Sobolev spaces with non-isotropic dilations and square functions of Marcinkiewicz type

by
Shuichi Sato (Kanazawa)

Abstract

We consider the weighted Sobolev spaces associated with non-isotropic dilations of Calderón-Torchinsky and characterize the spaces by the square functions of Marcinkiewicz type including those defined with repeated uses of averaging operation.

1. Introduction. Let $B(x, t)$ be a ball in \mathbb{R}^{n} with radius t centered at x. For $0<\alpha<2$ let

$$
\begin{equation*}
V_{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|f(x)-f_{B(x, t)} f(y) d y\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2} \tag{1.1}
\end{equation*}
$$

where $f_{B(x, t)} f(y) d y$ denotes $|B(x, t)|^{-1} \int_{B(x, t)} f(y) d y$ and $|B(x, t)|$ the Lebesgue measure. In [1] the operator V_{1} was used to characterize the Sobolev space $W^{1, p}\left(\mathbb{R}^{n}\right)$ as follows.

Theorem A. Let $1<p<\infty$. Then f belongs to $W^{1, p}\left(\mathbb{R}^{n}\right)$ if and only if $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $V_{1}(f) \in L^{p}\left(\mathbb{R}^{n}\right)$; furthermore,

$$
\left\|V_{1}(f)\right\|_{p} \simeq\|\nabla f\|_{p}
$$

which means that there exist positive constants c_{1}, c_{2} independent of f such that

$$
c_{1}\left\|V_{1}(f)\right\|_{p} \leq\|\nabla f\|_{p} \leq c_{2}\left\|V_{1}(f)\right\|_{p}
$$

Let $\mathcal{S}\left(\mathbb{R}^{n}\right)$ be the Schwartz class of rapidly decreasing smooth functions on \mathbb{R}^{n}. Define

$$
\mathcal{S}_{0}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{S}\left(\mathbb{R}^{n}\right): \hat{f} \text { vanishes near the origin }\right\}
$$

[^0]where the Fourier transform \hat{f} is defined as
$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i\langle x, \xi\rangle} d x, \quad\langle x, \xi\rangle=\sum_{k=1}^{n} x_{k} \xi_{k}
$$

We also write $\mathcal{F}(f)$ for \hat{f}. For $0<\alpha<n, n \geq 2$, let I_{α} be the Riesz potential operator defined by

$$
\begin{equation*}
\mathcal{F}\left(I_{\alpha}(f)\right)(\xi)=(2 \pi|\xi|)^{-\alpha} \hat{f}(\xi), \quad f \in \mathcal{S}_{0} \tag{1.2}
\end{equation*}
$$

(see [28, Chap. V]). Let

$$
\begin{equation*}
S_{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|I_{\alpha}(f)(x)-\int_{B(x, t)} I_{\alpha}(f)(y) d y\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

Then we also find the following result in [1].
Theorem B. Let $0<\alpha<2$ and $1<p<\infty$. Then

$$
\left\|S_{\alpha}(f)\right\|_{p} \simeq\|f\|_{p}
$$

Theorem A can be derived from this result with $\alpha=1$ when $n \geq 2$.
The operator S_{α} is a kind of Littlewood-Paley operator. Let $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ satisfy

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \psi(x) d x=0 \tag{1.4}
\end{equation*}
$$

Put $\psi_{t}(x)=t^{-n} \psi\left(t^{-1} x\right)$. Then the Littlewood-Paley function on \mathbb{R}^{n} is defined by

$$
\begin{equation*}
g_{\psi}(f)(x)=\left(\int_{0}^{\infty}\left|f * \psi_{t}(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2} \tag{1.5}
\end{equation*}
$$

We can see that $S_{\alpha}(f)=g_{\psi^{(\alpha)}}(f)$, where

$$
\begin{equation*}
\psi^{(\alpha)}(x)=L_{\alpha}(x)-\Phi * L_{\alpha}(x) \tag{1.6}
\end{equation*}
$$

with

$$
L_{\alpha}(x)=\tau(\alpha)|x|^{\alpha-n}, \quad \tau(\alpha)=\frac{\Gamma(n / 2-\alpha / 2)}{\pi^{n / 2} 2^{\alpha} \Gamma(\alpha / 2)}
$$

and $\Phi=\chi_{0}, \chi_{0}=|B(0,1)|^{-1} \chi_{B(0,1)}\left(\chi_{E}\right.$ denotes the characteristic function of a set $E)$. We note that $\mathcal{F}\left(L_{\alpha}\right)(\xi)=(2 \pi|\xi|)^{-\alpha}, 0<\alpha<n$.

The square function $S_{1}(f)$ is closely related to the Marcinkiewicz function on \mathbb{R}^{1}, which is defined by

$$
\mu(f)(x)=\left(\int_{0}^{\infty}|F(x+t)+F(x-t)-2 F(x)|^{2} \frac{d t}{t^{3}}\right)^{1 / 2}
$$

where $F(x)=\int_{-\infty}^{x} f(y) d y$ for $f \in \mathcal{S}(\mathbb{R})$. It is known that

$$
\begin{equation*}
\|\mu(f)\|_{p} \simeq\|f\|_{p} \tag{1.7}
\end{equation*}
$$

for $1<p<\infty$. Also, we consider a variant of $\mu(f)$ which can be regarded as an analogue of S_{1} in the one-dimensional case:

$$
\nu(f)(x)=\left(\int_{0}^{\infty}\left|F(x)-F * \Phi_{t}(x)\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2},
$$

where $\Phi=(1 / 2) \chi_{[-1,1]}$. It is known that

$$
\mu(f)=g_{\psi}(f) \quad \text { with } \quad \psi(x)=\chi_{[-1,1]}(x) \operatorname{sgn}(x) .
$$

By inspection, we see that $\nu(f)=g_{\psi(0)}(f)$, where $\psi^{(0)}(x)=(1 / 2) \psi(x)-$ $(1 / 2) \psi^{(1)}(x)$ with $\psi^{(1)}(x)=x \chi_{[-1,1]}(x)$. This would indicate that the square functions $\mu(f)$ and $\nu(f)$ are intimately related. For the Marcinkiewicz function we refer to [14], Zygmund [32], Waterman [31].

An interesting feature of Theorem A is that it suggests the possibility of defining the Sobolev space analogous to $W^{1, p}\left(\mathbb{R}^{n}\right)$ in metric measure spaces in a reasonable way. In this note, we shall extend Theorem A to the case of weighted Sobolev spaces with parabolic metrics of Calderón-Torchinsky [3, 4].

Let P be an $n \times n$ real matrix, $n \geq 2$, such that

$$
\begin{equation*}
\langle P x, x\rangle \geq\langle x, x\rangle \quad \text { for all } x \in \mathbb{R}^{n} . \tag{1.8}
\end{equation*}
$$

A dilation group $\left\{\delta_{t}\right\}_{t>0}$ on \mathbb{R}^{n} is defined by $\delta_{t}=t^{P}=\exp ((\log t) P)$.
It is known that $\left|\delta_{t} x\right|=\left\langle\delta_{t} x, \delta_{t} x\right\rangle^{1 / 2}$ is strictly increasing as a function of t on $(0, \infty)$ when $x \neq 0$. Let $\rho(x), x \neq 0$, be the unique positive real number t such that $\left|\delta_{t^{-1}} x\right|=1$, and let $\rho(0)=0$. Then the norm function ρ is continuous on \mathbb{R}^{n} and infinitely differentiable in $\mathbb{R}^{n} \backslash\{0\}$ and satisfies $\rho\left(A_{t} x\right)=t \rho(x), t>0, x \in \mathbb{R}^{n}$. We have the following properties of $\rho(x)$ (see [3, 5]):
(1) $\rho(-x)=\rho(x)$ for all $x \in \mathbb{R}^{n}$;
(2) $\rho(x+y) \leq \rho(x)+\rho(y)$ for all $x, y \in \mathbb{R}^{n}$;
(3) $\rho(x) \leq 1$ if and only if $|x| \leq 1$;
(4) $c_{1} \rho(x)^{\tau_{1}} \leq|x| \leq \rho(x)$ when $|x| \leq 1$ for some $c_{1}, \tau_{1}>0$;
(5) $\rho(x) \leq|x| \leq c_{2} \rho(x)^{\tau_{2}}$ when $|x| \geq 1$ for some $c_{2}, \tau_{2}>0$.

Moreover,
(a) $\left|\delta_{t} x\right| \geq t|x|$ for all $x \in \mathbb{R}^{n}$ and $t \geq 1$;
(b) $\left|\delta_{t} x\right| \leq t|x|$ for all $x \in \mathbb{R}^{n}$ and $0<t \leq 1$.

Let δ_{t}^{*} denote the adjoint of δ_{t}. Then we can also consider a norm function $\rho^{*}(x)$ associated with the dilation group $\left\{\delta_{t}^{*}\right\}_{t>0}$, and we have properties of
$\rho^{*}(x)$ and δ_{t}^{*} analogous to those of $\rho(x)$ and δ_{t} above. It is known that a polar coordinates expression for the Lebesgue measure

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty} \int_{S^{n-1}} f\left(\delta_{t} \theta\right) t^{\gamma-1} s(\theta) d \sigma(\theta) d t \tag{1.9}
\end{equation*}
$$

holds, where $\gamma=\operatorname{trace} P$ and s is a strictly positive C^{∞} function on $S^{n-1}=$ $\{|x|=1\}$ and $d \sigma$ is the Lebesgue surface measure on S^{n-1} (see [7, 16, 29]). We note that the condition 1.8 implies that all eigenvalues of P have real parts greater than or equal to 1 (see [3, pp. 3-4], [13, p. 137]). So we have $\gamma \geq n$.

Let

$$
\begin{equation*}
B(x, t)=\left\{y \in \mathbb{R}^{n}: \rho(x-y)<t\right\} \tag{1.10}
\end{equation*}
$$

be a ball with respect to ρ (a ρ-ball) in \mathbb{R}^{n} with radius t centered at x. We say that a weight function w belongs to the Muckenhoupt class $A_{p}, 1<p<\infty$, if

$$
[w]_{A_{p}}=\sup _{B}\left(|B|^{-1} \int_{B} w(x) d x\right)\left(|B|^{-1} \int_{B} w(x)^{-1 /(p-1)} d x\right)^{p-1}<\infty
$$

where the supremum is taken over all ρ-balls B in \mathbb{R}^{n}. The Hardy-Littlewood maximal operator M is defined as

$$
M(f)(x)=\sup _{x \in B}|B|^{-1} \int_{B}|f(y)| d y
$$

where the supremum is taken over all ρ-balls B in \mathbb{R}^{n} containing x. The class A_{1} is defined to be the family of weight functions w such that $M(w) \leq C w$ almost everywhere; the infimum of all such C will be denoted by $[w]_{A_{1}}$. We denote by $L_{w}^{p}\left(\right.$ or $\left.L^{p}(w)\right)$ the weighted L^{p} space with the norm defined as

$$
\|f\|_{L_{w}^{p}}=\|f\|_{L^{p}(w)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p}
$$

See [2, 6, 6, 30] for results related to the weight class A_{p}. The following results are known and useful.

Proposition 1.1. Let $1<p<\infty$ and $w \in A_{p}$.
(i) The space \mathcal{S}_{0} is dense in L_{w}^{p}.
(ii) The maximal operator M is bounded on L_{w}^{p}.
(iii) If $\varphi \in \mathcal{S}$, then $\sup _{t>0}\left|f * \varphi_{t}\right| \leq C M(f)$. Here and in what follows $\varphi_{t}(x)=t^{-\gamma} \varphi\left(\delta_{t}^{-1} x\right)$.
(iv) $\mathcal{F}\left(g * \varphi_{t}\right)(\xi)=\hat{g}(\xi) \hat{\varphi}\left(\delta_{t}^{*} \xi\right)$ for $g, \varphi \in \mathcal{S}$.

