
SOBOLEV SPACES AND FUNCTIONS OF MARCINKIEWICZ

TYPE WITH REPEATED AVERAGING OPERATIONS OVER

SPHERES

SHUICHI SATO

Abstract. We consider the weighted Sobolev spaces with weights of the
Muckenhoupt class and characterize the spaces by the square functions of

Marcinkiewicz type defined by repeated averaging operations over spheres.

1. Introduction

The function of Marcinkiewicz is defined by

µ(f)(x) =

(∫ ∞

0

|F (x+ t) + F (x− t)− 2F (x)|2 dt
t3

)1/2

,

F (x) =

∫ x

0

f(y) dy.

J. Marcinkiewicz [7] in 1938 introduced an analogue of this square function in the
setting of periodic functions on the torus. Results conjectured in [7] were proved
by Zygmund [17] and the non-periodic version above was provided by Waterman
[16]. Let S(Rn) be the Schwartz class of rapidly decreasing smooth functions on Rn

and let S0(Rn) be the subspace of S(Rn) consisting of functions f with f̂ vanishing

in a neighborhood of the origin, where f̂ denotes the Fourier transform defined as

f̂(ξ) = F(f)(ξ) =

∫
Rn

f(x)e−2πi⟨x,ξ⟩ dx, ⟨x, ξ⟩ =
n∑
k=1

xkξk.

Then, for p ∈ (1,∞), it is known that

(1.1) ∥µ(f)∥p ≃ ∥f∥p, f ∈ S0(R),
where ∥·∥p denotes the Lp norm and ∥µ(f)∥p ≃ ∥f∥p means that there exist positive
constants C1, C2 independent of f such that

C1∥f∥p ≤ ∥µ(f)∥p ≤ C2∥f∥p.
We can see that (1.1) is equivalent to

(1.2) ∥ν(f)∥p ≃ ∥f ′∥p, f ∈ S0(R),
where

ν(f)(x) =

(∫ ∞

0

|f(x+ t) + f(x− t)− 2f(x)|2 dt
t3

)1/2

.
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The relation (1.2) can be used to characterize the Sobolev space W 1,p.
We write

f(x+ t) + f(x− t)− 2f(x) = 2

(∫
S0

f(x− tθ) dσ(θ)− f(x)

)
,

where S0 = {−1, 1} and σ is a measure on S0 such that σ({−1}) = 1/2, σ({1}) =
1/2. By this observation we generalize ν to higher dimensions as follows. Let n ≥ 2
and

A(f)(x) =

(∫ ∞

0

∣∣∣∣f(x)− ∫
Sn−1

f(x− tθ) dσ(θ)

∣∣∣∣2 dt

t3

)1/2

,

where dσ is the Lebesgue surface measure on Sn−1 normalized as
∫
Sn−1 dσ = 1.

We also write

Θtf(x) :=

∫
Sn−1

f(x− ty) dσ(y) = −
∫
S(x,t)

f dσx,t = σx,t(S(x, t))
−1

∫
S(x,t)

f dσx,t,

where S(x, t) = {y ∈ Rn : |x − y| = t} and σx,t is the Lebesgue surface measure
on S(x, t). We note that if f is a locally integrable Borel measurable function on
Rn, then the integral Θtf(x) is defined for all x ∈ Rn and t > 0 and it is a Borel
measurable function in (x, t) ∈ Rn×(0,∞) (see [3, pp. 74–75], [14, pp. 1285–1287]).
If f is a locally integrable Lebesgue measurable function, then Θtf(x) is defined for
a.e. x ∈ Rn and all t > 0 and measurable in (x, t) on Rn × (0,∞); also Θtf(x) is
measurable on Rn for each fixed t > 0. When n ≥ 3, this can be seen from [14, pp.
1285–1287]), where the condition n ≥ 3 is assumed to apply the maximal inequality
(8-12) there. When n = 2, we also have similar results for Θtf(x), since we have a
maximal inequality analogous to (8-12) of [14] by [2].

Let S(f) = A(I1f):

S(f)(x) =

(∫ ∞

0

∣∣∣∣I1(f)(x)− ∫
Sn−1

I1(f)(x− ty) dσ(y)

∣∣∣∣2 dtt3
)1/2

,

where for β ∈ R, Iβ is the Riesz potential operator defined by

(1.3) F(Iβ(f))(ξ) = (2π|ξ|)−β f̂(ξ)
for f ∈ S0.

The following is known ([5]).

