh(ϵ) dx. Thus

�
g(ϵ)Iα(h) dx =

�
fh(ϵ) dx = lim

m→∞

�
f(m)h

(ϵ) dx

= lim
m→∞

�
fm,ϵh dx =

�
f (ϵ)h dx.

Therefore �
I(ϵ/2)
α (g(ϵ))h dx =

�
f (ϵ)h dx for all h ∈ S0,

which implies that I(ϵ/2)
α (g(ϵ)) = f (ϵ). Since I(ϵ/2)

α and I(ϵ/2)
−α are bounded

on Lpw and the mapping f 7→ f (ϵ) is also bounded on Lpw, by Lemma 3.3 we
see that

I(ϵ/2)
−α (f (ϵ)) = I(ϵ/2)

−α I(ϵ/2)
α (g(ϵ)) = lim

m→∞
I(ϵ/2)
−α I(ϵ/2)

α (gm,ϵ)

= lim
m→∞

gm,ϵ = g(ϵ),

which proves (3.7).
By (3.6) and (3.7), we have

∥Gα(f (ϵ))∥p,w ≤ C∥g(ϵ)∥p,w ≤ C∥M(g)∥p,w ≤ C∥g∥p,w.

Letting ϵ→ 0 and applying Lemma 3.4 and Fatou’s lemma, we have

(3.8) ∥Gα(f)∥p,w ≤ C∥I−α(f)∥p,w.

Conversely, let us assume that f ∈ Lpw and Gα(f) ∈ Lpw. By Minkowski’s
inequality we see that

(3.9) ∥Gα(f (ϵ))∥p,w ≤ C∥M(Gα(f))∥p,w ≤ C∥Gα(f)∥p,w.

Applying (3.6) and (3.9), we find that

sup
ϵ∈(0,1/2)

∥I(ϵ/2)
−α f (ϵ)∥p,w ≤ C sup

ϵ∈(0,1/2)
∥Gα(f (ϵ))∥p,w ≤ C∥Gα(f)∥p,w.

Therefore, there exist a sequence {ϵk}, 0 < ϵk < 1/2, and a function g ∈ Lpw

such that ϵk → 0 and I(ϵk/2)
−α f (ϵk) → g weakly in Lpw as k → ∞ and

(3.10) ∥g∥p,w ≤ C∥Gα(f)∥p,w.
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We now show that f = Iαg. By Lemma 3.4, f (ϵk) → f in Lpw. So, for
h ∈ S0 we have�

Rn

fh dx = lim
k→∞

�

Rn

f (ϵk)h dx = lim
k→∞

lim
m→∞

�

Rn

fm,ϵkh dx

= lim
k→∞

lim
m→∞

�

Rn

I−α(fm,ϵk)Iα(h) dx

= lim
k→∞

lim
m→∞

�

Rn

I(ϵk/2)
−α (fm,ϵk)Iα(h) dx

= lim
k→∞

�

Rn

I(ϵk/2)
−α (f (ϵk))Iα(h) dx =

�

Rn

gIα(h) dx.

This implies that f = Iαg by definition. By (3.10) we have

∥I−αf∥p,w = ∥g∥p,w ≤ C∥Gα(f)∥p,w,
which combined with (3.8), completes the proof of Theorem 1.5.

4. Characterization of Wα,p
w by square functions defined by re-

peated averaging. Let Φ ∈ M1. Define Λjtf(x), j ≥ 1, by Λjtf(x) =

f ∗ Φ(j)
t (x), where

Φ(1)(x) = Φ(x), Φ(j)(x) =

j︷ ︸︸ ︷
Φ ∗ · · · ∗ Φ(x), j ≥ 2.

We also write Λtf(x) for Λ1
t f(x). Let I be the identity operator and k a

positive integer. We consider

(4.1) (I − Λt)
kf(x) = f(x) +

k∑
j=1

(−1)j
(
k

j

)
Λjtf(x)

= f(x)−K
(k)
t ∗ f(x) =

�

Rn

(f(x)− f(x− y))K
(k)
t (y) dy

for appropriate functions f , where

(4.2) K(k)(x) = −
k∑
j=1

(−1)j
(
k

j

)
Φ(j)(x),

and we have used the equation

(4.3)
�

Rn

K(k)(x) dx = −
k∑
j=1

(−1)j
(
k

j

)
= 1.

