SOBOLEV SPACES AND FUNCTIONS OF MARCINKIEWICZ
TYPE WITH REPEATED AVERAGING OPERATIONS OVER
SPHERES

SHUICHI SATO

ABSTRACT. We consider the weighted Sobolev spaces with weights of the
Muckenhoupt class and characterize the spaces by the square functions of
Marcinkiewicz type defined by repeated averaging operations over spheres.

1. INTRODUCTION

The function of Marcinkiewicz is defined by
oo L dt\'?
un@ = ([ a0+ Fa-o -2r@Pg)
0

Fuwi[}@My

J. Marcinkiewicz [7] in 1938 introduced an analogue of this square function in the
setting of periodic functions on the torus. Results conjectured in [7] were proved
by Zygmund [17] and the non-periodic version above was provided by Waterman
[16]. Let S(R™) be the Schwartz class of rapidly decreasing smooth functions on R™

and let 8p(IR™) be the subspace of $(R™) consisting of functions f with fvanishing
in a neighborhood of the origin, where f denotes the Fourier transform defined as

~

FO=FNE) = | f@)e @ de, (2,6) = wp&-
k=1

R”L
Then, for p € (1,00), it is known that
(1.1) [(Ollp = 1 fllps € So(R),

where |- ||, denotes the LP norm and ||u(f)||, = || f]l, means that there exist positive
constants C7,Cy independent of f such that

Cillfllp < llu(Hllp < CallFlp-
We can see that (1.1) is equivalent to

(1.2) lvHllp = 1, f € So(R),

where

e = ([T 16+ -0 —2rr )"
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The relation (1.2) can be used to characterize the Sobolev space W1,
We write

flat 0+ o0 =26 =2( [ 1 10)d000) - 1))

where SO = {—1,1} and o is a measure on S° such that o({—1}) = 1/2, o({1}) =
1/2. By this observation we generalize v to higher dimensions as follows. Let n > 2

and
. ) 1/2
A(f)(w)=</0 ) [ s w)ao ;“) ,

where do is the Lebesgue surface measure on S"~! normalized as [ gno1 do = 1.
We also write

o= [ te-twmdet=f farei=onswm [ o

S(z,t)

where S(z,t) = {y € R" : |z — y| = ¢t} and o, is the Lebesgue surface measure
on S(z,t). We note that if f is a locally integrable Borel measurable function on
R™, then the integral O, f(z) is defined for all z € R™ and ¢ > 0 and it is a Borel
measurable function in (z,t) € R™" x (0, 00) (see [3, pp. 74-75], [14, pp. 1285-1287]).
If f is a locally integrable Lebesgue measurable function, then ©, f(x) is defined for
a.e. x € R™ and all ¢ > 0 and measurable in (x,t) on R™ x (0,00); also O, f(z) is
measurable on R™ for each fixed ¢ > 0. When n > 3, this can be seen from [14, pp.
1285-1287]), where the condition n > 3 is assumed to apply the maximal inequality
(8-12) there. When n = 2, we also have similar results for ©, f(x), since we have a
maximal inequality analogous to (8-12) of [14] by [2].
Let S(f) = A(I1f):
9 dt) 1/2
t3 ’

S(/)() = ( s

where for 8 € R, I3 is the Riesz potential operator defined by

(1.3) F(Ip(1)(E) = (2mle) 7 f (€)
for f € 8.
The following is known ([5]).
Theorem A. Suppose that 1 <p < oo, n> 2. Let f € §¢(R™). Then

ISCHIlp = 1715

This is used to characterize the Sobolev space W1?(R™) in terms of A(f). The-
orem A was motivated by results of Alabern, J. Mateu and J. Verdera [1], where
the operator

L(f)) - / L(f)(z — ty) do(y)

Sn—1

9 1/2
dt
3

(1.4) E(f)() = / N

f(x) - ]{B(m) f(y)dy

was considered and used to characterize W1, Here

]l f(y)dy = | Bl 1) ! / f(y) dy,
B(x,t

B(z,t)

)

where B(z,t) is a ball in R™ with center « and radius t.
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2 a \"?
)
(1.6) Sa<f><:c>=</0°°

1/2
2 at
+1+2a :
Then, we have an analogue of Theorem A for 1 < av < 2 (see [9]).

Theorem B. Let S, be as in (1.6) and f € So(R™), n > 2. Then if 1 < o < 2, we
have

We generalize the operators A and S defined above. Let

(15)  Aulle) = ( [ o [ se-uasw)

L& = [ 1= ) doty)

1Sa(H)llp = 1 £1»

forl < p<oo.

This can be used to characterize the Sobolev spaces WP for 1 < a < 2 by A,
n (1.5).