Theorem A. Suppose that 1 < p <∞, n ≥ 2. Let f ∈ S0(Rn). Then

∥S(f)∥p ≃ ∥f∥p.

This is used to characterize the Sobolev space W 1,p(Rn) in terms of A(f). The-
orem A was motivated by results of Alabern, J. Mateu and J. Verdera [1], where
the operator

(1.4) E(f)(x) =

∫ ∞

0

∣∣∣∣∣f(x)−−
∫
B(x,t)

f(y) dy

∣∣∣∣∣
2
dt

t3

1/2

was considered and used to characterize W 1,p. Here

−
∫
B(x,t)

f(y) dy = |B(x, t)|−1

∫
B(x,t)

f(y) dy,

where B(x, t) is a ball in Rn with center x and radius t.
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We generalize the operators A and S defined above. Let

(1.5) Aα(f)(x) =

(∫ ∞

0

∣∣∣∣f(x)− ∫
Sn−1

f(x− ty) dσ(y)

∣∣∣∣2 dt

t1+2α

)1/2

,

(1.6) Sα(f)(x) =

(∫ ∞

0

∣∣∣∣Iα(f)(x)− ∫
Sn−1

Iα(f)(x− ty) dσ(y)

∣∣∣∣2 dt

t1+2α

)1/2

.

Then, we have an analogue of Theorem A for 1 < α < 2 (see [9]).

Theorem B. Let Sα be as in (1.6) and f ∈ S0(Rn), n ≥ 2. Then if 1 < α < 2, we
have

∥Sα(f)∥p ≃ ∥f∥p
for 1 < p <∞.

This can be used to characterize the Sobolev spaces Wα,p for 1 < α < 2 by Aα

in (1.5).
In this note, to characterizeWα,p for 2 ≤ α < n, we generalize Sα by considering

iterated averaging operations. For k ∈ Z (the set of integers), k ≥ 1, let

(1.7) A(k)
α (f)(x) =

(∫ ∞

0

∣∣(I −Θt)
kf(x)

∣∣2 dt

t1+2α

)1/2

,

(1.8) S(k)
α (f)(x) =

(∫ ∞

0

∣∣(I −Θt)
kIα(f)(x)

∣∣2 dt

t1+2α

)1/2

,

where I is the identity operator and

(I −Θt)
k = I +

k∑
j=1

(−1)j
(
k

j

)
Θjt ,

(
k

j

)
=

k!

(k − j)!j!
,

Θjtf(x) = f ∗ σt ∗ · · · ∗ σt︸ ︷︷ ︸
j

(x), j ≥ 2,

Θ1
t f(x) = Θtf(x) =

∫
Sn−1

f(x− ty) dσ(y) = f ∗ σt(x), σt = σ0,t(S(0, t))
−1σ0,t.

We note that f ∗ σt(x) = −
∫
S(x,t)

f dσx,t.

If k = 2 in (1.7), we have

A(2)
α (f)(x) =

∫ ∞

0

∣∣∣∣∣f(x)− 2−
∫
S(x,t)

f(y) dσx,t(y) +−
∫
S(x,t)

(f)S(y,t) dσx,t(y)

∣∣∣∣∣
2

dt

t1+2α

1/2

,

where (f)S(y,t) = −
∫
S(y,t)

f . We note that A(1)
α = Aα, A1 = A, S

(1)
α = Sα, S1 = S.

Also, we consider discrete parameter versions of A(k)
α and S

(k)
α :

B(k)
α (f)(x) =

( ∞∑
ℓ=−∞

∣∣(I −Θ2ℓ)
kf(x)

∣∣2 2−2ℓα

)1/2

,(1.9)

U (k)
α (f)(x) =

( ∞∑
ℓ=−∞

∣∣(I −Θ2ℓ)
kIαf(x)

∣∣2 2−2ℓα

)1/2

.(1.10)
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Let 1 < p < ∞, 0 < α < n and w ∈ Ap (the weight class of Muckenhoupt). We
recall that a weight function w belongs to Ap, if

sup
B

(
|B|−1

∫
B

w(x) dx

)(
|B|−1

∫
B

w(x)−1/(p−1)dx

)p−1

<∞,

where the supremum is taken over all balls B in Rn. Let Lpw be the weighted
Lebesgue space consisting of all functions f such that

∥f∥p,w =

(∫
Rn

|f(x)|pw(x) dx
)1/p

<∞.