Define

(4.4) E(k)
α (f)(x) =

(∞�

0

|(I − Λt)
kf(x)|2 dt

t1+2α

)1/2

, α > 0.
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If Φ = χ0 = |B(0, 1)|−1χB(0,1) and k = 2 in (4.4), we have

E(2)
α (f)(x) =

(∞�

0

∣∣∣f(x)− 2
�

B(x,t)

f(y) dy +
�

B(x,t)

(f)B(y,t) dy
∣∣∣2 dt

t1+2α

)1/2

,

where (f)B(y,t) =
�
B(y,t) f . Also, let

(4.5) U (k)
α (f)(x) =

(∞�

0

|(I − Λt)
kIα(f)(x)|2

dt

t1+2α

)1/2

,

where 0 < α < γ, f ∈ S0. Using (4.1), we can rewrite E(k)
α (f) in (4.4) and

U
(k)
α (f) in (4.5) as follows:

E(k)
α (f)(x) =

(∞�

0

|f(x)−K
(k)
t ∗ f(x)|2 dt

t1+2α

)1/2

,(4.6)

U (k)
α (f)(x) =

(∞�

0

|Iα(f)(x)−K
(k)
t ∗ Iα(f)(x)|2

dt

t1+2α

)1/2

,(4.7)

where K(k) is as in (4.2).
As applications of Theorems 1.4 and 1.5 we have the following theorems.

Theorem 4.1. Let 0 < α < min(2k, γ), 1 < p <∞, w ∈ Ap and let U (k)
α

be as in (4.5). Then

∥U (k)
α (f)∥p,w ≃ ∥f∥p,w, f ∈ S0(Rn).

Theorem 4.2. Let 1 < p < ∞, w ∈ Ap and 0 < α < min(2k, γ). Let
E

(k)
α be as in (4.4). Then f ∈Wα,p

w if and only if f ∈ Lpw and E(k)
α (f) ∈ Lpw;

moreover,
∥I−α(f)∥p,w ≃ ∥E(k)

α (f)∥p,w.

Proofs of Theorems 4.1 and 4.2. Using the expressions of E(k)
α (f) and

U
(k)
α (f) in (4.6) and (4.7), we can derive Theorems 4.1 and 4.2 from Theorems

1.4 and 1.5, respectively, if K(k) ∈ M2k−1, since then K(k) ∈ Mα for α ∈
(0,min(2k, γ)).

To show that K(k) ∈ M2k−1, first we easily see that K(k) is bounded and
compactly supported. Since we have already noted (4.3), it remains to show
that

(4.8)
�

Rn

yaK(k)(y) dy = 0 if 1 ≤ |a| < 2k.

This can be shown as follows. Since Φ ∈ M1, we have
	
yaΦ(y) dy = 0 for

|a| = 1, which implies that ∂aξ Φ̂(0) = 0 for |a| = 1. Thus near ξ = 0, we have
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1− F(K(k))(ξ) = 1 +

k∑
j=1

(−1)j
(
k

j

)
Φ̂(ξ)j = (1− Φ̂(ξ))k = O(|ξ|2k).(4.9)

Also, by Taylor’s formula we see that

(4.10) F(K(k))(ξ) = 1 +
∑

1≤|a|<2k

Caξ
a∂aξF(K

(k))(0) +O(|ξ|2k).

From (4.9) and (4.10) it follows that∑
1≤|a|<2k

Caξ
a∂aξF(K

(k))(0) = O(|ξ|2k).

This implies that ∂aξF(K
(k))(0) = 0 for 1 ≤ |a| < 2k, and hence we have

(4.8).

Remark 4.3. In the definitions of E(k)
α and U (k)

α in (4.4) and (4.5), if we
assume only that Φ belongs to M0, then we have analogues of Theorems 4.1
and 4.2 for the range (0,min(k, γ)) of α.

5. The Sobolev spaces Wα,p
w and distributional derivatives. In R2,

we consider P = diag(1, 2), δt = diag(t, t2). Then γ = 3 and

ρ(x1, x2) =
1√
2

√
x21 +

√
x41 + 4x22,

ρ∗ = ρ, δ∗t = δt. Under this setting, let Wα,p
w be the weighted Sobolev space

on R2 defined in Section 1 with 0 < α < 3, 1 < p <∞, w ∈ Ap. Then W 2,p
w

can be characterized by using distributional derivatives as follows.

Theorem 5.1. Let f ∈ Lpw with 1 < p < ∞, w ∈ Ap. Let (∂/∂x1)
2f ,

∂/∂x2f be the distributional derivatives in S′ (the space of tempered distri-
butions). Then f ∈ W 2,p

w if and only if (∂/∂x1)2f ∈ Lpw and ∂/∂x2f ∈ Lpw;
further,

∥I−α(f)∥2,w ≃ ∥(∂/∂x1)2f∥p,w + ∥∂/∂x2f∥p,w.

Proof. Suppose that f ∈W 2,p
w . Let g = I−2(f) ∈ Lpw. Then

(5.1)
�
fh dx =

�
gI2(h) dx for all h ∈ S0.

Let k(ξ) = −4π2ξ21 . Let gm,ϵ = g(m) ∗ F−1(ζ(ϵ)) be as in Section 3. Then by
(5.1) we see that for h ∈ S0,

(5.2)
�
f(∂/∂x1)

2h dx =
�
gI2((∂/∂x1)2h) dx =

�
gI2(Tkh) dx

= lim
ϵ→0

lim
m→∞

�
gm,ϵI2(Tkh) dx = lim

ϵ→0
lim
m→∞

�
Tk(ρ∗)−2(gm,ϵ)h dx.