Let $\beta \in \mathbb{R}$ and define the Riesz potential operator \mathcal{I}_{β} associated with the dilations δ_{t}^{*} by

$$
\begin{equation*}
\mathcal{F}\left(\mathcal{I}_{\beta}(f)\right)(\xi)=\rho^{*}(\xi)^{-\beta} \hat{f}(\xi) \tag{1.11}
\end{equation*}
$$

for $f \in \mathcal{S}_{0}$. Let $1<p<\infty, \alpha>0$ and $w \in A_{p}$. Define the weighted parabolic Sobolev space $W_{w}^{\alpha, p}$ by

$$
\begin{equation*}
W_{w}^{\alpha, p}=\left\{f \in L_{w}^{p}: f=\mathcal{I}_{\alpha}(g) \text { for some } g \in L_{w}^{p}\right\} \tag{1.12}
\end{equation*}
$$

where $f=\mathcal{I}_{\alpha}(g)$ means that

$$
\int_{\mathbb{R}^{n}} f(x) h(x) d x=\int_{\mathbb{R}^{n}} g(x) \mathcal{I}_{\alpha}(h) d x \quad \text { for all } h \in \mathcal{S}_{0}
$$

We note that the function $g \in L_{w}^{p}$ is uniquely determined by f, since \mathcal{I}_{α} is a bijection on \mathcal{S}_{0} and \mathcal{S}_{0} is dense in $L^{p^{\prime}}\left(w^{-p^{\prime} / p}\right)$, the dual space of $L^{p}(w)$, where $1 / p+1 / p^{\prime}=1$. We write $g=\mathcal{I}_{-\alpha}(f)$. For $f \in W_{w}^{\alpha, p}$ we define

$$
\begin{equation*}
\|f\|_{p, \alpha, w}=\|f\|_{p, w}+\left\|\mathcal{I}_{-\alpha}(f)\right\|_{p, w} \tag{1.13}
\end{equation*}
$$

We have analogues of Theorems A and B in the case of non-isotropic dilations δ_{t} with weights. Let $B(x, t)$ be as in 1.10 and

$$
\begin{equation*}
B_{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|f(x)-\int_{B(x, t)} f(y) d y\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2}, \quad \alpha>0 \tag{1.14}
\end{equation*}
$$

Theorem 1.2. Suppose that $1<p<\infty, w \in A_{p}$ and $0<\alpha<2$. Then $f \in W_{w}^{\alpha, p}$ if and only if $f \in L_{w}^{p}$ and $B_{\alpha}(f) \in L_{w}^{p}$; moreover,

$$
\left\|\mathcal{I}_{-\alpha}(f)\right\|_{p, w} \simeq\left\|B_{\alpha}(f)\right\|_{p, w}
$$

Let

$$
\begin{equation*}
C_{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|\mathcal{I}_{\alpha}(f)(x)-\int_{B(x, t)} \mathcal{I}_{\alpha}(f)(y) d y\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2} \tag{1.15}
\end{equation*}
$$

Then Theorem 1.2 can be derived from the following result.
TheOrem 1.3. Let $1<p<\infty, w \in A_{p}, 0<\alpha<2$ and let C_{α} be as in 1.15. Then

$$
\left\|C_{\alpha}(f)\right\|_{p, w} \simeq\|f\|_{p, w}, \quad f \in \mathcal{S}_{0}\left(\mathbb{R}^{n}\right)
$$

The range of α in Theorem 1.2 will be extended in Theorem 4.2 by considering square functions with repeated uses of averaging operation $f_{B} f$.

We consider square functions generalizing B_{α} and C_{α} in (1.14) and (1.15). Let Φ be a bounded function on \mathbb{R}^{n} with compact support. We say that $\Phi \in \mathcal{M}^{\alpha}, \alpha \geq 0$, if Φ satisfies
(i) $\int_{\mathbb{R}^{n}} \Phi(x) d x=1$;
(ii) if $\alpha \geq 1$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \Phi(x) x^{a} d x=0 \quad \text { for all multi-indices } a \text { with } 1 \leq|a| \leq[\alpha] \tag{1.16}
\end{equation*}
$$

where $x^{a}=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ with $a=\left(a_{1}, \ldots, a_{n}\right),|a|=a_{1}+\cdots+a_{n}, a_{j} \in \mathbb{Z}$, $a_{j} \geq 0,1 \leq j \leq n$, and $[\alpha]=\max \{k \in \mathbb{Z}: k \leq \alpha\}$.

We note that $\mathcal{M}^{\alpha} \subset \mathcal{M}^{\beta}$ if $\alpha \geq \beta$ and $\mathcal{M}^{\alpha}=\mathcal{M}^{j}$ if $j \leq \alpha<j+1$, $j \geq 0, j \in \mathbb{Z}$. If Φ is even and $1 \leq \alpha<2$, we have (1.16). In particular, $\chi_{0}=|B(0,1)|^{-1} \chi_{B(0,1)} \in \mathcal{M}^{\alpha}$ for $0 \leq \alpha<2$.

Let $\Phi \in \mathcal{M}^{\alpha}$ and

$$
\begin{equation*}
G_{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|f(x)-\Phi_{t} * f(x)\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2}, \quad \alpha>0 \tag{1.17}
\end{equation*}
$$

We note that if $\Phi=\chi_{0}$ in (1.17), we get B_{α} of 1.14. Also, let $\Phi \in \mathcal{M}^{\alpha}$ and (1.18)

$$
H_{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|\mathcal{I}_{\alpha}(f)(x)-\Phi_{t} * \mathcal{I}_{\alpha}(f)(x)\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2}, \quad 0<\alpha<\gamma
$$

If we set $\Phi=\chi_{0}$ in 1.18, we get C_{α} of 1.15 for $0<\alpha<2$.
We prove the following.
Theorem 1.4. Let H_{α} be as in (1.18) and $0<\alpha<\gamma, 1<p<\infty$, $w \in A_{p}$. Then

$$
\left\|H_{\alpha}(f)\right\|_{p, w} \simeq\|f\|_{p, w}, \quad f \in \mathcal{S}_{0}\left(\mathbb{R}^{n}\right)
$$

Applying Theorem 1.4, we obtain the following.
Theorem 1.5. Suppose that $1<p<\infty, w \in A_{p}$ and $0<\alpha<\gamma$. Let G_{α} be as in 1.17). Then $f \in W_{w}^{\alpha, p}$ if and only if $f \in L_{w}^{p}$ and $G_{\alpha}(f) \in L_{w}^{p}$; furthermore,

$$
\left\|\mathcal{I}_{-\alpha}(f)\right\|_{p, w} \simeq\left\|G_{\alpha}(f)\right\|_{p, w}
$$

Theorems 1.2 and 1.3 follow from Theorems 1.5 and 1.4 , respectively. The proofs of Theorems 1.4 and 1.5 will be given in Section 3. To prove Theorem 1.4, we consider the Littlewood-Paley functions

$$
\begin{equation*}
g_{\psi}(f)(x)=\left(\int_{0}^{\infty}\left|f * \psi_{t}(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2} \tag{1.19}
\end{equation*}
$$

where $\psi_{t}(x)=t^{-\gamma} \psi\left(\delta_{t}^{-1} x\right)$ with $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ satisfying (1.4). Then we can see that $H_{\alpha}(f)=g_{\psi^{(\alpha)}}$ for some $\psi^{(\alpha)}$ analogous to the one in (1.6). We shall prove Theorem 1.4 by applying Theorem 2.1 below in Section 2, which is a result for parabolic Littlewood-Paley functions complementing the boundedness result given in [25] and generalizing [22, Corollary 2.11] to the case of non-isotropic dilations.

The proof of Theorem 2.1 will be completed by applying Theorem 2.8 , which provides the estimates

$$
\begin{equation*}
\|f\|_{p, w} \leq C\left\|g_{\psi}(f)\right\|_{p, w} \tag{1.20}
\end{equation*}
$$

under certain conditions. Theorem 2.8 is deduced from Corollary 2.7, which is a result on the invertibility of Fourier multipliers homogeneous of degree 0
with respect to δ_{t}^{*} generalizing [22, Corollary 2.6] to the case of general homogeneity. Corollary 2.7 will follow from a more general result (Theorem 2.3).

Here we review some recent developments of the theory related to the results given in this note after the article [1] (see also the remarks at the end of this note).

Theorem A was generalized to the weighted Sobolev spaces in [10]. Also, Theorems A and B were extended to the weighted Sobolev spaces in [19] by applying a theorem of [17] for the boundedness of Littlewood-Paley functions g_{ψ} in 1.5 on the weighted L^{p} spaces, which is partly a special case of Theorem 2.1.

In [19] it was shown that the theorem of [17] is particularly suitable for handling the square functions in Theorem 1.4 for the case of the Euclidean structures (with the Euclidean norm and the ordinary dilation). Some results of [19] were generalized in [22] by introducing the function class \mathcal{M}^{α} and by proving the weighted L^{p} norm equivalence between $g_{\psi}(f)$ in 1.5 and f, part of which was not included in [17]; the estimates in 1.20) in the case of the Euclidean structures for a sufficiently large class of ψ and $p \in(1, \infty)$, $w \in A_{p}$ were absent from [17].

In [20] and [22], discrete parameter versions of Littlewood-Paley functions $g_{\psi}(f)$ in (1.5) of the form

$$
\Delta_{\psi}(f)(x)=\left(\sum_{k=-\infty}^{\infty}\left|f * \psi_{2^{k}}(x)\right|^{2}\right)^{1 / 2}
$$

are also applied to characterize Sobolev spaces. See also [10] and 21] for applications of the square function

$$
D^{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|t^{-\alpha} \int_{S^{n-1}}(f(x-t \theta)-f(x)) d \sigma(\theta)\right|^{2} \frac{d t}{t}\right)^{1 / 2}
$$

in the theory of Sobolev spaces.
In Section 4, we shall establish another characterization of the Sobolev spaces $W_{w}^{\alpha, p}$ similar to Theorem 1.2 (Theorem 4.2), which is novel even in the case of the Euclidean structures. In Theorem 1.2, the averaging operator $f_{B} f$ is used to define the square function $B_{\alpha}(f)$ in (1.14), which is applied to characterize $W_{w}^{\alpha, p}$ for $\alpha \in(0,2)$. In Theorem4.2 we shall extend the range of α by introducing square functions which are defined with repeated uses of the averaging operation.

Finally, in Section 5 we shall illustrate by example how the Sobolev spaces $W_{w}^{\alpha, p}$ defined above can be characterized by distributional derivatives in some cases, by the arguments similar to the one in [28, Chap. V, proof of Theorem 3].

2. Invertibility of Fourier multipliers homogeneous with respect

 to δ_{t}^{*} and Littlewood-Paley operators. We consider a majorant of ψ defined by$$
H_{\psi}(x)=h(\rho(x))=\sup _{\rho(y) \geq \rho(x)}|\psi(y)|
$$

and two seminorms B_{ϵ} and D_{u} defined as

$$
\begin{aligned}
B_{\epsilon}(\psi) & =\int_{|x|>1}|\psi(x)||x|^{\epsilon} d x \quad \text { for } \epsilon>0 \\
D_{u}(\psi) & =\left(\int_{|x|<1}|\psi(x)|^{u} d x\right)^{1 / u} \quad \text { for } u>1
\end{aligned}
$$

In proving Theorem 1.4 we apply the following result.
Theorem 2.1. Suppose that $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ satisfies (1.4). Let $\epsilon>0, u>1$ and $C_{j}>0,1 \leq j \leq 3$. Suppose that
(1) $B_{\epsilon}(\psi) \leq C_{1}$;
(2) $D_{u}(\psi) \leq C_{2}$;
(3) $\left\|H_{\psi}\right\|_{1} \leq C_{3}$.