Define the weighted Sobolev space Wα,p
w , 0 < α < n, by

(1.11) Wα,p
w = {f ∈ Lpw : f = Iα(g) for some g ∈ Lpw},

where f = Iα(g) signifies that∫
Rn

f(x)h(x) dx =

∫
Rn

g(x)Iα(h) dx for all h ∈ S0;

such function g ∈ Lpw is uniquely determined by f , since Iα is a bijection on S0,

which is dense in Lp
′
(w−p′/p), the dual space of Lp(w), with 1/p+1/p′ = 1. Define

g = I−α(f), and for f ∈Wα,p
w let

(1.12) ∥f∥p,α,w = ∥f∥p,w + ∥I−α(f)∥p,w.

(See Remarks 1.5 and 1.6 below.) We simply write Wα,p when w = 1 (unweighted
case). In this note, we mainly concentrate on the case 1 ≤ α < n.

We shall prove the following theorems.

Theorem 1.1. Suppose that 1 < α < min(2k, n), 1 < p < ∞ and w ∈ Ap. Let

S
(k)
α be as in (1.8). Then we have

∥S(k)
α (f)∥p,w ≃ ∥f∥p,w, f ∈ S0(Rn).

Theorem 1.2. Let 1 < α < min(2k, n) and let A(k)
α be as in (1.7). Let w ∈ Ap with

1 < p <∞. Then, f is in the space Wα,p
w if and only if f ∈ Lpw and A(k)

α (f) ∈ Lpw;
also, we have

∥I−α(f)∥p,w ≃ ∥A(k)
α (f)∥p,w,

where I−α(f) is as in (1.12).

Theorem 1.3. Suppose that 1 < α < min(2k, n), 1 < p < ∞ and w ∈ Ap. Let

U
(k)
α be as in (1.10). Then we have

∥U (k)
α (f)∥p,w ≃ ∥f∥p,w, f ∈ S0(Rn).

Theorem 1.4. Let 1 < α < min(2k, n) and let B(k)
α be as in (1.9). Suppose that

1 < p < ∞ and w ∈ Ap. Then, f belongs to Wα,p
w if and only if f ∈ Lpw and

B(k)
α (f) ∈ Lpw; also, we have

∥I−α(f)∥p,w ≃ ∥B(k)
α (f)∥p,w.

Analogues of Theorems 1.1 and 1.2 are obtained by Theorems 4.1 and 4.2 of [12],
where averaging over spheres is replaced by averaging over balls.
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We shall prove Theorems 1.1 and 1.3 by applying results for more general
Littlewood-Paley operators. Let ψ be a function in L1(Rn) satisfying

(1.13)

∫
Rn

ψ(x) dx = 0.

The Littlewood-Paley function on Rn is defined by

(1.14) gψ(f)(x) =

(∫ ∞

0

|f ∗ ψt(x)|2
dt

t

)1/2

,

where ψt(x) = t−nψ(t−1x). Also a discrete parameter version of gψ is defined by

(1.15) ∆ψ(f)(x) =

( ∞∑
ℓ=−∞

|f ∗ ψ2ℓ(x)|
2

)1/2

.

The following results are known.

Theorem C. Suppose that

(1) there exists ϵ > 0 such that Bϵ(ψ) <∞, where Bϵ(ψ) =
∫
|x|>1

|ψ(x)| |x|ϵ dx;
(2) there exists u > 1 such that Cu(ψ) <∞, where Cu(ψ) =

∫
|x|<1

|ψ(x)|u dx;
(3) Hψ belongs to L1(Rn), where Hψ(x) = sup|y|≥|x| |ψ(y)|.

Then
∥gψ(f)∥p,w ≤ Cp,w∥f∥p,w

for all p ∈ (1,∞) and w ∈ Ap. If we further assume the non-degeneracy condition:

supt>0 |ψ̂(tξ)| > 0 for all ξ ̸= 0, then we also have the reverse inequality and hence
∥f∥p,w ≃ ∥gψ(f)∥p,w, f ∈ Lpw, for p ∈ (1,∞) and w ∈ Ap.

Theorem D. Let Bϵ(ψ), Hψ be as in Theorem C. Suppose that

(1) there exists ϵ > 0 such that Bϵ(ψ) <∞;

(2) there exists δ > 0 such that |ψ̂(ξ)| ≤ C|ξ|−δ for all ξ ∈ Rn \ {0};
(3) the function Hψ is in L1(Rn).