Since k(ρ∗)−2 is homogeneous of degree 0 with respect to δ∗t and infinitely
differentiable in R2 \ {0}, by Lemma 2.6 the multiplier operator Tk(ρ∗)−2 is
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bounded on Lpw. Thus Tk(ρ∗)−2(gm,ϵ) → Tk(ρ∗)−2(g) in Lpw as m → ∞ and
ϵ → 0 since gm,ϵ → g in Lpw as m → ∞ and ϵ → 0. Therefore, by (5.2) we
have

(5.3)
�
f(∂/∂x1)

2h dx =
�
Tk(ρ∗)−2(g)h dx h ∈ S0,

which implies that

(5.4)
�
f(∂/∂x1)

2ψ dx =
�
Tk(ρ∗)−2(g)ψ dx for all ψ ∈ S.

It follows that

(5.5) (∂/∂x1)
2f = Tk(ρ∗)−2(g) in S′.

To see (5.4), substitute ψ − F−1(φ(δ−1
ϵ ξ)ψ̂(ξ)) for h in (5.3), where φ is as

in Lemma 3.4, and let ϵ→ 0.
Let ℓ(ξ) = 2πiξ2. Then, arguing similarly to the above and noting that

ℓ(ρ∗)−2 is homogeneous of degree 0 with respect to δ∗t and infinitely differ-
entiable in R2 \ {0}, we see that Tℓ(ρ∗)−2 (g) ∈ Lpw and

−
�
f∂/∂x2ψ dx =

�
Tℓ(ρ∗)−2(g)ψ dx for all ψ ∈ S,

which implies that

(5.6) ∂/∂x2f = Tℓ(ρ∗)−2(g) in S′.

Combining (5.5) and (5.6), we have

(5.7) ∥(∂/∂x1)2f∥p,w + ∥∂/∂x2f∥p,w ≤ C∥g∥p,w = C∥I−2(f)∥p,w.
Conversely, suppose that (∂/∂x1)

2f =: Θ ∈ Lpw and ∂/∂x2f =: Ξ ∈ Lpw.
Then, for h ∈ S0 we have�

f(∂/∂x1)
2h dx =

�
Θhdx, −

�
f∂/∂x2h dx =

�
Ξhdx,

and hence

(5.8)
�
f(Tkh− Tℓh) dx =

�
f((∂/∂x1)

2h− ∂/∂x2h) dx =
�
(Θ +Ξ)h dx,

where k(ξ) and ℓ(ξ) are as above. Let

N(ξ) =
k(ξ)− ℓ(ξ)

ρ∗(ξ)2
=

−4π2ξ21 − 2πiξ2
ρ∗(ξ)2

.

Then, substituting I2(h) for h in (5.8), we have

(5.9)
�
fTNh dx =

�
(Θ +Ξ)I2(h) dx.

We note that the functions N and Ñ−1 are homogeneous of degree 0 with
respect to δ∗t and infinitely differentiable in R2 \ {0}, where Ñ(ξ) = N(−ξ).
So, T

Ñ−1 is bounded on Lpw by Lemma 2.6. Substituting TN−1h for h in (5.9),
we have

(5.10)
�
fh dx =

�
(Θ +Ξ)TN−1(I2(h)) dx =

�
T
Ñ−1(Θ +Ξ)I2(h) dx,
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where the last equality follows as (5.3), since T
Ñ−1 is bounded on Lpw. By

(5.10) we see that f ∈W 2,p
w and

I−2(f) = T
Ñ−1(Θ +Ξ)

and

∥I−2(f)∥p,w ≤ C∥Θ∥p,w + C∥Ξ∥p,w = C∥(∂/∂x1)2f∥p,w + C∥∂/∂x2f∥p,w,
which combined with (5.7) completes the proof of the theorem.

We conclude this note with two remarks.

Remark 5.2. To characterize the (unweighted) Sobolev spaces Wα,p

we can also apply the square functions of Luzin area integral type instead
of Littlewood–Paley function type (see [26]). In [23], certain (H1) Sobolev
spaces were characterized by using square functions of Luzin area integral
type. The characterization of those Sobolev spaces by square functions of
Littlewood–Paley type analogous to Theorem 1.5 is yet to be proved.

Remark 5.3. Let us consider another square function of Marcinkiewicz
type:

Dα(f)(x) =
( �

Rn

|Iα(f)(x+ y)− Iα(f)(x)|2|y|−n−2α dy
)1/2

,

where Iα is as in (1.2). Let 0 < α < 1 and p0 = 2n/(n + 2α) > 1. Then it
is known that the operator Dα is bounded on Lp(Rn) if p0 < p < ∞ ([27])
and that Dα is of weak type (p0, p0) ([8]). In [24] analogues of these results
were established in the case of dilations δt = tP when P is diagonal.
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