In this note, to characterize WP for 2 < a < n, we generalize S, by considering
iterated averaging operations. For k € Z (the set of integers), k > 1, let

0o 1/2
17) A = ([T 100 i@ 1)
0o ) 1/2
(18) s = ([T lr-enr Lol )

where I is the identity operator and

: (kR
et ()b
@if(z):f*crt*~'~*at(:v), j
01(w) = 0uf(w) = [ fle—t)dol) = Fron@). o0 = onalS(0.6) o

We note that f + o¢(x) = fg, ,y fdoas.
) 1/2
dt
tl+2a ’

If k=2 in (1.7), we have
AD(f)(a) = ( /

where (f)s(y.) = fs(y " f. We note that AL = Ag, A=A, Sy = =5,,58 =85.
Also, we consider discrete parameter versions of A(ak) and Sak):

0o 1/2
(].9) B((lk)(f)(x) = ( Z |(I _ @2£)kf(z)|222€a> 7

l=—00

Vv
N

fa) - ]g L) ][S L st o)

1/2
(1.10) US (f)(x <Z (I = ©90)" I f ()| 2—2’a> .

l=—o0
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Let 1 <p<o0,0<a<nand we A, (the weight class of Muckenhoupt). We
recall that a weight function w belongs to A, if

-1

sup <B|_1/Bw(x)dx) <|B_1/Bw(x)_1/(p_1)dx)p < o0,

where the supremum is taken over all balls B in R™. Let LP be the weighted
Lebesgue space consisting of all functions f such that

e = ([ 1s0P0 ) <o

Define the weighted Sobolev space WP, 0 < o < n, by
(1.11) WoP ={felLl :f=1I,(g) for some g € LE },
where f = I,(g) signifies that
F@)h(z) da = / 9@ L(h)dz for all h € So;
Rn

n

such function g € L? is uniquely determined by f, since I, is a bijection on &g,
which is dense in L?' (w=?'/?), the dual space of LP(w), with 1/p+1/p’ = 1. Define
g=1I_,(f), and for f € WP let

(1.12) 1fllp.aw = Ifllp.w + [H—a(f)llp,w-

(See Remarks 1.5 and 1.6 below.) We simply write W®? when w = 1 (unweighted
case). In this note, we mainly concentrate on the case 1 < a < n.
We shall prove the following theorems.

Theorem 1.1. Suppose that 1 < o < min(2k,n), 1 < p < oo and w € A,. Let
S be as in (1.8). Then we have

1S (Dllpw = 1F lpows  f € So(R™).

Theorem 1.2. Let 1 < o < min(2k,n) and let AP be as in (1.7). Letw € A, with

1 <p<oo. Then, [ is in the space WP if and only if f € LE and .A((Xk)(f) € Lb;
also, we have

H=a(Hllpaw = 1AL (F)lpo,

where I_,(f) is as in (1.12).

Theorem 1.3. Suppose that 1 < o < min(2k,n), 1 < p < oo and w € A,. Let
U be as in (1.10). Then we have

U (Dllpaw = 1 lpws - f € So(R™).

Theorem 1.4. Let 1 < a < min(2k,n) and let B be as in (1.9). Suppose that
1 <p<ooandw € Ay. Then, f belongs to WP if and only if f € LY and

B((lk)(f) € L?; also, we have

1 —a()lpw = HB((xk)(f) pw-

Analogues of Theorems 1.1 and 1.2 are obtained by Theorems 4.1 and 4.2 of [12],
where averaging over spheres is replaced by averaging over balls.
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We shall prove Theorems 1.1 and 1.3 by applying results for more general
Littlewood-Paley operators. Let v be a function in L*(R™) satisfying

(1.13) Y(z)dz = 0.
Rn

The Littlewood-Paley function on R™ is defined by

(114) i@ = ([T1r e )"

where () = t " (t"'z). Also a discrete parameter version of gy is defined by

. 1/2
(1.15) Ap(f)(z) = ( > |f*w2e(x>|2> :

f=—o00

The following results are known.

Theorem C. Suppose that
(1) there exists € > 0 such that B.(y)) < 0o, where Be(¢) = fw x)| x| dx;
(2) there exists u > 1 such that Cy () < oo, where C ) = f e <1 |’(/J )™ da;
(3) Hy belongs to L*(R™), where Hy(z) = supj, >, [¥(y)]-
Then
g6 ()llpw < Cpwll fllpw
for all pe (1,00) and w € A,. If we further assume the non-degeneracy condition:
SUp,~ [¥(t&)| > 0 for all £ # 0, then we also have the reverse inequality and hence
[ llpaw = gy ()llpw: f € LE, forp € (1,00) and w € A,.
Theorem D. Let B.(y), Hy be as in Theorem C. Suppose that
(1) there exists € > 0 such that B.(1)) < 00;
(2) there exists § > 0 such that [)(€)] < C|¢|~0 for all € € R™\ {0};
(3) the function Hy is in L'(R™).
Then

1A% (Dlpw < Cpawll fllpw
for every w € A, and every p € (1,00). If we further have the non-degeneracy

condition: sup,cy |1ﬁ(2€§)| > 0 for all £ # 0, then the reverse inequality also holds
and hence || fllp.w = |Aw(H)lpws f € LE, forpe (1,00) and w € A,.

See [8], [11] for Theorems C and D.