Then g_{ψ} defined by 1.19) is bounded on L_{w}^{p} :

$$
\begin{equation*}
\left\|g_{\psi}(f)\right\|_{p, w} \leq C\|f\|_{p, w} \quad \text { for all } p \in(1, \infty) \text { and } w \in A_{p} \tag{2.1}
\end{equation*}
$$

where the constant C depends only on p, w, ϵ, u and $C_{j}, 1 \leq j \leq 3$, and does not otherwise depend on ψ. If we further assume the non-degeneracy condition

$$
\begin{equation*}
\sup _{t>0}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|>0 \quad \text { for } \xi \neq 0 \tag{2.2}
\end{equation*}
$$

then we also have the reverse inequality of (2.1) and hence

$$
\left\|g_{\psi}(f)\right\|_{p, w} \simeq\|f\|_{p, w} \quad \text { for all } p \in(1, \infty) \text { and } w \in A_{p}
$$

By [25, Theorem 1.1], which generalizes a result of [17] to the case of nonisotropic dilations, we have the boundedness (2.1) under conditions (1)-(3) of Theorem 2.1, and the quantitative property of the constant C specified follows by checking the proof in [25]. The proof of [25, Theorem 1.1] is based on estimates for oscillatory integrals in [18].

Remark 2.2. If there exist positive numbers σ_{1}, σ_{2} such that

$$
|\psi(x)| \leq C\left(1+\rho(x)^{-1}\right)^{\gamma-\sigma_{1}}(1+\rho(x))^{-\gamma-\sigma_{2}} \quad \text { for all } x \in \mathbb{R}^{n},
$$

then conditions (1)-(3) of Theorem 2.1 are satisfied with some ϵ, u and C_{j}, $1 \leq j \leq 3$. To see this, the formula (1.9) is useful.

To prove the reverse inequality of 2.1 , we apply a result on the invertibility on weighted L^{p} spaces of Fourier multipliers homogeneous with
respect to δ_{t}^{*}. Let $m \in L^{\infty}\left(\mathbb{R}^{n}\right), w \in A_{p}, 1<p<\infty$. The Fourier multiplier operator T_{m} is defined by

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}^{n}} m(\xi) \hat{f}(\xi) e^{2 \pi i\langle x, \xi\rangle} d \xi \tag{2.3}
\end{equation*}
$$

We say that m is a Fourier multiplier for L_{w}^{p} and write $m \in M_{w}^{p}$ (we also write $M^{p}(w)$ for M_{w}^{p}) if there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|T_{m}(f)\right\|_{p, w} \leq C\|f\|_{p, w} \quad \text { for all } f \in \mathcal{S} \tag{2.4}
\end{equation*}
$$

We define $\|m\|_{M^{p}(w)}$ to be the infimum of the constants C satisfying (2.4). Since \mathcal{S} is dense in L_{w}^{p}, we have a unique extension of T_{m} to a bounded linear operator on L_{w}^{p} if $m \in M_{w}^{p}$. We observe that $M^{p}(w)=M^{p^{\prime}}\left(\widetilde{w}^{-p^{\prime} / p}\right)$ by duality, where $\widetilde{w}(x)=w(-x)$. See [12] for relevant results.

We need the following result generalizing [22, Theorem 2.5] to the case of non-isotropic dilations.

ThEOREM 2.3. Let m be a bounded function on \mathbb{R}^{n} which is continuous on $\mathbb{R}^{n} \backslash\{0\}$. Suppose that m is homogeneous of degree 0 with respect to δ_{t}^{*} and that $m(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{n} \backslash\{0\}$. Also, suppose that $m \in M_{v}^{r}$ for all $r \in(1, \infty)$ and all $v \in A_{r}$. Let $1<p<\infty, w \in A_{p}$ and let $F(z)$ be holomorphic in $D=\mathbb{C} \backslash\{0\}$. Then $F(m(\xi)) \in M_{w}^{p}$.

For $m \in M_{w}^{p}, 1<p<\infty, w \in A_{p}$, we consider the spectral radius operator

$$
\rho_{p, w}(m)=\lim _{k \rightarrow \infty}\left\|m^{k}\right\|_{M^{p}(w)}^{1 / k}
$$

To prove Theorem 2.3, we need the following.
Proposition 2.4. Suppose that $1<p<\infty, w \in A_{p}$ and $m \in L^{\infty}\left(\mathbb{R}^{n}\right)$. Let m be homogeneous of degree 0 with respect to the dilations δ_{t}^{*} and continuous on S^{n-1}. Assume that $m \in M_{v}^{r}$ for all $r \in(1, \infty)$ and all $v \in A_{r}$. Then, for any $\epsilon>0$, there exists $\ell \in M_{w}^{p}$ which is homogeneous of degree 0 with respect to δ_{t}^{*} and in $C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ such that $\|m-\ell\|_{\infty}<\epsilon$ and $\rho_{p, w}(m-\ell)<\epsilon$.

To prove Proposition 2.4, we apply the following lemmas.
Lemma 2.5. Let $\eta \in C^{\infty}(\mathbb{R})$, $\operatorname{supp} \eta \subset[1,2], \eta \geq 0$ and $\int_{0}^{\infty}|\eta(t)|^{2} d t / t=1$. Define a real function ψ in $\mathcal{S}_{0}\left(\mathbb{R}^{n}\right)$ by $\hat{\psi}(\xi)=\eta\left(\rho^{*}(\xi)\right)$. Then

$$
\left\|g_{\psi}(f)\right\|_{p, w} \simeq\|f\|_{p, w} \quad \text { for all } p \in(1, \infty) \text { and } w \in A_{p}
$$

LEMmA 2.6. Suppose that $m \in L^{\infty}\left(\mathbb{R}^{n}\right), m \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and that m is homogeneous of degree 0 with respect to δ_{t}^{*}. Then $m \in M_{w}^{p}$ for all $p \in(1, \infty)$ and $w \in A_{p}$ and

$$
\|m\|_{M^{p}(w)} \leq C \sup _{1 \leq \rho^{*}(\xi) \leq 2,|a| \leq[\gamma]+1}\left|\left(\partial_{\xi}\right)^{a} m(\xi)\right|
$$

with a constant C independent of m, where $\left(\partial_{\xi}\right)^{a}=\left(\partial / \partial \xi_{1}\right)^{a_{1}} \ldots\left(\partial / \partial \xi_{n}\right)^{a_{n}}$ with $a=\left(a_{1}, \ldots, a_{n}\right), a_{j} \in \mathbb{Z}, a_{j} \geq 0,1 \leq j \leq n$.

Proof of Lemma 2.5. By [25, Theorem 1.1] we see that $\left\|g_{\psi}(f)\right\|_{p, w} \leq$ $C\|f\|_{p, w}$ for all $p \in(1, \infty)$ and $w \in A_{p}$. To prove the reverse inequality we note that $\left\|g_{\psi}(f)\right\|_{2}=\|f\|_{2}$. Thus the polarization implies that for real-valued $f, h \in \mathcal{S}$,

$$
\begin{aligned}
4 \int_{\mathbb{R}^{n}} f(x) h(x) d x & =\int_{\mathbb{R}^{n}}(f(x)+h(x))^{2} d x-\int_{\mathbb{R}^{n}}(f(x)-h(x))^{2} d x \\
& =\int_{\mathbb{R}^{n}}\left(g_{\psi}(f+h)(x)\right)^{2} d x-\int_{\mathbb{R}^{n}}\left(g_{\psi}(f-h)(x)\right)^{2} d x \\
& =4 \int_{\mathbb{R}^{n}} \int_{0}^{\infty} f * \psi_{t}(x) h * \psi_{t}(x) \frac{d t}{t} d x
\end{aligned}
$$

Therefore, by the inequalities of Schwarz and Hölder we have

$$
\left|\int_{\mathbb{R}^{n}} f(x) h(x) d x\right| \leq\left\|g_{\psi}(f)\right\|_{p, w}\left\|g_{\psi}(h)\right\|_{p^{\prime}, w^{-p^{\prime} / p}} \leq C\left\|g_{\psi}(f)\right\|_{p, w}\|h\|_{p^{\prime}, w^{-p^{\prime} / p}}
$$

Taking the supremum over h with $\|h\|_{p^{\prime}, w^{-p^{\prime} / p}} \leq 1$, we find that $\|f\|_{p, w} \leq$ $C\left\|g_{\psi}(f)\right\|_{p, w}$, from which we can derive the desired estimates for complexvalued functions.

Proof of Lemma 2.6. Let ψ be as in Lemma 2.5 and define ψ_{m} by $\mathcal{F}\left(\psi_{m}\right)(\xi)=\hat{\psi}(\xi) m(\xi)$. Then $g_{\psi}\left(T_{m} f\right)=g_{\psi_{m}}(f)$. So, by Lemma 2.5 for $w \in A_{p}, 1<p<\infty$, we have

$$
\begin{equation*}
\left\|T_{m} f\right\|_{p, w} \leq C\left\|g_{\psi}\left(T_{m} f\right)\right\|_{p, w}=C\left\|g_{\psi_{m}}(f)\right\|_{p, w} \tag{2.5}
\end{equation*}
$$

Since $\psi_{m} \in \mathcal{S}_{0}, g_{\psi_{m}}$ is bounded on L_{w}^{p}. To specify the operator bounds, we apply the estimates (2.1). It is sufficient to observe the following estimates:

$$
\begin{align*}
\left|\psi_{m}(x)\right| & =\left|\int_{\mathbb{R}^{n}} \hat{\psi}(\xi) m(\xi) e^{2 \pi i\langle x, \xi\rangle} d \xi\right| \tag{2.6}\\
& \leq C(1+|x|)^{-[\gamma]-1} \sup _{1 \leq \rho^{*}(\xi) \leq 2,|a| \leq[\gamma]+1}\left|\left(\partial_{\xi}\right)^{a} m(\xi)\right|
\end{align*}
$$

which follows by integration by parts, with the constant C independent of m. Combining 2.5, 2.6 and the estimates 2.1, we obtain the conclusion.

Proof of Proposition 2.4. As in [11], [22], we take a sequence $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ of functions on the orthogonal group $O(n)$ with the following properties:
(1) each φ_{j} is infinitely differentiable, non-negative and $\int_{O(n)} \varphi_{j}(A) d A=1$, where $d A$ is the Haar measure on $O(n)$;
(2) for any neighborhood U of the identity of $O(n)$, there exists a positive integer N such that $\operatorname{supp}\left(\varphi_{j}\right) \subset U$ for $j \geq N$.

For $\xi \in S^{n-1}$, let

$$
\widetilde{m}_{j}(\xi)=\int_{O(n)} m(A \xi) \varphi_{j}(A) d A
$$

Then \widetilde{m}_{j} is C^{∞} on S^{n-1} (see [11, pp. 123-124]). For $\xi \in \mathbb{R}^{n} \backslash\{0\}$, let

$$
m_{j}(\xi)=\widetilde{m}_{j}\left(\delta_{\rho^{*}(\xi)^{-1}}^{*} \xi\right)
$$

Then m_{j} is homogeneous of degree 0 with respect to $\delta_{t}^{*}, m_{j} \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and $m_{j}=\widetilde{m}_{j}$ on S^{n-1}.