Then
∥∆ψ(f)∥p,w ≤ Cp,w∥f∥p,w

for every w ∈ Ap and every p ∈ (1,∞). If we further have the non-degeneracy

condition: supℓ∈Z |ψ̂(2ℓξ)| > 0 for all ξ ̸= 0, then the reverse inequality also holds
and hence ∥f∥p,w ≃ ∥∆ψ(f)∥p,w, f ∈ Lpw, for p ∈ (1,∞) and w ∈ Ap.

See [8], [11] for Theorems C and D.

Remark 1.5. The definition (1.11) of Wα,p
w is the same as that in [9, 11], where

Wα,p
w is defined by using the Bessel potentials (see [13, Chap. V] for related re-

sults). This can be seen as follows. The space Wα,p
w with the definition (1.11) is

characterized by a certain square function in [12, Theorem 1.5]. The same square
function also characterizes the space Wα,p

w defined in terms of the Bessel potentials,
which is shown in [11, Corollary 5.2]. Consequently, we see that the two definitions
coincide.

Remark 1.6. Let S00(Rn) be the subspace of S0(Rn) consisting of functions f with

f̂ vanishing outside a compact set not containing the origin. Then we can replace
S0(Rn) by S00(Rn) in the definition of the weighted Sobolev spaces Wα,p

w without
changing the definition of the spaces. This is because S00(Rn) is also dense in Lpw
for w ∈ Ap, 1 < p <∞.
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In Section 2, we shall prove Theorem 1.1 by applying Theorem C. Theorem
1.2 will be proved in Section 3 as an application of Theorem 1.1. We shall prove
Theorem 1.3 in Section 4 by applying Theorem D. Also, in Section 4, Theorem 1.4
will be proved by using Theorem 1.3. In Section 5, analogues of Theorems 1.3 and
1.4 for α = 1 will be presented. This will be accomplished by applying ideas of [5]
in an essential way. Finally, in Section 6 we shall have some further remarks and
results.

2. Proof of Theorem 1.1

We write

(2.1) (I −Θt)
k = I −Nt, Nt = −

k∑
j=1

(−1)j
(
k

j

)
Θjt .

We note that Ntf = f ∗ µt with a measure µt, t > 0, satisfying

(2.2) Ntf(x) =

∫
f(x− y) dµt(y) =

∫
f(x− ty) dµ(y),

µ̂t(ξ) = −
k∑
j=1

(−1)j
(
k

j

)
σ̂(tξ)j ,

and hence µ̂t(0) = −
∑k
j=1(−1)j

(
k
j

)
= 1, where µ = µ1. Using

∫
dµ = 1, for

f ∈ S0, we see that

(I −Θt)
kIαf(x) = Iαf(x)− Iαf ∗ µt(x)

=

∫
Rn

(Iαf(x)− Iαf(x− ty)) dµ(y).

Recall that if Lα(x) = τ(α)|x|α−n, 0 < α < n, with

τ(α) =
Γ (n/2− α/2)

πn/22αΓ (α/2)
,

then L̂α(ξ) = (2π|ξ|)−α. Let

(2.3) ζ(x) = Lα(x)−
∫
Rn

Lα(x− y) dµ(y) =

∫
Rn

(Lα(x)− Lα(x− y)) dµ(y).

The following results will be used in estimating ζ.

Lemma 2.1. We have the following properties of µ.

(1) the measure µ is compactly supported ;
(2) for any compact set K in Rn and α, 1 < α < n, we have

sup
x∈K

∣∣∣∣∫
Rn

Lα(x− y) dµ(y)

∣∣∣∣ <∞;

(3)
∫
Rn y

γ dµ(y) = 0 if 1 ≤ |γ| ≤ 2k − 1, where γ = (γ1, . . . , γn) is a multi-
index ; γj ∈ Z, γj ≥ 0, |γ| = γ1 + · · ·+ γn, y

γ = yγ11 . . . yγnn .

Proof. We can see the assertion of part (1) from

µ = −
k∑
j=1

(−1)j
(
k

j

)
σ(j), σ(j) = σ ∗ · · · ∗ σ︸ ︷︷ ︸

j

, j ≥ 2, σ(1) = σ,
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since σ is concentrated on Sn−1. To prove part (2), we first see that, by a direct
computation,

sup
x∈K

∫
Lα(x− y) dσ(y) <∞,

where we are assuming that α > 1. By induction, this holds with σ replaced by
σ(j) for any 2 ≤ j ≤ k, which easily implies what is claimed.