Remark 1.5. The definition (1.11) of WP is the same as that in [9, 11], where
WP is defined by using the Bessel potentials (see [13, Chap. V] for related re-
sults). This can be seen as follows. The space WP with the definition (1.11) is
characterized by a certain square function in [12, Theorem 1.5]. The same square
function also characterizes the space WP defined in terms of the Bessel potentials,
which is shown in [11, Corollary 5.2]. Consequently, we see that the two definitions
coincide.

Remark 1.6. Let $po(R™) be the subspace of 8¢(R™) consisting of functions f with
fvanishing outside a compact set not containing the origin. Then we can replace
So(R™) by 8po(R™) in the definition of the weighted Sobolev spaces WP without
changing the definition of the spaces. This is because Sgo(R™) is also dense in L,
forwe Ay, 1 <p < oo.
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In Section 2, we shall prove Theorem 1.1 by applying Theorem C. Theorem
1.2 will be proved in Section 3 as an application of Theorem 1.1. We shall prove
Theorem 1.3 in Section 4 by applying Theorem D. Also, in Section 4, Theorem 1.4
will be proved by using Theorem 1.3. In Section 5, analogues of Theorems 1.3 and
1.4 for a« = 1 will be presented. This will be accomplished by applying ideas of [5]
in an essential way. Finally, in Section 6 we shall have some further remarks and
results.

2. PROOF OF THEOREM 1.1
We write
k B
(2.1) (I—0,)F=1-N,, Nt:—Z(—l)J()@{.
i=1 J
We note that N, f = f * u; with a measure pu,, t > 0, satisfying

(2.2) Nof(z) = / f( — ) dun(y) = / F@ — ty) du(y),

O =31y (F)ater.

=1

J
and hence f1;(0) = 72?21(71)]‘(?) = 1, where g = p;. Using [ dp = 1, for
f € 80, we see that

(I - @t)klaf(x) = Iaf(x) — I f* Nt(‘r)
= [ (1a5(@) = Lafta = t0) duto)
Recall that if L, (x) = 7(a)|z|*™™, 0 < a < m, with

7(a) = M
/2207 (o /2)’

then Ly (&) = (27]¢[)~°. Let

(23)  ((2) = L) - /

The following results will be used in estimating (.

Loz —y) duy) = / (La(x) — La(z — 4)) du(y).

n n

Lemma 2.1. We have the following properties of p.

(1) the measure p is compactly supported;
(2) for any compact set K in R™ and o, 1 < oo < m, we have
sup

Sup /n Lo(x —y) du(y)

(3) Jan ¥ du(y) =0 if 1 < |y| < 2k —1, where v = (y1,...,7) is a multi-
index; v €Z, ;2 0, [yl =m+- + v,y =yt oyl

< 005

Proof. We can see the assertion of part (1) from

k
n= _Z(_l)](>J(J)7 U(J) =0g*---%0, .7 2 27 0(1) =0,

i=1 J
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since o is concentrated on S™~!. To prove part (2), we first see that, by a direct
computation,

sup [ La(e— ) doly) < .
rzeK

where we are assuming that o > 1. By induction, this holds with o replaced by
o) for any 2 < j < k, which easily implies what is claimed.
Proof of part (3). Since 1 — &(£) = O(|¢]?) for [£] < 1, we see that

. : TEAPPRY ek 2%
1= ) =1+ Y17 (£)otey = - a6 = oe

for |¢] < 1. On the other hand, applying Taylor’s formula for i(£) at & = 0, we
have

MO =1+ > ,da0)& + O

1<|y|<2k—1
for [£] <1, where &7 = 9]* ... 0" = (0/0&1)" ... (0/9&,) 7. Thus we see that
Y. &0 =0(g*)
1<|y|<2k—1
for |£] < 1. Tt follows that 97(0) = 0 if 1 < |y| < 2k — 1, which implies what we
need. O

We apply Taylor’s formula in (2.3) for L,(x — y) as a function of y at y = 0.
Then, by (1) and (3) of Lemma 2.1, since [a] < 2k — 1, if oo < 2k, we have, if |z| is
sufficiently large,

(2.4) ()] < Cla|omn o1,
Combining (2.4) with part (2) of Lemma 2.1, we see that

Cla|on if |z| <1,
2.5 =
(2.5) [¢(z)] < {C|x|"‘_"_[a]_1 if |z| > 1.

It follows, in particular, that ¢ € L'(R™). Also, by (2.3) and part (3) of Lemma
2.1 we have

C(&) = (2rl¢)) (1 = @) = O(|¢|~*+2¥)
for || < 1. Since a < 2k, this implies that QA“(O) =0, or [¢=0. Also, we see that

SUP;~q IC(t€)| > 0 for every € # 0, since fi(€) — 0 as |€| = oo. By this and (2.5) we
can apply Theorem C to conclude that ||g¢(f)|pw = || fllpw for f € L. p e (1,00)

and w € A,, which implies Theorem 1.1 since S((Xk)(f) = gc(f).
Remark 2.2. It is known that

o eo(e) < [P L@ = PP 0 < o] <2
0, otherwise.