We prove

$$
\begin{equation*}
\rho_{r, v}\left(m_{j}\right) \leq\|m\|_{\infty}, \quad r \in(1, \infty), v \in A_{r} \tag{2.7}
\end{equation*}
$$

For this it suffices to show that

$$
\left\|m_{j}^{k}\right\|_{M^{r}(v)} \leq C_{j} k^{[\gamma]+1}\|m\|_{\infty}^{k}
$$

where C_{j} is independent of k. This follows by Lemma 2.6, since

$$
\sup _{1 \leq \rho^{*}(\xi) \leq 2,|a| \leq[\gamma]+1}\left|\left(\partial_{\xi}\right)^{a} m_{j}(\xi)^{k}\right| \leq C_{j} k^{[\gamma]+1}\|m\|_{\infty}^{k}
$$

To see this, it is helpful to refer to [11, pp. 123-124].
Since $m_{j} \rightarrow m$ as $j \rightarrow \infty$ uniformly on S^{n-1}, we can take $\ell=m_{j}$ for j large enough to get $\|m-\ell\|_{\infty}<\epsilon$. Let $p \in(1, \infty), w \in A_{p}$. Confirming that a result analogous to [22, Proposition 2.2] holds true in the setting of non-isotropic dilations, we can find $r>1, s>1$ and $\theta \in(0,1)$ such that $w^{s} \in A_{r}$ and

$$
\left\|\left(m-m_{j}\right)^{k}\right\|_{M^{p}(w)} \leq\left\|\left(m-m_{j}\right)^{k}\right\|_{\infty}^{1-\theta}\left\|\left(m-m_{j}\right)^{k}\right\|_{M^{r}\left(w^{s}\right)}^{\theta}
$$

Thus

$$
\rho_{p, w}\left(m-m_{j}\right) \leq\left\|m-m_{j}\right\|_{\infty}^{1-\theta} \rho_{r, w^{s}}\left(m-m_{j}\right)^{\theta} .
$$

Since

$$
\rho_{r, w^{s}}\left(m-m_{j}\right) \leq \rho_{r, w^{s}}(m)+\rho_{r, w^{s}}\left(m_{j}\right)
$$

(see Riesz-Nagy [15, p. 426]), it follows that

$$
\begin{aligned}
\rho_{p, w}\left(m-m_{j}\right) & \leq\left\|m-m_{j}\right\|_{\infty}^{1-\theta}\left(\rho_{r, w^{s}}(m)+\rho_{r, w^{s}}\left(m_{j}\right)\right)^{\theta} \\
& \leq\left\|m-m_{j}\right\|_{\infty}^{1-\theta}\left(\rho_{r, w^{s}}(m)+\|m\|_{\infty}\right)^{\theta}
\end{aligned}
$$

where the last inequality follows from 2.7. Since $\left\|m-m_{j}\right\|_{\infty} \rightarrow 0$ as $j \rightarrow \infty$, for a given $\epsilon>0$, taking $\ell=m_{j}$ with j large enough, we have $\rho_{p, w}(m-\ell)<\epsilon$ and $\|m-\ell\|_{\infty}<\epsilon$.

Proof of Theorem 2.3. The proof is similar to that of [22, Theorem 2.5]. Let

$$
\epsilon_{0}=\frac{1}{4} \min _{\xi \in S^{n-1}}|m(\xi)| .
$$

Applying Proposition 2.4, we can find $\ell \in M_{w}^{p}$ which is homogeneous of degree 0 with respect to δ_{t}^{*} and belongs to $C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ such that $\|m-\ell\|_{\infty}<$ ϵ_{0} and $\rho_{p, w}(m-\ell)<\epsilon_{0}$. Let $C: \ell(\xi)+2 \epsilon_{0} e^{i \theta}, 0 \leq \theta \leq 2 \pi$, be a circle in D. Apply Cauchy's formula to get

$$
\begin{equation*}
F(m(\xi))=\frac{1}{2 \pi i} \int_{C} \frac{F(\zeta)}{\zeta-m(\xi)} d \zeta=\frac{\epsilon_{0}}{\pi} \int_{0}^{2 \pi} \frac{F\left(\ell(\xi)+2 \epsilon_{0} e^{i \theta}\right)}{2 \epsilon_{0} e^{i \theta}+\ell(\xi)-m(\xi)} e^{i \theta} d \theta \tag{2.8}
\end{equation*}
$$

for $\xi \in \mathbb{R}^{n} \backslash\{0\}$. We expand the integrand in the last integral into a power series by using

$$
\begin{equation*}
\frac{e^{i \theta}}{2 \epsilon_{0} e^{i \theta}+\ell(\xi)-m(\xi)}=\frac{1}{2 \epsilon_{0}} \sum_{k=0}^{\infty}\left(\frac{m(\xi)-\ell(\xi)}{2 \epsilon_{0} e^{i \theta}}\right)^{k} \tag{2.9}
\end{equation*}
$$

where the series converges uniformly in $\theta \in[0,2 \pi]$ since

$$
\left|\frac{m(\xi)-\ell(\xi)}{2 \epsilon_{0} e^{i \theta}}\right| \leq \frac{1}{2}
$$

Substituting (2.9) in 2.8), we have

$$
\begin{equation*}
F(m(\xi))=\frac{1}{2 \pi} \sum_{k=0}^{\infty}\left(\frac{m(\xi)-\ell(\xi)}{2 \epsilon_{0}}\right)^{k} N_{k}(\xi) \tag{2.10}
\end{equation*}
$$

where

$$
N_{k}(\xi)=\int_{0}^{2 \pi} F\left(\ell(\xi)+2 \epsilon_{0} e^{i \theta}\right) e^{-i k \theta} d \theta
$$

and the series on the right hand side of 2.10 converges uniformly in $\xi \in$ $\mathbb{R}^{n} \backslash\{0\}$, since

$$
\left|\frac{m(\xi)-\ell(\xi)}{2 \epsilon_{0}}\right| \leq \frac{1}{2}, \quad \epsilon_{0} \leq\left|\ell(\xi)+2 \epsilon_{0} e^{i \theta}\right| \leq\|m\|_{\infty}+3 \epsilon_{0}
$$

Also, $N_{k}(\xi)$ is homogeneous of degree 0 with respect to δ_{t}^{*} and infinitely differentiable in $\mathbb{R}^{n} \backslash\{0\}$ and

$$
\sup _{1 \leq \rho^{*}(\xi) \leq 2,|a| \leq[\gamma]+1}\left|\left(\partial_{\xi}\right)^{a} N_{k}(\xi)\right| \leq C
$$

with C independent of k. Therefore, by Lemma 2.6 we have $\left\|N_{k}\right\|_{M^{p}(w)} \leq C$ with a constant C independent of k. Thus we see that

$$
\sum_{k=0}^{\infty}\left(2 \epsilon_{0}\right)^{-k}\left\|(m-\ell)^{k}\right\|_{M^{p}(w)}\left\|N_{k}\right\|_{M^{p}(w)} \leq C \sum_{k=0}^{\infty}\left(2 \epsilon_{0}\right)^{-k}\left\|(m-\ell)^{k}\right\|_{M^{p}(w)}
$$

and the last series converges since $\left\|(m-\ell)^{k}\right\|_{M^{p}(w)} \leq \epsilon_{0}^{k}$ if k is sufficiently large. From this and 2.10 we can infer that $F(m) \in M_{w}^{p}$.

By Theorem 2.3 in particular we have the following.

Corollary 2.7. Let $1<p<\infty$ and $w \in A_{p}$. Suppose that m is homogeneous of degree 0 with respect to δ_{t}^{*} and that $m \in M_{v}^{r}$ for all $r \in(1, \infty)$ and all $v \in A_{r}$. Assume further that m is continuous on S^{n-1} and does not vanish there. Then $m^{-1} \in M_{w}^{p}$.

Proof. Take $F(z)=1 / z$ in Theorem 2.3.
Applying Corollary 2.7 in the theory of Littlewood-Paley functions, we can prove the following.

Theorem 2.8. Let $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ satisfy (1.4). Suppose that $\left\|g_{\psi}(f)\right\|_{r, v} \leq$ $C_{r, v}\|f\|_{r, v}, f \in \mathcal{S}$, for all $r \in(1, \infty)$ and all $v \in A_{r}$ and that $m(\xi)=$ $\int_{0}^{\infty}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|^{2} d t / t$ is continuous and strictly positive on S^{n-1}. Let $f \in \mathcal{S}$. Then

$$
\|f\|_{p, w} \leq C_{p, w}\left\|g_{\psi}(f)\right\|_{p, w}
$$

for all $p \in(1, \infty)$ and all $w \in A_{p}$.
To prove Theorem 2.8, we also need the following lemma.
Lemma 2.9. Suppose that $\left\|g_{\psi}(f)\right\|_{r, v} \leq C_{r, v}\|f\|_{r, v}, f \in \mathcal{S}$, for all $r \in$ $(1, \infty)$ and all $v \in A_{r}$. If $m(\xi)$ is defined as in Theorem 2.8 and $1<p<\infty$, $w \in A_{p}$, then $m \in M_{w}^{p}$.

Proof. For $\epsilon \in(0,1)$, let

$$
\Psi^{(\epsilon)}(x)=\int_{\epsilon}^{\epsilon^{-1}} \int_{\mathbb{R}^{n}} \psi_{t}(x+y) \bar{\psi}_{t}(y) d y \frac{d t}{t}
$$

where $\bar{\psi}_{t}$ denotes the complex conjugate. We note that

$$
\mathcal{F}\left(\Psi^{(\epsilon)}\right)(\xi)=\int_{\epsilon}^{\epsilon^{-1}} \hat{\psi}\left(\delta_{t}^{*} t \xi\right) \hat{\bar{\psi}}\left(-\delta_{t}^{*} \xi\right) \frac{d t}{t}=\int_{\epsilon}^{\epsilon^{-1}}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|^{2} \frac{d t}{t}=: m^{(\epsilon)}(\xi)
$$

Therefore $\Psi^{(\epsilon)} * f=T_{m^{(\epsilon)}} f$. We observe that

$$
\begin{aligned}
\Psi^{(\epsilon)} * f(x) & =\int_{\epsilon}^{\epsilon^{-1}} \int_{\mathbb{R}^{n}} \psi_{t} * f(y) \bar{\psi}_{t}(y-x) d y \frac{d t}{t} \\
\int_{\mathbb{R}^{n}} \Psi^{(\epsilon)} * f(x) h(x) d x & =\int_{\epsilon}^{\epsilon^{-1}} \int_{\mathbb{R}^{n}} \psi_{t} * f(y) \bar{\psi}_{t} * h(y) d y \frac{d t}{t}
\end{aligned}
$$

for $f, h \in \mathcal{S}$. Thus by the inequalities of Schwarz and Hölder we have

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{n}} \Psi^{(\epsilon)} * f(x) h(x) d x\right| & \leq \int_{\mathbb{R}^{n}} g_{\psi}(f)(y) g_{\psi}(\bar{h})(y) d y \\
& \leq\left\|g_{\psi}(f)\right\|_{p, w}\left\|g_{\psi}(\bar{h})\right\|_{p^{\prime}, w^{-p^{\prime} / p}} \\
& \leq C\left\|g_{\psi}(f)\right\|_{p, w}\|h\|_{p^{\prime}, w^{-p^{\prime} / p}}
\end{aligned}
$$

Taking the supremum over functions h with $\|h\|_{p^{\prime}, w^{-p^{\prime} / p}} \leq 1$, we have

$$
\left\|T_{m(\epsilon)} f\right\|_{p, w} \leq C\left\|g_{\psi}(f)\right\|_{p, w}
$$

Letting $\epsilon \rightarrow 0$ and noting $m^{(\epsilon)} \rightarrow m$, we have

$$
\begin{equation*}
\left\|T_{m} f\right\|_{p, w} \leq C\left\|g_{\psi}(f)\right\|_{p, w} \tag{2.11}
\end{equation*}
$$

Since $\left\|g_{\psi}(f)\right\|_{p, w} \leq C\|f\|_{p, w}$, we see that $m \in M_{w}^{p}$.
Proof of Theorem 2.8. Let m be as in Theorem 2.8. Then by Lemma 2.9, $m \in M_{w}^{p}$ for all $p \in(1, \infty)$ and $w \in A_{p}$. So we can apply Corollary 2.7 to m to conclude that $m^{-1} \in M_{w}^{p}$ if $1<p<\infty, w \in A_{p}$ and hence by 2.11,

$$
\|f\|_{p, w}=\left\|T_{m^{-1}} T_{m} f\right\|_{p, w} \leq C\left\|T_{m} f\right\|_{p, w} \leq C\left\|g_{\psi}(f)\right\|_{p, w}
$$

for $f \in \mathcal{S}$, which implies the conclusion.
Proof of Theorem 2.1. It remains to prove the reverse inequality of (2.1). If $m(\xi)=\int_{0}^{\infty}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|^{2} d t / t$, then by the non-degeneracy 2.2 we have $m(\xi)$ $\neq 0$ for $\xi \neq 0$. Therefore, by Theorem 2.8 we only have to show that m is continuous on S^{n-1}. In [25], it has been shown that

$$
\int_{2^{k}}^{2^{k+1}}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|^{2} \frac{d t}{t} \leq C \min \left(\left|\delta_{2^{k}}^{*} \xi\right|^{\epsilon},\left|\delta_{2^{k}}^{*} \xi\right|^{-\epsilon}\right)
$$

for $\xi \in S^{n-1}$ and $k \in \mathbb{Z}$ with some $\epsilon>0$ (see [25, Lemmas 3.1 and 3.3]). By analogues for δ_{t}^{*} of (a), (b) for δ_{t} in Section 1, it follows that

$$
\int_{2^{k}}^{2^{k+1}}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|^{2} \frac{d t}{t} \leq C \min \left(2^{k \epsilon}, 2^{-k \epsilon}\right)
$$

This implies that

$$
\int_{\epsilon}^{\epsilon^{-1}}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|^{2} \frac{d t}{t} \rightarrow \int_{0}^{\infty}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|^{2} \frac{d t}{t} \quad \text { as } \epsilon \rightarrow 0
$$

uniformly in $\xi \in S^{n-1}$. We note that $\int_{\epsilon}^{\epsilon^{-1}}\left|\hat{\psi}\left(\delta_{t}^{*} \xi\right)\right|^{2} d t / t$ is continuous on S^{n-1} for each fixed $\epsilon>0$. Thus the continuity of m on S^{n-1} follows by uniform convergence.