Proof of part (3). Since 1− σ̂(ξ) = O(|ξ|2) for |ξ| ≤ 1, we see that

1− µ̂(ξ) = 1 +

k∑
j=1

(−1)j
(
k

j

)
σ̂(ξ)j = (1− σ̂(ξ))k = O(|ξ|2k)

for |ξ| ≤ 1. On the other hand, applying Taylor’s formula for µ̂(ξ) at ξ = 0, we
have

µ̂(ξ) = 1 +
∑

1≤|γ|≤2k−1

cγ∂
γ µ̂(0)ξγ +O(|ξ|2k)

for |ξ| ≤ 1, where ∂γ = ∂γ11 . . . ∂γnn = (∂/∂ξ1)
γ1 . . . (∂/∂ξn)

γn . Thus we see that∑
1≤|γ|≤2k−1

cγ∂
γ µ̂(0)ξγ = O(|ξ|2k)

for |ξ| ≤ 1. It follows that ∂γ µ̂(0) = 0 if 1 ≤ |γ| ≤ 2k − 1, which implies what we
need. □

We apply Taylor’s formula in (2.3) for Lα(x − y) as a function of y at y = 0.
Then, by (1) and (3) of Lemma 2.1, since [α] ≤ 2k − 1, if α < 2k, we have, if |x| is
sufficiently large,

(2.4) |ζ(x)| ≤ C|x|α−n−[α]−1.

Combining (2.4) with part (2) of Lemma 2.1, we see that

(2.5) |ζ(x)| ≤

{
C|x|α−n if |x| ≤ 1,

C|x|α−n−[α]−1 if |x| > 1.

It follows, in particular, that ζ ∈ L1(Rn). Also, by (2.3) and part (3) of Lemma
2.1 we have

ζ̂(ξ) = (2π|ξ|)−α(1− µ̂(ξ)) = O(|ξ|−α+2k)

for |ξ| ≤ 1. Since α < 2k, this implies that ζ̂(0) = 0, or
∫
ζ = 0. Also, we see that

supt>0 |ζ̂(tξ)| > 0 for every ξ ̸= 0, since µ̂(ξ) → 0 as |ξ| → ∞. By this and (2.5) we
can apply Theorem C to conclude that ∥gζ(f)∥p,w ≃ ∥f∥p,w for f ∈ Lpw, p ∈ (1,∞)

and w ∈ Ap, which implies Theorem 1.1 since S
(k)
α (f) = gζ(f).

Remark 2.2. It is known that

σ ∗ σ(x) =

{
c|x|−n+2

[
(22 − |x|2)|x|2

](n−3)/2
, if 0 < |x| < 2;

0, otherwise.

Thus σ(j) is a compactly supported radial function when j ≥ 2, where σ(j) is as in
the proof of Lemma 2.1.
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3. Proof of Theorem 1.2

We can easily prove the following two lemmas (see [12] for the proofs).

Lemma 3.1. Let f ∈ Lpw, where 1 < p < ∞ and w ∈ Ap. Let m be a positive
integer and define f(m) = fχEm

with

Em = {x ∈ Rn : |x| ≤ m, |f(x)| ≤ m},

where χE denotes the characteristic function of a set E. Then we see that f(m) → f
almost everywhere and in Lpw as m→ ∞.

Lemma 3.2. Let 1 < p < ∞ and f ∈ Lpw with w ∈ Ap. Choose an infinitely
differentiable, non-negative, radial function ϕ on Rn such that ϕ(ξ) = 1 for |ξ| ≤ 1,
supp(ϕ) ⊂ {|ξ| ≤ 2}. Define η(ϵ) ∈ S0 for ϵ ∈ (0, 1/2) by

η(ϵ)(ξ) = ϕ(ϵξ)− ϕ(ϵ−1ξ).

Then η(ϵ)(ξ) = η(ϵ/2)(ξ)η(ϵ)(ξ). Define f (ϵ) = f ∗ F−1(η(ϵ)). Then f (ϵ) → f almost
everywhere and in Lpw as ϵ→ 0.

Also, we need the following.

Lemma 3.3. Suppose that f ∈ Lpw, w ∈ Ap, 1 < p <∞. Let f (ϵ) be as in Lemma
3.2. Let dµ be as in (2.2). Then we have the following.

(1) there exists a sequence {ϵk}, ϵk → 0, such that

(3.1)

∫
Sn−1

f (ϵk)(x− ty) dµ(y) →
∫
Sn−1

f(x− ty) dµ(y)

for a.e. (x, t) ∈ Rn × (0,∞);
(2) we can find a sequence {ϵk}, ϵk → 0, such that we have the convergence

(3.1) for a.e. x ∈ Rn and for all t = 2ℓ with ℓ ∈ Z.