Thus ¢U) is a compactly supported radial function when j > 2, where o) is as in
the proof of Lemma 2.1.
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3. PROOF OF THEOREM 1.2
We can easily prove the following two lemmas (see [12] for the proofs).

Lemma 3.1. Let f € LY, where 1 < p < oo and w € A,. Let m be a positive

w?

integer and define f,) = fxg,, with
Em ={z €R" : [a] <m,|f(z)] < m},

where xg denotes the characteristic function of a set E. Then we see that f(,) — f
almost everywhere and in LY as m — oo.

Lemma 3.2. Let 1 < p < oo and f € LY with w € A,. Choose an infinitely
differentiable, non-negative, radial function ¢ on R™ such that ¢(&) =1 for || <1,
supp(¢) C {|¢] < 2}. Define n'®) € 8 for e € (0,1/2) by

n9(€) = ¢(e€) — p(e19).
Then (9 (&) = 0/ (&N (€). Define f() = f*F (). Then f( — f almost
everywhere and in L as e — 0.

Also, we need the following.

Lemma 3.3. Suppose that f € L?, we Ay, 1 <p < oo. Let 1 be as in Lemma

w?r

3.2. Let du be as in (2.2). Then we have the following.
(1) there exists a sequence {ex}, €x — 0, such that
(3.1) [ F - waut) » [ s =) duty)
for a.e. (z,t) € R™ x (0,00);
(2) we can find a sequence {€y}, €x — 0, such that we have the convergence
(3.1) for a.e. x € R™ and for all t = 2° with { € Z.

Proof. Let Ky = B(O,M) x (0,M), M = 1,2,3,.... By part (1) of Lemma 2.1,
the measure p is supported in B(0, V) for some N > 0. We see that

hwe= [ /K ) [ 19—ty duty) - [ o~ ty) duty)

<

dx dt

[ £ @)~ f()| do dlpl )
B(0,N) B(0,M+MN)

1/p’

sow [ (|1 -sw w@a) | [ e

B(0,M+MN) B(0,M+MN)

P

where the last inequality follows by Holder’s inequality. By Lemma 3.2, it follows
that Ipre — 0 as € — 0. Therefore, there exists a sequence {e;} for which we have

(3.1) for a.e. (z,t) € Kps. Applying this arguments, we can find sequences {e,(CM)},
M =1,2,3,..., such that {e,(QMH)} is a subsequence of {eECM)} and we have
()
[ 190wt~ [ e =) duty)

for a.e. (z,t) € Kps. Thus we can get the conclusion of part (1) of the lemma by
applying the diagonal process arguments.
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Part (2) can be shown similarly, since we have the convergence (3.1) for a.e.
x € R™ and for each fixed t = 2¢ with some {e;} by the arguments of the proof of
part (1). O

For § € (0,1/2), B € Rand f € L, let I{(f) = 5L (n®(€)(2nl¢])~#) « £,
where () is as in Lemma 3.2.

Lemma 3.4. Let f € LE, we Ay, 1 <p < oo and let 1 be as in Lemma 3.2.

w?

Let A(ak) be as in Theorem 1.2. Then
AL F )l = 1142 F Oy, 0 < €< 1/2,

Proof. For f € L2, ¢ € (0,1/2) and a positive integer m, define f,, € 8 by

w

fm,e = (f(m))(e), where f(,,) is as in Lemma 3.1. By Theorem 1.1 we have

(3.2) ||Az(xk)(fm,6) pow = Hst(xk)(lfafm&)”p}w = ||I(—Eo/¢2)fm,e||p,wv

where we have used the relation I_, fp, . = I(_eég)fmﬁe.
Let K be a compact set in R”. Then we see that f,, (z) — £ (x) uniformly
for z € K, since by Holder’s inequality, we have

fme(x) = f(e)(x)‘ = ‘/(f(m) (v) = F)F (') (@ —y) dy‘

1/p
< ||f(m) - f”p,w (/ ‘9771(77(5))(;[ _ y)’p w(y)*:ﬂ /p dy) )

Thus by Lemma 3.1 we can easily see the uniform convergence claimed. It follows
that fon.c(2) — fine * pe(z) = f(z) — £ % py(2) as m — oo for all z € R™ and
t > 0 (see (2.2)). Therefore, recalling the definition of AP and noting (2.1), by
Fatou’s lemma and (3.2), we see that,

(33)  IAP )y < liminf [AD () lp
< Climin |12 fn.cllpw = CIZLD £l
where we have the last equality since I(féz) is bounded on L?. In particular, we

see that A&’“)(f(€>) e Lk,
To complete the proof of Lemma 3.4, we first note that

(3‘4) ||~A£xk)(f(€)) - At(xk)(fm@)”p,w < ”A:(xk)(f(e) - fm,6)| p,w
= A ((f = Fam) Dl