REMARK 2.10. Let $\psi^{(j)} \in L^{1}\left(\mathbb{R}^{n}\right)$ for $j=1,2, \ldots, \ell$. Suppose that $\psi^{(j)}$ satisfies (1.4) and (1)-(3) of Theorem 2.1 for every $j, 1 \leq j \leq \ell$. Let

$$
\begin{aligned}
\Psi(x) & =\left(\psi^{(1)}(x), \ldots, \psi^{(\ell)}(x)\right) \\
\Psi_{t}(x) & =\left(\psi_{t}^{(1)}(x), \ldots, \psi_{t}^{(\ell)}(x)\right), \quad \mathcal{F}\left(\Psi_{t}\right)(\xi)=\left(\mathcal{F}\left(\psi_{t}^{(1)}\right)(\xi), \ldots, \mathcal{F}\left(\psi_{t}^{(\ell)}\right)(\xi)\right)
\end{aligned}
$$

We further assume that

$$
\begin{equation*}
\sup _{t>0}\left|\mathcal{F}\left(\Psi_{t}\right)(\xi)\right|=\sup _{t>0}\left(\sum_{j=1}^{\ell}\left|\mathcal{F}\left(\psi^{(j)}\right)\left(\delta_{t}^{*} \xi\right)\right|^{2}\right)^{1 / 2}>0, \quad \forall \xi \in \mathbb{R}^{n} \backslash\{0\} . \tag{2.12}
\end{equation*}
$$

Let

$$
f * \Psi_{t}(x)=\left(f * \psi_{t}^{(1)}(x), \ldots, f * \psi_{t}^{(\ell)}(x)\right)
$$

and
$g_{\Psi}(f)(x)=\left(\int_{0}^{\infty}\left|f * \Psi_{t}(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2}, \quad\left|f * \Psi_{t}(x)\right|=\left(\sum_{j=1}^{\ell}\left|f * \psi_{t}^{(j)}(x)\right|^{2}\right)^{1 / 2}$.
Then by Theorem 2.1 we have $\left\|g_{\Psi}(f)\right\|_{p, w} \leq C\|f\|_{p, w}$. We can also prove the reverse inequality by adapting the arguments given above when $\ell=1$ for the present situation, applying the non-degeneracy (2.12). Thus

$$
\begin{equation*}
\left\|g_{\Psi}(f)\right\|_{p, w} \simeq\|f\|_{p, w} \tag{2.13}
\end{equation*}
$$

Example. We give an example in the case of the Euclidean structures $\left(\rho(x)=|x|, \delta_{t}(x)=t x\right)$ for which we can apply Remark 2.10 to get the norm equivalence in (2.13). Let $P_{t}(x)$ be the Poisson kernel on the upper half-space $\mathbb{R}^{n} \times(0, \infty)$ defined by

$$
P_{t}(x)=c_{n} \frac{t}{\left(|x|^{2}+t^{2}\right)^{(n+1) / 2}}=\int_{\mathbb{R}^{n}} e^{-2 \pi|\xi|} e^{2 \pi i\langle x, \xi\rangle} d \xi .
$$

Let $\psi^{(j)}(x)=\left(\partial / \partial x_{j}\right) P_{1}(x), 1 \leq j \leq n$. Then

$$
\mathcal{F}\left(\psi^{(j)}\right)(\xi)=2 \pi i \xi_{j} e^{-2 \pi|\xi|} .
$$

We can see that all the requirements in Remark 2.10 for $\psi^{(j)}, 1 \leq j \leq n$, needed in the proof of (2.13) are fulfilled; in particular, (2.12) follows from

$$
\left|\mathcal{F}\left(\Psi_{t}\right)(\xi)\right|=2 \pi t|\xi| e^{-2 \pi t|\xi|}
$$

Thus we have 2.13) for $\Psi=\left(\left(\partial / \partial x_{1}\right) P_{1}, \ldots,\left(\partial / \partial x_{n}\right) P_{1}\right)$.
3. Proofs of Theorems 1.4 and 1.5. We apply the following estimates in proving Theorem 1.4

Lemma 3.1. Let F be a function in $C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ which is homogeneous of degree d with respect to δ_{t}. Then for $\rho(x) \geq 1$ we have

$$
\left|\left(\partial_{x}\right)^{a} F(x)\right| \leq C_{a} \rho(x)^{d-|a|}
$$

for all multi-indices a with a positive constant C_{a} independent of x.
Proof. We write $\delta_{t}=\left(\delta_{i j}(t)\right), 1 \leq i, j \leq n$. We have $t^{d} F(x)=F\left(\delta_{t} x\right)$. Differentiating both sides by using the chain rule on the right hand side, we
have

$$
t^{d}\left(\partial_{x}\right)^{a} F(x)=\left[\left(\prod_{j=1}^{n}\left(\sum_{i=1}^{n} \delta_{i j}(t) \partial / \partial x_{i}\right)^{a_{j}}\right) F\right]\left(\delta_{t} x\right)
$$

Substituting $t=\rho(x)^{-1}$ in this equation, we have

$$
\left|\left(\partial_{x}\right)^{a} F(x)\right| \leq C\left(\sup _{|b|=|a|, \rho(x)=1}\left|\left(\partial_{x}\right)^{b} F(x)\right|\right)\left(\sup _{1 \leq i \leq n, 1 \leq j \leq n} \delta_{i j}\left(\rho(x)^{-1}\right)\right)^{|a|} \rho(x)^{d} .
$$

This implies what we need, since $\left|\delta_{i j}(t)\right| \leq C t$ for $0<t \leq 1$ by (b) of Section 1,

Proof of Theorem 1.4. Let $0<\alpha<\gamma$ and $\mathcal{L}_{\alpha}=\mathcal{F}^{-1}\left(\rho^{*}(\xi)^{-\alpha}\right)$. Then \mathcal{L}_{α} is homogeneous of degree $\alpha-\gamma$ with respect to δ_{t} and belongs to $C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ (see [4, pp. 162-165]). Let $\psi^{(\alpha)}=\mathcal{L}_{\alpha}-\mathcal{L}_{\alpha} * \Phi$. Then $H_{\alpha}(f)=g_{\psi^{(\alpha)}}(f)$.

We easily see that

$$
\begin{equation*}
\left|\psi^{(\alpha)}(x)\right| \leq C \rho(x)^{\alpha-\gamma} \quad \text { for } \rho(x) \leq 2 \tag{3.1}
\end{equation*}
$$

Since

$$
\psi^{(\alpha)}(x)=\int_{\mathbb{R}^{n}}\left(\mathcal{L}_{\alpha}(x)-\mathcal{L}_{\alpha}(x-y)\right) \Phi(y) d y
$$

and

$$
\left|\left(\partial_{x}\right)^{a} \mathcal{L}_{\alpha}(x)\right| \leq C_{a} \rho(x)^{\alpha-\gamma-|a|} \quad \text { for } \rho(x) \geq 2
$$

for all multi-indices a by Lemma 3.1, using Taylor's formula with 1.16 and noting that Φ is compactly supported, we see that

$$
\begin{equation*}
\left|\psi^{(\alpha)}(x)\right| \leq C \rho(x)^{\alpha-\gamma-[\alpha]-1} \quad \text { for } \rho(x) \geq 2 \tag{3.2}
\end{equation*}
$$

where $\alpha-\gamma-[\alpha]-1<-\gamma$. By (3.1), (3.2) and (1.9) it follows that $\psi^{(\alpha)} \in L^{1}$ (see Remark 2.2). Also, we have

$$
\left|\mathcal{F}\left(\psi^{(\alpha)}\right)(\xi)\right|=\left|\rho^{*}(\xi)^{-\alpha}(1-\hat{\Phi}(\xi))\right| \leq C \rho^{*}(\xi)^{-\alpha}|\xi|^{[\alpha]+1} \leq C \rho^{*}(\xi)^{-\alpha+[\alpha]+1}
$$

for $\rho^{*}(\xi) \leq 1$ by the analogue for ρ^{*} of (4) for ρ of Section 1. So we have $\mathcal{F}\left(\psi^{(\alpha)}\right)(0)=0$, i.e., $\int \psi^{(\alpha)}=0$; combining this with (3.1), 3.2) and (5) for ρ of Section 1 we see that conditions (1)-(3) of Theorem 2.1 are satisfied for $\psi^{(\alpha)}$. Further, it is easy to see that

$$
\sup _{t>0}\left|\mathcal{F}\left(\psi^{(\alpha)}\right)\left(\delta_{t}^{*} \xi\right)\right|>0
$$

for $\xi \neq 0$. Thus all the assumptions of Theorem 2.1 are fulfilled for $\psi^{(\alpha)}$ and the conclusion of Theorem 1.4 follows by applying Theorem 2.1 to $g_{\psi^{(\alpha)}}$.

REMARK 3.2. If $\psi^{(\alpha)}$ is as in 1.6 , in the case of the Euclidean norm and the ordinary dilation, to prove $\|f\|_{p, w} \leq C\left\|g_{\psi^{(\alpha)}}(f)\right\|_{p, w}, 0<\alpha<2$, $1<p<\infty, w \in A_{p}$, we can also apply the polarization technique as in the
proof of Lemma 2.5 (see also [19]) instead of using Theorem 2.1 with the nondegeneracy condition 2.2 , which is applicable in a more general situation of Theorem 1.4. This is the case because $\mathcal{F}\left(\psi^{(\alpha)}\right)$ is a radial function.

To prove Theorem 1.5 we prepare the following lemmas.
Lemma 3.3. Let $1<p<\infty, w \in A_{p}$ and $f \in L_{w}^{p}$. For a positive integer m, let $f_{(m)}=f \chi_{E_{m}}$, where

$$
E_{m}=\left\{x \in \mathbb{R}^{n}:|x| \leq m,|f(x)| \leq m\right\} .
$$

Then $f_{(m)} \rightarrow f$ almost everywhere and in L_{w}^{p} as $m \rightarrow \infty$.
Lemma 3.4. Let p, w and f be as in Lemma 3.3. Let φ be an infinitely differentiable, non-negative function on \mathbb{R}^{n} such that $\varphi(\xi)=1$ for $\rho^{*}(\xi) \leq 1$, $\operatorname{supp}(\varphi) \subset\left\{\rho^{*}(\xi) \leq 2\right\}$ and $\varphi(\xi)=\varphi_{0}\left(\rho^{*}(\xi)\right)$ for some φ_{0} on \mathbb{R}. Define $\zeta^{(\epsilon)} \in \mathcal{S}_{0} b y$

$$
\zeta^{(\epsilon)}(\xi)=\varphi\left(\delta_{\epsilon}^{*} \xi\right)-\varphi\left(\delta_{\epsilon^{-1}}^{*} \xi\right), \quad \epsilon \in(0,1 / 2)
$$

Note that $\zeta^{(\epsilon)}(\xi)=\zeta^{(\epsilon / 2)}(\xi) \zeta^{(\epsilon)}(\xi)$. Let $f^{(\epsilon)}=f * \mathcal{F}^{-1}\left(\zeta^{(\epsilon)}\right)$. Then $f^{(\epsilon)} \rightarrow f$ almost everywhere and in L_{w}^{p} as $\epsilon \rightarrow 0$.