Proof. Let KM = B(0,M) × (0,M), M = 1, 2, 3, . . . . By part (1) of Lemma 2.1,
the measure µ is supported in B(0, N) for some N > 0. We see that

IM,ϵ :=

∫∫
KM

∣∣∣∣∫ f (ϵ)(x− ty) dµ(y)−
∫
f(x− ty) dµ(y)

∣∣∣∣ dx dt
≤
∫
B(0,N)

M

∫
B(0,M+MN)

∣∣∣f (ϵ)(x)− f(x)
∣∣∣ dx d|µ|(y)

≤ CM

∫
B(0,M+MN)

(∣∣∣f (ϵ)(x)− f(x)
∣∣∣p w(x) dx)1/p

 ∫
B(0,M+MN)

w(x)−p
′/p dx


1/p′

,

where the last inequality follows by Hölder’s inequality. By Lemma 3.2, it follows
that IM,ϵ → 0 as ϵ→ 0. Therefore, there exists a sequence {ϵk} for which we have

(3.1) for a.e. (x, t) ∈ KM . Applying this arguments, we can find sequences {ϵ(M)
k },

M = 1, 2, 3, . . . , such that {ϵ(M+1)
k } is a subsequence of {ϵ(M)

k } and we have∫
Sn−1

f (ϵ
(M)
k )(x− ty) dµ(y) →

∫
Sn−1

f(x− ty) dµ(y)

for a.e. (x, t) ∈ KM . Thus we can get the conclusion of part (1) of the lemma by
applying the diagonal process arguments.
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Part (2) can be shown similarly, since we have the convergence (3.1) for a.e.
x ∈ Rn and for each fixed t = 2ℓ with some {ϵk} by the arguments of the proof of
part (1). □

For δ ∈ (0, 1/2), β ∈ R and f ∈ Lpw, let I
(δ)
β (f) = F−1(η(δ)(ξ)(2π|ξ|)−β) ∗ f ,

where η(δ) is as in Lemma 3.2.

Lemma 3.4. Let f ∈ Lpw, w ∈ Ap, 1 < p < ∞ and let f (ϵ) be as in Lemma 3.2.

Let A(k)
α be as in Theorem 1.2. Then

∥A(k)
α (f (ϵ))∥p,w ≃ ∥I(ϵ/2)−α f (ϵ)∥p,w, 0 < ϵ < 1/2.

Proof. For f ∈ Lpw, ϵ ∈ (0, 1/2) and a positive integer m, define fm,ϵ ∈ S0 by

fm,ϵ = (f(m))
(ϵ), where f(m) is as in Lemma 3.1. By Theorem 1.1 we have

(3.2) ∥A(k)
α (fm,ϵ)∥p,w = ∥S(k)

α (I−αfm,ϵ)∥p,w ≃ ∥I(ϵ/2)−α fm,ϵ∥p,w,

where we have used the relation I−αfm,ϵ = I
(ϵ/2)
−α fm,ϵ.

Let K be a compact set in Rn. Then we see that fm,ϵ(x) → f (ϵ)(x) uniformly
for x ∈ K, since by Hölder’s inequality, we have∣∣∣fm,ϵ(x)− f (ϵ)(x)

∣∣∣ = ∣∣∣∣∫ (f(m)(y)− f(y))F−1(η(ϵ))(x− y) dy

∣∣∣∣
≤ ∥f(m) − f∥p,w

(∫ ∣∣∣F−1(η(ϵ))(x− y)
∣∣∣p′ w(y)−p′/p dy)1/p′

.

Thus by Lemma 3.1 we can easily see the uniform convergence claimed. It follows
that fm,ϵ(x) − fm,ϵ ∗ µt(x) → f (ϵ)(x) − f (ϵ) ∗ µt(x) as m → ∞ for all x ∈ Rn and

t > 0 (see (2.2)). Therefore, recalling the definition of A(k)
α and noting (2.1), by

Fatou’s lemma and (3.2), we see that,

∥A(k)
α (f (ϵ))∥p,w ≤ lim inf

m→∞
∥A(k)

α (fm,ϵ)∥p,w(3.3)

≤ C lim inf
m→∞

∥I(ϵ/2)−α fm,ϵ∥p,w = C∥I(ϵ/2)−α f (ϵ)∥p,w,

where we have the last equality since I
(ϵ/2)
−α is bounded on Lpw. In particular, we

see that A(k)
α (f (ϵ)) ∈ Lpw.