‘We can see that

(fo) = Fom) (@) = (Fi)y = Fom)' D #pe(@) = (f = Fom)) @ (@) = (f = Fom))' # p1e ()

as j — oo for all x and ¢, as we have shown above that fy, (x) — fim.e * pu(z) —
f(z) = £ % py(x). Thus by Fatou’s lemma we see that

(35) AL = Som)Dlpw < liminf LA () = Fom) -



10 SHUICHI SATO
Since (f(;) — f(m))(e) € 89, by Theorem 1.1 we have

LA (i) = o) Dllpi 2= H=a((F) = Fom) D llpow
€/2 €
= 1152 (i) — Fom) )l
Since f(y,) — f in L, from this it follows that

lim ||.A((Xk)((f(j) - f(m))(e))Hp,w =0,

J,m—00

which combined with (3.4) and (3.5) implies that A((Xk)(fmﬁe) — A((xk)(f(f)) in LP as
m — oco. Thus, letting m — oo in (3.2), we have the conclusion of Lemma 3.4. O

Furthermore, we need the following.

Lemma 3.5. Let w € A,, 1 < p < co. Suppose that f € WP and g = I_(f)
(0 < a <n). Then we have
192 50 — g,

Proof. For h € §y we see that

(3.6) /g(e)(a:)la(h)(x) de= lm [ gm.(x)lo(h)(z)dx

m—r o0

= lim [ 152 (gpn.o)(@)h(x) du

- / 16/ (g9) (@) h(z) do,

where g, ¢ is as in the proof of Lemma 3.4. We rewrite the integral fg(e)fa(h) dx
as follows:

(3.7) / g @) (h)(x)de = lim [ gm.o(x)Io(h)(z)de

m—0oQ

= tim [ gom (@) (h)) () da = / (@) L (W) (2) da.

m—o0

We have [ gI,(h\9)dx = [ fh(9) dz by the definition of g = I_,(f). Using this in
(3.7), we see that

68 [dO@nm @ d = [ f@h @) de= tim [ S @h @) ds
= lim [ foc(z)h(z)ds = / O (z)h(x) da.

m—r oo

By (3.6) and (3.8) for all h € 8¢ we have
196 (o) de = / FO@h(z) de.

Thus we see that Lgf/z)(g(e)) = f(9. We note that I%/? and I(fc/f) are bounded on
LP and the mapping f — f (©) is also bounded on LP . Therefore, using Lemma 3.1
we have

1P () = 121D (g) = Tim 1P I (g,0)).-

m—r o0
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Since gm,e € 8¢ and n(¢/2) = 1 on the support of F(gm,e), we easily see that
12 g )(@) = [ 2P (g O de
- /Hj(gm,e)(5)627”4@6’£> d§ = gm,e(x)-

Using this, we see that
I(—Eé2)(f(€)) = lm gy = g(e)~

m—r o0

This completes the proof of Lemma 3.5. O

Proof of Theorem 1.2. Let f € WP and g = I_,(f). From Lemmas 3.4 and 3.5,
it follows that

I (FNpw < Cllglpaw < CIM () lps < Cliglp,,

where M denotes the Hardy-Littlewood maximal operator, which is bounded on
L? . From part (1) of Lemma 3.3 and Lemma 3.2, we can find a sequence {¢;} such
that f(<)(x) — f9) % py(x) — f(x) — f * pe(x) for ae. (z,t) € R™ x (0,00) as
j — o0. Therefore, by Fatou’s lemma we have

(3.9) A (P llpw < lipn inf 1AS (F ) lpw < Ol - f Il

Conversely, we assume that f € LP and Ag’“)( f) € LE. Then, Minkowski’s
inequality and the L? boundedness of M imply that

(3.10) IS (F N pw < CIMAL () llpaw < CIAE (F)llpouo-
Using Lemma 3.4 and (3.10), we have

sup 107 )0 <C sup (AP (£
€€(0,1/2) e€(0,1/2)

pw < CIAL (H)lp,w-

By compactness, we can find a sequence {¢;}, 0 < ¢; < 1/2, and a function g € L?,
such that €; — 0,

(3.11) 19llp.w0 < CIAL (H)llp,w

and I(j;/Q)f(ej) — g weakly in LP as j — oo.
Now we prove that f = I,g. Let h € 8y. From Lemma 3.2, we see that f(¢) — f
in L? as j — oo. Using this, we have

f@)h(z)dx = lim ) (2)h(z)de = lim lim Jm,e; (x)h(x) dz
RTL n

J—00 Jrn Jj—00 m—0o0 R

= lim lim I_o(fme;)(@)Ia(h) () da.

Jj—00om—0 [pn

Thus, noting that I_o(fm.e,) = I(_Eé/Q)(fm,ej), we see that

s f@)h(z)dz = lim lim [ 192(f, ) (@) (h)(x) da

J—00 m—+00 Rn

= lim [ 1P (f9) (@) Lo (h)(x) dv = / 9(x)Ia(h) () da.