Proof of Lemma 3.3. The pointwise convergence is obvious and the norm convergence follows from Lebesgue's dominated convergence theorem since $\left|f_{(m)}\right| \leq|f|$.

Proof of Lemma 3.4. If $f \in \mathcal{S}$, we easily see that $f^{(\epsilon)} \rightarrow f$ pointwise as $\epsilon \rightarrow 0$. Therefore, for $f \in L_{w}^{p}$, we have

$$
\begin{aligned}
\left\|\limsup _{\epsilon \rightarrow 0}\left|f^{(\epsilon)}-f\right|\right\|_{p, w} & \leq\left\|\limsup _{\epsilon \rightarrow 0}\left|(f-h)^{(\epsilon)}-(f-h)\right|\right\|_{p, w} \\
& \leq C\|M(f-h)\|_{p, w} \leq C\|f-h\|_{p, w}
\end{aligned}
$$

for any $h \in \mathcal{S}$. As \mathcal{S} is dense in L_{w}^{p}, it follows that $\lim \sup _{\epsilon \rightarrow 0}\left|f^{(\epsilon)}(x)-f(x)\right|=0$ a.e., which implies pointwise convergence. Norm convergence follows from pointwise convergence and the dominated convergence theorem since $\left|f^{(\epsilon)}\right| \leq$ $C M(f) \in L_{w}^{p}$.

Proof of Theorem 1.5. Define $f_{m, \epsilon}=\left(f_{(m)}\right)^{(\epsilon)}$ for $f \in L_{w}^{p}$. Then $f_{m, \epsilon} \in \mathcal{S}_{0}$. By Theorem 1.4, we see that

$$
\begin{equation*}
\left\|G_{\alpha}\left(f_{m, \epsilon}\right)\right\|_{p, w}=\left\|H_{\alpha}\left(\mathcal{I}_{-\alpha} f_{m, \epsilon}\right)\right\|_{p, w} \simeq\left\|\mathcal{I}_{-\alpha}^{(\epsilon / 2)} f_{m, \epsilon}\right\|_{p, w} \tag{3.3}
\end{equation*}
$$

where $\mathcal{I}_{\beta}^{(\epsilon / 2)}(f)=\mathcal{F}^{-1}\left(\zeta^{(\epsilon / 2)}\left(\rho^{*}\right)^{-\beta}\right) * f, \beta \in \mathbb{R}$, for $f \in L_{w}^{p}$ and we have used the equality $\mathcal{I}_{-\alpha} f_{m, \epsilon}=\mathcal{I}_{-\alpha}^{(\epsilon / 2)} f_{m, \epsilon}$. Using Lemma 3.3, we see that $f_{m, \epsilon} \rightarrow f^{(\epsilon)}$ in L_{w}^{p}, since

$$
\left\|f_{m, \epsilon}-f^{(\epsilon)}\right\|_{p, w} \leq C\left\|M\left(f_{(m)}-f\right)\right\|_{p, w} \leq C\left\|f_{(m)}-f\right\|_{p, w}
$$

and also $f_{m, \epsilon} \rightarrow f^{(\epsilon)}$ pointwise, since

$$
\begin{aligned}
\left|f_{m, \epsilon}(x)-f^{(\epsilon)}(x)\right| & =\left|\int\left(f_{(m)}(y)-f(y)\right) \mathcal{F}^{-1}\left(\zeta^{(\epsilon)}\right)(x-y) d y\right| \\
& \leq\left\|f_{(m)}-f\right\|_{p, w}\left(\int\left|\mathcal{F}^{-1}\left(\zeta^{(\epsilon)}\right)(x-y)\right|^{p^{\prime}} w(y)^{-p^{\prime} / p} d y\right)
\end{aligned}
$$

Thus $f_{m, \epsilon}-\Phi_{t} * f_{m, \epsilon} \rightarrow f^{(\epsilon)}-\Phi_{t} * f^{(\epsilon)}$ a.e. as $m \rightarrow \infty$ and by (3.3) we have, via Fatou's lemma,

$$
\begin{aligned}
\left\|G_{\alpha}\left(f^{(\epsilon)}\right)\right\|_{p, w} & \leq \liminf _{m \rightarrow \infty}\left\|G_{\alpha}\left(f_{m, \epsilon}\right)\right\|_{p, w} \\
& \leq C \liminf _{m \rightarrow \infty}\left\|\mathcal{I}_{-\alpha}^{(\epsilon / 2)} f_{m, \epsilon}\right\|_{p, w}=C\left\|\mathcal{I}_{-\alpha}^{(\epsilon / 2)} f^{(\epsilon)}\right\|_{p, w}
\end{aligned}
$$

where the last equality follows since $\mathcal{I}_{-\alpha}^{(\epsilon / 2)}$ is bounded on L_{w}^{p}. Thus we see that $G_{\alpha}\left(f^{(\epsilon)}\right) \in L_{w}^{p}$. In fact, we also have the reverse inequality. To see this we first note that

$$
\begin{align*}
\left\|G_{\alpha}\left(f^{(\epsilon)}\right)-G_{\alpha}\left(f_{m, \epsilon}\right)\right\|_{p, w} & \leq\left\|G_{\alpha}\left(f^{(\epsilon)}-f_{m, \epsilon}\right)\right\|_{p, w} \tag{3.4}\\
& =\left\|G_{\alpha}\left(\left(f-f_{(m)}\right)^{(\epsilon)}\right)\right\|_{p, w}
\end{align*}
$$

Since
$\left(f_{(k)}-f_{(m)}\right)^{(\epsilon)}-\Phi_{t} *\left(f_{(k)}-f_{(m)}\right)^{(\epsilon)} \rightarrow\left(f-f_{(m)}\right)^{(\epsilon)}-\Phi_{t} *\left(f-f_{(m)}\right)^{(\epsilon)} \quad$ a.e. as $k \rightarrow \infty$, by Fatou's lemma we have

$$
\begin{equation*}
\left\|G_{\alpha}\left(\left(f-f_{(m)}\right)^{(\epsilon)}\right)\right\|_{p, w} \leq \liminf _{k \rightarrow \infty}\left\|G_{\alpha}\left(\left(f_{(k)}-f_{(m)}\right)^{(\epsilon)}\right)\right\|_{p, w} \tag{3.5}
\end{equation*}
$$

Since $\left(f_{(k)}-f_{(m)}\right)^{(\epsilon)} \in \mathcal{S}_{0}$, by Theorem 1.4 we have

$$
\begin{aligned}
\left\|G_{\alpha}\left(\left(f_{(k)}-f_{(m)}\right)^{(\epsilon)}\right)\right\|_{p, w} & \simeq\left\|\mathcal{I}_{-\alpha}\left(\left(f_{(k)}-f_{(m)}\right)^{(\epsilon)}\right)\right\|_{p, w} \\
& =\left\|\mathcal{I}_{-\alpha}^{(\epsilon / 2)}\left(\left(f_{(k)}-f_{(m)}\right)^{(\epsilon)}\right)\right\|_{p, w}
\end{aligned}
$$

Since $f_{(m)} \rightarrow f$ in L_{w}^{p}, this implies that

$$
\lim _{k, m \rightarrow \infty}\left\|G_{\alpha}\left(\left(f_{(k)}-f_{(m)}\right)^{(\epsilon)}\right)\right\|_{p, w}=0
$$

Thus by (3.4) and 3.5, it follows that $G_{\alpha}\left(f_{m, \epsilon}\right) \rightarrow G_{\alpha}\left(f^{(\epsilon)}\right)$ in L_{w}^{p} as $m \rightarrow \infty$. Therefore, letting $m \rightarrow \infty$ in (3.3), we have

$$
\begin{equation*}
\left\|G_{\alpha}\left(f^{(\epsilon)}\right)\right\|_{p, w} \simeq\left\|\mathcal{I}_{-\alpha}^{(\epsilon / 2)} f^{(\epsilon)}\right\|_{p, w} \tag{3.6}
\end{equation*}
$$

Suppose that $f \in W_{w}^{\alpha, p}$ and let $g=\mathcal{I}_{-\alpha}(f)$. We show that

$$
\begin{equation*}
\mathcal{I}_{-\alpha}^{(\epsilon / 2)} f^{(\epsilon)}=g^{(\epsilon)} \tag{3.7}
\end{equation*}
$$

as follows. For $h \in \mathcal{S}_{0}$ we have

$$
\begin{aligned}
\int g^{(\epsilon)} \mathcal{I}_{\alpha}(h) d x & =\lim _{m \rightarrow \infty} \int g_{m, \epsilon} \mathcal{I}_{\alpha}(h) d x=\lim _{m \rightarrow \infty} \int \mathcal{I}_{\alpha}^{(\epsilon / 2)}\left(g_{m, \epsilon}\right) h d x \\
& =\int \mathcal{I}_{\alpha}^{(\epsilon / 2)}\left(g^{(\epsilon)}\right) h d x
\end{aligned}
$$

Also,

$$
\begin{aligned}
\int g^{(\epsilon)} \mathcal{I}_{\alpha}(h) d x & =\lim _{m \rightarrow \infty} \int g_{m, \epsilon} \mathcal{I}_{\alpha}(h) d x \\
& =\lim _{m \rightarrow \infty} \int g_{(m)} \mathcal{I}_{\alpha}\left(h^{(\epsilon)}\right) d x=\int g \mathcal{I}_{\alpha}\left(h^{(\epsilon)}\right) d x .
\end{aligned}
$$

By the definition of $g=\mathcal{I}_{-\alpha}(f), \int g \mathcal{I}_{\alpha}\left(h^{(\epsilon)}\right) d x=\int f h^{(\epsilon)} d x$. Thus

$$
\begin{aligned}
\int g^{(\epsilon)} \mathcal{I}_{\alpha}(h) d x & =\int f h^{(\epsilon)} d x=\lim _{m \rightarrow \infty} \int f_{(m)} h^{(\epsilon)} d x \\
& =\lim _{m \rightarrow \infty} \int f_{m, \epsilon} h d x=\int f^{(\epsilon)} h d x
\end{aligned}
$$

Therefore

$$
\int \mathcal{I}_{\alpha}^{(\epsilon / 2)}\left(g^{(\epsilon)}\right) h d x=\int f^{(\epsilon)} h d x \quad \text { for all } h \in \mathcal{S}_{0}
$$

which implies that $\mathcal{I}_{\alpha}^{(\epsilon / 2)}\left(g^{(\epsilon)}\right)=f^{(\epsilon)}$. Since $\mathcal{I}_{\alpha}^{(\epsilon / 2)}$ and $\mathcal{I}_{-\alpha}^{(\epsilon / 2)}$ are bounded on L_{w}^{p} and the mapping $f \mapsto f^{(\epsilon)}$ is also bounded on L_{w}^{p}, by Lemma 3.3 we see that

$$
\begin{aligned}
\mathcal{I}_{-\alpha}^{(\epsilon / 2)}\left(f^{(\epsilon)}\right) & =\mathcal{I}_{-\alpha}^{(\epsilon / 2)} \mathcal{I}_{\alpha}^{(\epsilon / 2)}\left(g^{(\epsilon)}\right)=\lim _{m \rightarrow \infty} \mathcal{I}_{-\alpha}^{(\epsilon / 2)} \mathcal{I}_{\alpha}^{(\epsilon / 2)}\left(g_{m, \epsilon}\right) \\
& =\lim _{m \rightarrow \infty} g_{m, \epsilon}=g^{(\epsilon)}
\end{aligned}
$$

which proves (3.7).
By (3.6) and (3.7), we have

$$
\left\|G_{\alpha}\left(f^{(\epsilon)}\right)\right\|_{p, w} \leq C\left\|g^{(\epsilon)}\right\|_{p, w} \leq C\|M(g)\|_{p, w} \leq C\|g\|_{p, w}
$$