To complete the proof of Lemma 3.4, we first note that

∥A(k)
α (f (ϵ))−A(k)

α (fm,ϵ)∥p,w ≤ ∥A(k)
α (f (ϵ) − fm,ϵ)∥p,w(3.4)

= ∥A(k)
α ((f − f(m))

(ϵ))∥p,w.

We can see that

(f(j)− f(m))
(ϵ)(x)− (f(j)− f(m))

(ϵ) ∗µt(x) → (f − f(m))
(ϵ)(x)− (f − f(m))

(ϵ) ∗µt(x)

as j → ∞ for all x and t, as we have shown above that fm,ϵ(x) − fm,ϵ ∗ µt(x) →
f (ϵ)(x)− f (ϵ) ∗ µt(x). Thus by Fatou’s lemma we see that

(3.5) ∥A(k)
α ((f − f(m))

(ϵ))∥p,w ≤ lim inf
j→∞

∥A(k)
α ((f(j) − f(m))

(ϵ))∥p,w.
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Since (f(j) − f(m))
(ϵ) ∈ S0, by Theorem 1.1 we have

∥A(k)
α ((f(j) − f(m))

(ϵ))∥p,w ≃ ∥I−α((f(j) − f(m))
(ϵ))∥p,w
= ∥I(ϵ/2)−α ((f(j) − f(m))

(ϵ))∥p,w.

Since f(m) → f in Lpw, from this it follows that

lim
j,m→∞

∥A(k)
α ((f(j) − f(m))

(ϵ))∥p,w = 0,

which combined with (3.4) and (3.5) implies that A(k)
α (fm,ϵ) → A(k)

α (f (ϵ)) in Lpw as
m→ ∞. Thus, letting m→ ∞ in (3.2), we have the conclusion of Lemma 3.4. □

Furthermore, we need the following.

Lemma 3.5. Let w ∈ Ap, 1 < p < ∞. Suppose that f ∈ Wα,p
w and g = I−α(f)

(0 < α < n). Then we have

I
(ϵ/2)
−α f (ϵ) = g(ϵ).

Proof. For h ∈ S0 we see that∫
g(ϵ)(x)Iα(h)(x) dx = lim

m→∞

∫
gm,ϵ(x)Iα(h)(x) dx(3.6)

= lim
m→∞

∫
I(ϵ/2)α (gm,ϵ)(x)h(x) dx

=

∫
I(ϵ/2)α (g(ϵ))(x)h(x) dx,

where gm,ϵ is as in the proof of Lemma 3.4. We rewrite the integral
∫
g(ϵ)Iα(h) dx

as follows:

(3.7)

∫
g(ϵ)(x)Iα(h)(x) dx = lim

m→∞

∫
gm,ϵ(x)Iα(h)(x) dx

= lim
m→∞

∫
g(m)(x)Iα(h

(ϵ))(x) dx =

∫
g(x)Iα(h

(ϵ))(x) dx.

We have
∫
gIα(h

(ϵ)) dx =
∫
fh(ϵ) dx by the definition of g = I−α(f). Using this in

(3.7), we see that∫
g(ϵ)(x)Iα(h)(x) dx =

∫
f(x)h(ϵ)(x) dx = lim

m→∞

∫
f(m)(x)h

(ϵ)(x) dx(3.8)

= lim
m→∞

∫
fm,ϵ(x)h(x) dx =

∫
f (ϵ)(x)h(x) dx.

By (3.6) and (3.8) for all h ∈ S0 we have∫
I(ϵ/2)α (g(ϵ))(x)h(x) dx =

∫
f (ϵ)(x)h(x) dx.

Thus we see that I
(ϵ/2)
α (g(ϵ)) = f (ϵ). We note that I

(ϵ/2)
α and I

(ϵ/2)
−α are bounded on

Lpw and the mapping f → f (ϵ) is also bounded on Lpw. Therefore, using Lemma 3.1
we have

I
(ϵ/2)
−α (f (ϵ)) = I

(ϵ/2)
−α (I(ϵ/2)α (g(ϵ))) = lim

m→∞
I
(ϵ/2)
−α (I(ϵ/2)α (gm,ϵ)).
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Since gm,ϵ ∈ S0 and η(ϵ/2) = 1 on the support of F(gm,ϵ), we easily see that

I
(ϵ/2)
−α (I(ϵ/2)α (gm,ϵ))(x) =

∫
(η(ϵ/2)(ξ))2F(gm,ϵ)(ξ)e

2πi⟨x,ξ⟩ dξ

=

∫
F(gm,ϵ)(ξ)e

2πi⟨x,ξ⟩ dξ = gm,ϵ(x).