Jj—o0 Rn n
It follows that f = I,g by definition. Thus (3.11) can be restated as
(3.12) H=cfllpw = 19llp.0 < CIAS () llpu-
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By combining (3.9) and (3.12), we conclude the proof of Theorem 1.2. O

4. PROOFS OF THEOREMS 1.3 AND 1.4

Let ¢ be as in (2.3). In the proof of Theorem 1.1 in Section 2, we have already

seen that ¢ € L'(R™) and [ ¢ = 0. We observe that U (f) = Ac(f). By (2.5),
we can see that ¢ satisfies the conditions (1) and (3) of Theorem D. To see the
condition (2) of Theorem D, we recall that

¢(&) = (2le)) ™ (1 — E)).

Obviously, this implies the condition (2) of Theorem D and also the non-degeneracy
condition required in Theorem D. So we can apply Theorem D to get Theorem 1.3.
Next we prove Theorem 1.4.

Lemma 4.1. Letw € Ay, 1 <p<oo and f € LE. Let 1 be as in Lemma 3.2.
Let B&k) be as in Theorem 1.4. Then

IBE N pw = 11L2 F s 0 < e < 1/2.

Proof. For f € LP let fpn . € 8 be as in the proof of Lemma 3.4. Applying
Theorem 1.3, we have

(4.1) 1B (Ml = 1Tl 22 1147 fon

Using (4.1) and arguing as in the proof of Lemma 3.4, we can prove Lemma 4.1.

pw-

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.2, so it is brief.
Suppose that f € WP and let g = I_,(f). By Lemmas 4.1 and 3.5, we have

1BE (FNllpaw < Cllgllpaw < CIM(9)llp.o < Cllgllpo-

Thus, as in the proof of (3.9), by part (2) of Lemma 3.3, Lemma 3.2 and Fatou’s
lemma we see that

(4.2) IBE) (lpw < Cll-af

Next, we assume that f € L2 and B&k)( f) € LP. Using Minkowski’s inequality
we see that

(4.3) IBE (£ lpw < CIM B (f))llpaw < CIBL (£
By Lemma 4.1 and (4.3), we have

€/2 € €
sup (122 f O <C sup [BE(F ) paw < CIBE ()llpo-
€€(0,1/2) €€(0,1/2)

[

p,w-

So, we can find a sequence {¢;} and a function g € L? such that 0 < ¢; < 1/2,
€ — 0,

(4.4) I9llp0 < CIBE (F)llpow

and I'9/?) §(<)) — g weakly in L2, as j — oo.
We can prove that f = I,g as in the proof of Theorem 1.2. So by (4.4) we have

(4.5) H=afllpaw = ll9llpw < CIBL (F)llp.w-
We conclude the proof of Theorem 1.4 by combining (4.2) and (4.5). O
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5. CHARACTERIZATION OF W? BY DISCRETE PARAMETER SQUARE FUNCTIONS

In [5] A; is used to characterize WP for 1 < p < oo, w € A,. Here we consider
B; and prove a similar characterization by By, where B; = Bil) (see (1.9)).
Theorem 5.1. Let 1 < p < oo, w € A, and f € LE,. Then, f € WLP if and only
if B1(f) € L,; further

1 (Dllp,w 2= 1B1 ()0

Let R;, 1 < j < n, be the Riesz transform:
R;(f)(z) =p.v.Cy /fx— |n+1 dy,

where C,, = T'((n + 1)/2)/7("*D/2 Tt is known that F(R; f)(€) = (—i&;/|E])f(€),
fes.

To prove Theorem 5.1 we need the following results.

Lemma 5.2. Let ¢U)(z) = c;lxj|x|_”XB(0’1), j=1,...,n, where c, is the surface
area of S~ 1. Then we have the following.
(1) Ri(¢V)) € LY(R™) for 1 < j,k <n. 4
(2) F(Rr(@))(€) = (=itk/IENT (@) (&) and [ Ri(¢V)(z)dx = 0 for 1 <
ik <n.
(3) |9(¢(j))(£)| < C'min(|¢]5, [£]7€) for & € R™\ {0} with some € > 0.

(4) supgez [S)—y F(R; (69))(2°€)| > 0 for ¢ € R™\ {0},

Proof. Proof of part (1). This is valid since ¢\9) is essentially an atom for H'(R")
(the Hardy space) (see [4, Chap. III]). Here we give a proof for completeness. For
2| > 2 we have |Ry(¢\9))(x)| < C|z|™"! as follows. Since [ ¢U) = 0, we see that

Tk — Yk »
e /y|<1 (|96—y|”+1 |x|"+1> o) (y) dy

<c / 2|16 (9)] dy < Clal 691

Also, we note that ¢/) € LP(R") for p € (1,n/(n—1)). Thus by Holder’s inequality
and the LP- boundedness of Ry, for p € (1,n/(n — 1)) we see that

/I - |Ri(¢) (@) da < [B(0,2)] | Ri(¢), < ClI¢],-

|[Ri(69) ()] =

Collecting results, we have Ry (¢\?)) € L'(R™).