Letting $\epsilon \rightarrow 0$ and applying Lemma 3.4 and Fatou's lemma, we have

$$
\begin{equation*}
\left\|G_{\alpha}(f)\right\|_{p, w} \leq C\left\|\mathcal{I}_{-\alpha}(f)\right\|_{p, w} \tag{3.8}
\end{equation*}
$$

Conversely, let us assume that $f \in L_{w}^{p}$ and $G_{\alpha}(f) \in L_{w}^{p}$. By Minkowski's inequality we see that

$$
\begin{equation*}
\left\|G_{\alpha}\left(f^{(\epsilon)}\right)\right\|_{p, w} \leq C\left\|M\left(G_{\alpha}(f)\right)\right\|_{p, w} \leq C\left\|G_{\alpha}(f)\right\|_{p, w} \tag{3.9}
\end{equation*}
$$

Applying (3.6) and (3.9), we find that

$$
\sup _{\epsilon \in(0,1 / 2)}\left\|\mathcal{I}_{-\alpha}^{(\epsilon / 2)} f^{(\epsilon)}\right\|_{p, w} \leq C \sup _{\epsilon \in(0,1 / 2)}\left\|G_{\alpha}\left(f^{(\epsilon)}\right)\right\|_{p, w} \leq C\left\|G_{\alpha}(f)\right\|_{p, w}
$$

Therefore, there exist a sequence $\left\{\epsilon_{k}\right\}, 0<\epsilon_{k}<1 / 2$, and a function $g \in L_{w}^{p}$ such that $\epsilon_{k} \rightarrow 0$ and $\mathcal{I}_{-\alpha}^{\left(\epsilon_{k} / 2\right)} f^{\left(\epsilon_{k}\right)} \rightarrow g$ weakly in L_{w}^{p} as $k \rightarrow \infty$ and

$$
\begin{equation*}
\|g\|_{p, w} \leq C\left\|G_{\alpha}(f)\right\|_{p, w} \tag{3.10}
\end{equation*}
$$

We now show that $f=\mathcal{I}_{\alpha} g$. By Lemma 3.4, $f^{\left(\epsilon_{k}\right)} \rightarrow f$ in L_{w}^{p}. So, for $h \in \mathcal{S}_{0}$ we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f h d x & =\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} f^{\left(\epsilon_{k}\right)} h d x=\lim _{k \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{\mathbb{R}^{n}} f_{m, \epsilon_{k}} h d x \\
& =\lim _{k \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{\mathbb{R}^{n}} \mathcal{I}_{-\alpha}\left(f_{m, \epsilon_{k}}\right) \mathcal{I}_{\alpha}(h) d x \\
& =\lim _{k \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{\mathbb{R}^{n}} \mathcal{I}_{-\alpha}^{\left(\epsilon_{k} / 2\right)}\left(f_{m, \epsilon_{k}}\right) \mathcal{I}_{\alpha}(h) d x \\
& =\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} \mathcal{I}_{-\alpha}^{\left(\epsilon_{k} / 2\right)}\left(f^{\left(\epsilon_{k}\right)}\right) \mathcal{I}_{\alpha}(h) d x=\int_{\mathbb{R}^{n}} g \mathcal{I}_{\alpha}(h) d x
\end{aligned}
$$

This implies that $f=\mathcal{I}_{\alpha} g$ by definition. By 3.10) we have

$$
\left\|\mathcal{I}_{-\alpha} f\right\|_{p, w}=\|g\|_{p, w} \leq C\left\|G_{\alpha}(f)\right\|_{p, w}
$$

which combined with (3.8), completes the proof of Theorem 1.5 .
4. Characterization of $W_{w}^{\alpha, p}$ by square functions defined by repeated averaging. Let $\Phi \in \mathcal{M}^{1}$. Define $\Lambda_{t}^{j} f(x), j \geq 1$, by $\Lambda_{t}^{j} f(x)=$ $f * \Phi_{t}^{(j)}(x)$, where

$$
\Phi^{(1)}(x)=\Phi(x), \quad \Phi^{(j)}(x)=\overbrace{\Phi * \cdots * \Phi}^{j}(x), \quad j \geq 2 .
$$

We also write $\Lambda_{t} f(x)$ for $\Lambda_{t}^{1} f(x)$. Let I be the identity operator and k a positive integer. We consider

$$
\begin{align*}
\left(I-\Lambda_{t}\right)^{k} f(x) & =f(x)+\sum_{j=1}^{k}(-1)^{j}\binom{k}{j} \Lambda_{t}^{j} f(x) \tag{4.1}\\
& =f(x)-K_{t}^{(k)} * f(x)=\int_{\mathbb{R}^{n}}(f(x)-f(x-y)) K_{t}^{(k)}(y) d y
\end{align*}
$$

for appropriate functions f, where

$$
\begin{equation*}
K^{(k)}(x)=-\sum_{j=1}^{k}(-1)^{j}\binom{k}{j} \Phi^{(j)}(x) \tag{4.2}
\end{equation*}
$$

and we have used the equation

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} K^{(k)}(x) d x=-\sum_{j=1}^{k}(-1)^{j}\binom{k}{j}=1 \tag{4.3}
\end{equation*}
$$

Define

$$
\begin{equation*}
E_{\alpha}^{(k)}(f)(x)=\left(\int_{0}^{\infty}\left|\left(I-\Lambda_{t}\right)^{k} f(x)\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2}, \quad \alpha>0 \tag{4.4}
\end{equation*}
$$

If $\Phi=\chi_{0}=|B(0,1)|^{-1} \chi_{B(0,1)}$ and $k=2$ in 4.4), we have

$$
E_{\alpha}^{(2)}(f)(x)=\left(\int_{0}^{\infty}\left|f(x)-2 f_{B(x, t)} f(y) d y+f_{B(x, t)}(f)_{B(y, t)} d y\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2}
$$

where $(f)_{B(y, t)}=f_{B(y, t)} f$. Also, let

$$
\begin{equation*}
U_{\alpha}^{(k)}(f)(x)=\left(\int_{0}^{\infty}\left|\left(I-\Lambda_{t}\right)^{k} \mathcal{I}_{\alpha}(f)(x)\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2} \tag{4.5}
\end{equation*}
$$

where $0<\alpha<\gamma, f \in \mathcal{S}_{0}$. Using (4.1), we can rewrite $E_{\alpha}^{(k)}(f)$ in 4.4) and $U_{\alpha}^{(k)}(f)$ in 4.5 as follows:

$$
\begin{align*}
E_{\alpha}^{(k)}(f)(x) & =\left(\int_{0}^{\infty}\left|f(x)-K_{t}^{(k)} * f(x)\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2} \tag{4.6}\\
U_{\alpha}^{(k)}(f)(x) & =\left(\int_{0}^{\infty}\left|\mathcal{I}_{\alpha}(f)(x)-K_{t}^{(k)} * \mathcal{I}_{\alpha}(f)(x)\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2} \tag{4.7}
\end{align*}
$$

where $K^{(k)}$ is as in 4.2).
As applications of Theorems 1.4 and 1.5 we have the following theorems.
THEOREM 4.1. Let $0<\alpha<\min (2 k, \gamma), 1<p<\infty, w \in A_{p}$ and let $U_{\alpha}^{(k)}$ be as in 4.5). Then

$$
\left\|U_{\alpha}^{(k)}(f)\right\|_{p, w} \simeq\|f\|_{p, w}, \quad f \in \mathcal{S}_{0}\left(\mathbb{R}^{n}\right)
$$

Theorem 4.2. Let $1<p<\infty, w \in A_{p}$ and $0<\alpha<\min (2 k, \gamma)$. Let $E_{\alpha}^{(k)}$ be as in 4.4. Then $f \in W_{w}^{\alpha, p}$ if and only if $f \in L_{w}^{p}$ and $E_{\alpha}^{(k)}(f) \in L_{w}^{p}$; moreover,

$$
\left\|\mathcal{I}_{-\alpha}(f)\right\|_{p, w} \simeq\left\|E_{\alpha}^{(k)}(f)\right\|_{p, w}
$$

Proofs of Theorems 4.1 and 4.2. Using the expressions of $E_{\alpha}^{(k)}(f)$ and $U_{\alpha}^{(k)}(f)$ in (4.6) and 4.7), we can derive Theorems 4.1 and 4.2 from Theorems 1.4 and 1.5 , respectively, if $K^{(k)} \in \mathcal{M}^{2 k-1}$, since then $K^{(k)} \in \mathcal{M}^{\alpha}$ for $\alpha \in$ $(0, \min (2 k, \gamma))$.

To show that $K^{(k)} \in \mathcal{M}^{2 k-1}$, first we easily see that $K^{(k)}$ is bounded and compactly supported. Since we have already noted 4.3), it remains to show that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} y^{a} K^{(k)}(y) d y=0 \quad \text { if } 1 \leq|a|<2 k \tag{4.8}
\end{equation*}
$$

This can be shown as follows. Since $\Phi \in \mathcal{M}^{1}$, we have $\int y^{a} \Phi(y) d y=0$ for $|a|=1$, which implies that $\partial_{\xi}^{a} \hat{\Phi}(0)=0$ for $|a|=1$. Thus near $\xi=0$, we have

$$
\begin{equation*}
1-\mathcal{F}\left(K^{(k)}\right)(\xi)=1+\sum_{j=1}^{k}(-1)^{j}\binom{k}{j} \hat{\Phi}(\xi)^{j}=(1-\hat{\Phi}(\xi))^{k}=O\left(|\xi|^{2 k}\right) . \tag{4.9}
\end{equation*}
$$

Also, by Taylor's formula we see that

$$
\begin{equation*}
\mathcal{F}\left(K^{(k)}\right)(\xi)=1+\sum_{1 \leq|a|<2 k} C_{a} \xi^{a} \partial_{\xi}^{a} \mathcal{F}\left(K^{(k)}\right)(0)+O\left(|\xi|^{2 k}\right) \tag{4.10}
\end{equation*}
$$

From (4.9) and 4.10 it follows that

$$
\sum_{1 \leq|a|<2 k} C_{a} \xi^{a} \partial_{\xi}^{a} \mathcal{F}\left(K^{(k)}\right)(0)=O\left(|\xi|^{2 k}\right) .
$$

This implies that $\partial_{\xi}^{a} \mathcal{F}\left(K^{(k)}\right)(0)=0$ for $1 \leq|a|<2 k$, and hence we have 4.8.

REMARK 4.3. In the definitions of $E_{\alpha}^{(k)}$ and $U_{\alpha}^{(k)}$ in (4.4) and 4.5), if we assume only that Φ belongs to \mathcal{M}^{0}, then we have analogues of Theorems 4.1 and 4.2 for the range $(0, \min (k, \gamma))$ of α.
5. The Sobolev spaces $W_{w}^{\alpha, p}$ and distributional derivatives. In \mathbb{R}^{2}, we consider $P=\operatorname{diag}(1,2), \delta_{t}=\operatorname{diag}\left(t, t^{2}\right)$. Then $\gamma=3$ and

$$
\rho\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}} \sqrt{x_{1}^{2}+\sqrt{x_{1}^{4}+4 x_{2}^{2}}}
$$

$\rho^{*}=\rho, \delta_{t}^{*}=\delta_{t}$. Under this setting, let $W_{w}^{\alpha, p}$ be the weighted Sobolev space on \mathbb{R}^{2} defined in Section 1 with $0<\alpha<3,1<p<\infty, w \in A_{p}$. Then $W_{w}^{2, p}$ can be characterized by using distributional derivatives as follows.