Proof of part (2). Let 1 < p < n/(n —1). We take a sequence {f;}72, in 8
such that f, — ¢U) in LP as £ — oco. Since ¢U) is supported on |z| < 1, we
may assume that supp(f¢) C B(0,2) and hence we also have f; — ¢U) in L.
Thus fi(€) — F(¢WD)(€) for every &. By the LP boundedness of Ry, it follows
that Ry(f:) — Rr(¢Y)) in LP. Applying the inequality of Hausdorff-Young, we
see that F(R(fe)) = F(Ri(¢)) in LP'; also we may assume that F(Ry(f)) —
F(R(¢Y))) a.e. by taking a subsequence, if necessary. Thus, for almost every & we
have

(50 T(RLD)(E) = Jim T(RAFNE) = Jim < fo(e) =

—i&k
€]

F(9)(8).
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Since Ry (¢Y)) € L' by part (1), F(Ri(¢))) is continuous on R”. Also, F(¢)) is
continuous on R”™. Thus by (5.1) F(Rk(¢U)))(&) = (—i&/|€))F(49))(€) holds for

every & # 0.

Next, we observe that
(5.2) ¢(]) ‘ - ‘/¢(J) —2m<m£ ‘ < Cle| / |p a) )|z| dz < C|g].
Thus

TR = [T e >‘scs|,

which implies F(R ((bm))( ) = 0, in other words, [ Ry(¢"))(z)dz =0 .
Proof of part (3). We write F(¢\7)) as follows.

(5.3)  FoD)(E) = / 60 (@)e=2mile ) g — /0 /S 45O o (0)

_ - (1 _ e—27ri<9,§>)
- /Sn_l b Smip gy )

Thus
oM@ < [ Ile10.01 o) = Clel

where 0 < e < 1 and C'is a positive constant independent of {. From this and (5.2)
we can deduce the inequality claimed.
Proof of part (4). We recall that

omi 27 J, @rlel)

27i(0,£) (n—2)/2

/3n . € dO'(a) Cn ‘§|(n 2)/2 (|§|)

where Jg denotes the Bessel function of the first kind of order 8 (see [15, p.154]).
It follows that

1

; 1
o 2mi{0,8) - ,
[ im0 da0) = < (0/08)V (]) = =5 V(D
Using this in (5.3), we have
: & [ _ &
FoD)() = =L | V'(rle 2w (jg)),
(96 = 5= [ Vit ar = e
where W is an analytic function defined by
C
_ v /
= 271_/0 V'(ru) dr

So, using part (2), we see that

> F(R(¢1)
j=1

Thus, we need to show that

(5.4) sup [W([2%])] > 0 for & € R™\ {0}.
LEL

Z|§|2 |€‘ (W (&) for € € R™\ {0}.

We give a proof by contradiction. We first note that W (0) = 0. If there is £ €
R™\ {0} such that W (27¢|¢|) = 0 for all £ € Z, then we have a sequence {27|¢|}22,
of distinct points such that 27¢|¢| — 0 and W (27¢¢]) = 0 for all £ = 1,2,....
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This implies that the function W is identically 0 by the uniqueness of analytic
continuation. Thus we have reached a contradiction, and hence we have (5.4). O

To prove Theorem 5.1, we apply the following result.

Theorem 5.3. Suppose that 1 <p < oo and w € Ap. Let Uy = Ul(l), where Ul(l)
is as in (1.10). Then we have

1O (P lpaw = [ fllpws S € So(R™).
Proof. Let f € 8. Then by [5, Lemma 2.1] we see that

(55) L(f)(x)— / L(f)(@ — ty) do(y) = — /B » <V11f(y),”> dy,

Sn—1 Cn

where ¢, is the surface area of S~ ! as above and Vg = (019, ...,0,9). Let

n

YD(2) = —R;(6V) (@), W(x) =) ¢ (2).

Then by (5.5), we have
B@ = [ 0w = ) daly) = HF 5 @),
Thus

(5.6) Ur(f) = Ay (f)-

We note that Ay (f) = Ay (R, f). Using part (3) of Lemma 5.2, we can easily
see that Theorem D is applicable to A, to get its L¥, boundedness. Thus, by
Theorem D and the L? boundedness of R;, we see that

p,w

(5.7) 1Ay (Nllpaw < D 1840 ()]
j=1

= 1260 (R Hllpaw < CO IR Fllpw < Cllf llpo-

j=1 j=1

To prove the reverse inequality, we apply the following result, which is essentially
[11, Theorem 3.6].
Lemma 5.4. Let ¢ € L'(R") satisfy (1.13) and let Ay be as in (1.15). Suppose
that

1A (Nllpaw < Clifllpws  f € 8o,

for all w € A, and all p € (1,00). Further, suppose that the function m(§) =
oo [0(25€)|? ds continuous and strictly positive on By = {1 < |¢| < 2}. Then
the reverse inequality

Hf”p,w < CHAw(f)Hpﬂm f € 80,

also holds for all w € A, and all p € (1,00). Thus || fllp,w = ||Ay(f)
forp e (1,00) and w € Ap.

p,w > f € 807
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Let

S EwEor = Y [T () @
l=—00 l=—cc |j=1

Let N be a positive integer and

Z |F (1) (2%€) 2

Then by is continuous on By, where By is as in Lemma 5.4. By (2) and (3) of
Lemma 5.2 by converges to b uniformly on By and hence b is continuous on By.
Also, Lemma 5.2 (4) implies that b is strictly positive on By. Thus, taking into
account (5.7), we can apply Lemma 5.4 to Ay to get ||fllpw < CllAw(f)lpw
Recalling (5.6), we conclude the proof of Theorem 5.3.

Proof of Theorem 5.1. The proof is similar to those of Theorems 1.2 and 1.4. We
need the following.

Lemma 5.5. Suppose that w € Ay, 1 <p < oo and f € LY. Let 1 be as in
Lemma 3.2. Let By be as in Theorem 5.1. Then

1B (F )l = 11 £
Proof. Using Theorem 5.3, we have
(5.8) 1By () lpro = 101 frnse)lpro = 11T Foellpros

where f € LP and fy, . € 8¢ is as in the proof of Lemma 3.4. We can prove Lemma
5.5 by applying (5.8) and by arguing similarly to the proofs of Lemmas 3.4 and
4.1. O

pws  0<e<1/2.

Applying Lemma 5.5, we can prove Theorem 5.1 in the same way as we have
proved Theorem 1.4 by applying Lemma 4.1. O

6. SOME FURTHER REMARKS AND RESULTS

6.1. On availability of polarization techniques. In proving Theorem 1.1, if
we have the inequality ||S(k)( paw < C|l fllpw, then the reverse inequality can be

shown by the polarization techniques as in [5], [9] by using the identity ||S ( )2 =
cl|fll2 (see [4, Chap. V, p. 507, 5.6 (b)]). In proving Theorems 1.3 and 5.3 we have
difficulties in applying similar arguments due to absence of the corresponding L?
equalities. So we need to apply different arguments using non-degeneracy.

6.2. Comments on S,. In theorems of this note, we have considered square func-
tions involving averaging over spheres S(z,t) = {y € R™ : |z — y| = t}. To define
analogues in metric measure spaces of those square functions involving averaging
over S(z,t), we have difficulties in defining suitable measures on the spheres (bound-
aries of balls) in general spaces. This is not the case for square functions involving
averaging over balls like the one in (1.4).

On the other hand, in relation to harmonic analysis on the Euclidean spaces, the
square function S, (f) in (1.6) has an interesting pointwise relation with the square
functions arising from the Bochner-Riesz operators. Let

Sp(f)(z) = / F(E) 1 - R2|¢2)P e2mit=) ge

[€|<R
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be the Bochner-Riesz mean of order 5 and let o3 be a Littlewood-Paley operator
defined as

ws(nw) = ([ [rojomsine)| an/r)

1/2

oo 5 1/2
— ([ e (sanio - sy )| aryr)
Then the following result is known (see [6], [10]).
Theorem E. Suppose that 0 < a <2 and f = a+ 5. Then we have

op(f)(x) = Sa(f)(x),
for f € 8(R™).
6.3. Discrete parameter square functions defined with repeated uses of

averaging operations over balls. We can also consider a discrete parameter
version of the square function in (1.4) as follows:

9 1/2

o0

>

l=—o00

s@—f,

Furthermore, we can consider analogues of B,&k)(f) and U(gk)(f) in (1.9) and (1.10),
respectively, where the averaging operation f x oy is replaced by f * ®; with & =
|B(0, 1)|_1XB(0,1)7 and we can prove analogues of Theorems 1.3 and 1.4, as follows.

We define AJ f(z), j > 1, by Al f(z) = fx @,Ej)(:c), where
dW(z) = d(x), OV (2)=Dx---xd(x), j>2.

J

We also write A, f for A} f. Let I be the identity operator and for a positive integer
k we consider

k
(1= 8010 = 1)+ -1 (F) i)

For 0 < a < m, let

o 1/2
GP (f) (@) = ( > \(I—Age)'“f(x)IQQQO‘Z) :

l=—o0

and

s 1/2
RO (f)(w) = ( S~ g ) I f)(a,)|22w> .

l=—00

We state the following results without proofs.
Theorem 6.1. Let 0 < a < min(2k,n), 1 <p < oo and w € A,. Then
RS (F)llpsw = 11 llpws | € So(R™).

Theorem 6.2. Suppose that 1 < p < 0o, w € A, and 0 < a < min(2k,n). Then
fe WP if and only if f € LE, and Q&k)(f) € LP; further,

= (F)llpw 2 1G5 ()l p.co-
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Theorems 6.1 and 6.2 can be shown arguing similarly to the proofs of Theorems
1.3 and 1.4, respectively. Analogues of Theorems 6.1 and 6.2 for continuous pa-
rameter square functions are obtained in Theorems 4.1 and 4.2 of [12], respectively,
where more general settings are considered.
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