Theorem 5.1. Let $f \in L_{w}^{p}$ with $1<p<\infty, w \in A_{p}$. Let $\left(\partial / \partial x_{1}\right)^{2} f$, $\partial / \partial x_{2} f$ be the distributional derivatives in \mathcal{S}^{\prime} (the space of tempered distributions). Then $f \in W_{w}^{2, p}$ if and only if $\left(\partial / \partial x_{1}\right)^{2} f \in L_{w}^{p}$ and $\partial / \partial x_{2} f \in L_{w}^{p}$; further,

$$
\left\|\mathcal{I}_{-\alpha}(f)\right\|_{2, w} \simeq\left\|\left(\partial / \partial x_{1}\right)^{2} f\right\|_{p, w}+\left\|\partial / \partial x_{2} f\right\|_{p, w} .
$$

Proof. Suppose that $f \in W_{w}^{2, p}$. Let $g=\mathcal{I}_{-2}(f) \in L_{w}^{p}$. Then

$$
\begin{equation*}
\int f h d x=\int g \mathcal{I}_{2}(h) d x \quad \text { for all } h \in \mathcal{S}_{0} . \tag{5.1}
\end{equation*}
$$

Let $k(\xi)=-4 \pi^{2} \xi_{1}^{2}$. Let $g_{m, \epsilon}=g_{(m)} * \mathcal{F}^{-1}\left(\zeta^{(\epsilon)}\right)$ be as in Section 3. Then by (5.1) we see that for $h \in \mathcal{S}_{0}$,

$$
\begin{align*}
& \int f\left(\partial / \partial x_{1}\right)^{2} h d x=\int g \mathcal{I}_{2}\left(\left(\partial / \partial x_{1}\right)^{2} h\right) d x=\int g \mathcal{I}_{2}\left(T_{k} h\right) d x \tag{5.2}\\
& =\lim _{\epsilon \rightarrow 0} \lim _{m \rightarrow \infty} \int g_{m, \epsilon} \mathcal{I}_{2}\left(T_{k} h\right) d x=\lim _{\epsilon \rightarrow 0} \lim _{m \rightarrow \infty} \int T_{k\left(\rho^{*}\right)^{-2}}\left(g_{m, \epsilon}\right) h d x
\end{align*}
$$

Since $k\left(\rho^{*}\right)^{-2}$ is homogeneous of degree 0 with respect to δ_{t}^{*} and infinitely differentiable in $\mathbb{R}^{2} \backslash\{0\}$, by Lemma 2.6 the multiplier operator $T_{k\left(\rho^{*}\right)^{-2}}$ is
bounded on L_{w}^{p}. Thus $T_{k\left(\rho_{p}^{*}\right)^{-2}}\left(g_{m, \epsilon}\right) \rightarrow T_{k\left(\rho^{*}\right)^{-2}}(g)$ in L_{w}^{p} as $m \rightarrow \infty$ and $\epsilon \rightarrow 0$ since $g_{m, \epsilon} \rightarrow g$ in L_{w}^{p} as $m \rightarrow \infty$ and $\epsilon \rightarrow 0$. Therefore, by (5.2) we have

$$
\begin{equation*}
\int f\left(\partial / \partial x_{1}\right)^{2} h d x=\int T_{k\left(\rho^{*}\right)^{-2}}(g) h d x \quad h \in \mathcal{S}_{0} \tag{5.3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\int f\left(\partial / \partial x_{1}\right)^{2} \psi d x=\int T_{k\left(\rho^{*}\right)^{-2}}(g) \psi d x \quad \text { for all } \psi \in \mathcal{S} \tag{5.4}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left(\partial / \partial x_{1}\right)^{2} f=T_{k\left(\rho^{*}\right)^{-2}}(g) \quad \text { in } \mathcal{S}^{\prime} \tag{5.5}
\end{equation*}
$$

To see (5.4), substitute $\psi-\mathcal{F}^{-1}\left(\varphi\left(\delta_{\epsilon}^{-1} \xi\right) \hat{\psi}(\xi)\right)$ for h in (5.3), where φ is as in Lemma 3.4, and let $\epsilon \rightarrow 0$.

Let $\ell(\xi)=2 \pi i \xi_{2}$. Then, arguing similarly to the above and noting that $\ell\left(\rho^{*}\right)^{-2}$ is homogeneous of degree 0 with respect to δ_{t}^{*} and infinitely differentiable in $\mathbb{R}^{2} \backslash\{0\}$, we see that $T_{\ell\left(\rho^{*}\right)^{-2}}(g) \in L_{w}^{p}$ and

$$
-\int f \partial / \partial x_{2} \psi d x=\int T_{\ell\left(\rho^{*}\right)^{-2}}(g) \psi d x \quad \text { for all } \psi \in \mathcal{S}
$$

which implies that

$$
\begin{equation*}
\partial / \partial x_{2} f=T_{\ell\left(\rho^{*}\right)^{-2}}(g) \quad \text { in } \mathcal{S}^{\prime} \tag{5.6}
\end{equation*}
$$

Combining (5.5) and (5.6), we have

$$
\begin{equation*}
\left\|\left(\partial / \partial x_{1}\right)^{2} f\right\|_{p, w}+\left\|\partial / \partial x_{2} f\right\|_{p, w} \leq C\|g\|_{p, w}=C\left\|\mathcal{I}_{-2}(f)\right\|_{p, w} \tag{5.7}
\end{equation*}
$$

Conversely, suppose that $\left(\partial / \partial x_{1}\right)^{2} f=: \Theta \in L_{w}^{p}$ and $\partial / \partial x_{2} f=: \Xi \in L_{w}^{p}$. Then, for $h \in \mathcal{S}_{0}$ we have

$$
\int f\left(\partial / \partial x_{1}\right)^{2} h d x=\int \Theta h d x, \quad-\int f \partial / \partial x_{2} h d x=\int \Xi h d x
$$

and hence

$$
\begin{equation*}
\int f\left(T_{k} h-T_{\ell} h\right) d x=\int f\left(\left(\partial / \partial x_{1}\right)^{2} h-\partial / \partial x_{2} h\right) d x=\int(\Theta+\Xi) h d x \tag{5.8}
\end{equation*}
$$

where $k(\xi)$ and $\ell(\xi)$ are as above. Let

$$
N(\xi)=\frac{k(\xi)-\ell(\xi)}{\rho^{*}(\xi)^{2}}=\frac{-4 \pi^{2} \xi_{1}^{2}-2 \pi i \xi_{2}}{\rho^{*}(\xi)^{2}}
$$

Then, substituting $\mathcal{I}_{2}(h)$ for h in (5.8), we have

$$
\begin{equation*}
\int f T_{N} h d x=\int(\Theta+\Xi) \mathcal{I}_{2}(h) d x . \tag{5.9}
\end{equation*}
$$

We note that the functions N and \widetilde{N}^{-1} are homogeneous of degree 0 with respect to δ_{t}^{*} and infinitely differentiable in $\mathbb{R}^{2} \backslash\{0\}$, where $\widetilde{N}(\xi)=N(-\xi)$. So, $T_{\tilde{N}^{-1}}$ is bounded on L_{w}^{p} by Lemma 2.6. Substituting $T_{N^{-1}} h$ for h in (5.9), we have

$$
\begin{equation*}
\int f h d x=\int(\Theta+\Xi) T_{N^{-1}}\left(\mathcal{I}_{2}(h)\right) d x=\int T_{\widetilde{N}^{-1}}(\Theta+\Xi) \mathcal{I}_{2}(h) d x \tag{5.10}
\end{equation*}
$$

where the last equality follows as 5.3 , since $T_{\tilde{N}^{-1}}$ is bounded on L_{w}^{p}. By (5.10) we see that $f \in W_{w}^{2, p}$ and

$$
\mathcal{I}_{-2}(f)=T_{\widetilde{N}^{-1}}(\Theta+\Xi)
$$

and

$$
\left\|\mathcal{I}_{-2}(f)\right\|_{p, w} \leq C\|\Theta\|_{p, w}+C\|\Xi\|_{p, w}=C\left\|\left(\partial / \partial x_{1}\right)^{2} f\right\|_{p, w}+C\left\|\partial / \partial x_{2} f\right\|_{p, w}
$$

which combined with (5.7) completes the proof of the theorem.
We conclude this note with two remarks.
REMARK 5.2. To characterize the (unweighted) Sobolev spaces $W^{\alpha, p}$ we can also apply the square functions of Luzin area integral type instead of Littlewood-Paley function type (see [26]). In [23], certain (H^{1}) Sobolev spaces were characterized by using square functions of Luzin area integral type. The characterization of those Sobolev spaces by square functions of Littlewood-Paley type analogous to Theorem 1.5 is yet to be proved.

REMARK 5.3. Let us consider another square function of Marcinkiewicz type:

$$
D_{\alpha}(f)(x)=\left(\int_{\mathbb{R}^{n}}\left|I_{\alpha}(f)(x+y)-I_{\alpha}(f)(x)\right|^{2}|y|^{-n-2 \alpha} d y\right)^{1 / 2}
$$

where I_{α} is as in 1.2 . Let $0<\alpha<1$ and $p_{0}=2 n /(n+2 \alpha)>1$. Then it is known that the operator D_{α} is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ if $p_{0}<p<\infty([27])$ and that D_{α} is of weak type $\left(p_{0}, p_{0}\right)$ ([8]). In [24] analogues of these results were established in the case of dilations $\delta_{t}=t^{P}$ when P is diagonal.

Acknowledgements. The author is partly supported by Grant-in-Aid for Scientific Research (C) No. 20K03651, Japan Society for Promotion of Science.

References

[1] R. Alabern, J. Mateu and J. Verdera, A new characterization of Sobolev spaces on \mathbb{R}^{n}, Math. Ann. 354 (2012), 589-626.
[2] A. P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), 297-306.
[3] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Adv. Math. 16 (1975), 1-64.
[4] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Adv. Math. 24 (1977), 101-171.
[5] O. N. Capri, On an inequality in the theory of parabolic H^{p} spaces, Rev. Un. Mat. Argentina 32 (1985), 17-28.
[6] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
[7] E. B. Fabes and N. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38.
[8] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.
[9] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[10] P. Hajłasz and Z. Liu, A Marcinkiewicz integral type characterization of the Sobolev space, Publ. Mat. 61 (2017), 83-104.
[11] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[12] D. S. Kurz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343-362.
[13] P. D. Lax, Linear Algebra, Wiley, New York, 1997.
[14] J. Marcinkiewicz, Sur quelques intégrales du type de Dini, Ann. Soc. Polon. Math. 17 (1938), 42-50.
[15] F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955.
[16] N. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278.
[17] S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), 199-211.
[18] S. Sato, Estimates for singular integrals along surfaces of revolution, J. Austral. Math. Soc. 86 (2009), 413-430.
[19] S. Sato, Littlewood-Paley operators and Sobolev spaces, Illinois J. Math. 58 (2014), 1025-1039.
[20] S. Sato, Square functions related to integral of Marcinkiewicz and Sobolev spaces, Linear Nonlinear Anal. 2 (2016), 237-252.
[21] S. Sato, Spherical square functions of Marcinkiewicz type with Riesz potentials, Arch. Math. (Basel) 108 (2017), 415-426.
[22] S. Sato, Littlewood-Paley equivalence and homogeneous Fourier multipliers, Integral Equations Operator Theory 87 (2017), 15-44.
[23] S. Sato, Characterization of H^{1} Sobolev spaces by square functions of Marcinkiewicz type, J. Fourier Anal. Appl. 25, 842-873 (2019).
[24] S. Sato, Weak type estimates for functions of Marcinkiewicz type with fractional integrals of mixed homogeneity, Math. Scand. 125 (2019), 135-162.
[25] S. Sato, Boundedness of Littlewood-Paley operators relative to non-isotropic dilations, Czechoslovak Math. J. 69 (2019), 337-351.
[26] S. Sato, F. Wang, D. Yang and W. Yuan, Generalized Littlewood-Paley characterizations of fractional Sobolev spaces, Comm. Contemp. Math. 20 (2018), no. 7, art. 1750077, 48 pp.
[27] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102-104.
[28] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.
[29] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
[30] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.
[31] D. Waterman, On an integral of Marcinkiewicz, Trans. Amer. Math. Soc. 91 (1959), 129-138.
[32] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.

Shuichi Sato
Department of Mathematics
Faculty of Education
Kanazawa University
Kanazawa 920-1192, Japan
E-mail: shuichipm@gmail.com

[^0]: 2020 Mathematics Subject Classification: Primary 42B25; Secondary 46E35.
 Key words and phrases: Littlewood-Paley functions, Marcinkiewicz function, Fourier multipliers, Sobolev spaces.
 Received 19 August 2021.
 Published online 24 June 2022.