Using this, we see that

I
(ϵ/2)
−α (f (ϵ)) = lim

m→∞
gm,ϵ = g(ϵ).

This completes the proof of Lemma 3.5. □

Proof of Theorem 1.2. Let f ∈ Wα,p
w and g = I−α(f). From Lemmas 3.4 and 3.5,

it follows that

∥A(k)
α (f (ϵ))∥p,w ≤ C∥g(ϵ)∥p,w ≤ C∥M(g)∥p,w ≤ C∥g∥p,w,

where M denotes the Hardy-Littlewood maximal operator, which is bounded on
Lpw. From part (1) of Lemma 3.3 and Lemma 3.2, we can find a sequence {ϵj} such

that f (ϵj)(x) − f (ϵj) ∗ µt(x) → f(x) − f ∗ µt(x) for a.e. (x, t) ∈ Rn × (0,∞) as
j → ∞. Therefore, by Fatou’s lemma we have

(3.9) ∥A(k)
α (f)∥p,w ≤ lim inf

j→∞
∥A(k)

α (f (ϵj))∥p,w ≤ C∥I−αf∥p,w.

Conversely, we assume that f ∈ Lpw and A(k)
α (f) ∈ Lpw. Then, Minkowski’s

inequality and the Lpw boundedness of M imply that

(3.10) ∥A(k)
α (f (ϵ))∥p,w ≤ C∥M(A(k)

α (f))∥p,w ≤ C∥A(k)
α (f)∥p,w.

Using Lemma 3.4 and (3.10), we have

sup
ϵ∈(0,1/2)

∥I(ϵ/2)−α f (ϵ)∥p,w ≤ C sup
ϵ∈(0,1/2)

∥A(k)
α (f (ϵ))∥p,w ≤ C∥A(k)

α (f)∥p,w.

By compactness, we can find a sequence {ϵj}, 0 < ϵj < 1/2, and a function g ∈ Lpw
such that ϵj → 0,

(3.11) ∥g∥p,w ≤ C∥A(k)
α (f)∥p,w

and I
(ϵj/2)
−α f (ϵj) → g weakly in Lpw as j → ∞.

Now we prove that f = Iαg. Let h ∈ S0. From Lemma 3.2, we see that f (ϵj) → f
in Lpw as j → ∞. Using this, we have∫

Rn

f(x)h(x) dx = lim
j→∞

∫
Rn

f (ϵj)(x)h(x) dx = lim
j→∞

lim
m→∞

∫
Rn

fm,ϵj (x)h(x) dx

= lim
j→∞

lim
m→∞

∫
Rn

I−α(fm,ϵj )(x)Iα(h)(x) dx.

Thus, noting that I−α(fm,ϵj ) = I
(ϵj/2)
−α (fm,ϵj ), we see that∫

Rn

f(x)h(x) dx = lim
j→∞

lim
m→∞

∫
Rn

I
(ϵj/2)
−α (fm,ϵj )(x)Iα(h)(x) dx

= lim
j→∞

∫
Rn

I
(ϵj/2)
−α (f (ϵj))(x)Iα(h)(x) dx =

∫
Rn

g(x)Iα(h)(x) dx.

It follows that f = Iαg by definition. Thus (3.11) can be restated as

(3.12) ∥I−αf∥p,w = ∥g∥p,w ≤ C∥A(k)
α (f)∥p,w.
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By combining (3.9) and (3.12), we conclude the proof of Theorem 1.2. □

4. Proofs of Theorems 1.3 and 1.4

Let ζ be as in (2.3). In the proof of Theorem 1.1 in Section 2, we have already

seen that ζ ∈ L1(Rn) and
∫
ζ = 0. We observe that U

(k)
α (f) = ∆ζ(f). By (2.5),

we can see that ζ satisfies the conditions (1) and (3) of Theorem D. To see the
condition (2) of Theorem D, we recall that

ζ̂(ξ) = (2π|ξ|)−α(1− µ̂(ξ)).

Obviously, this implies the condition (2) of Theorem D and also the non-degeneracy
condition required in Theorem D. So we can apply Theorem D to get Theorem 1.3.

Next we prove Theorem 1.4.

Lemma 4.1. Let w ∈ Ap, 1 < p < ∞ and f ∈ Lpw. Let f (ϵ) be as in Lemma 3.2.

Let B(k)
α be as in Theorem 1.4. Then

∥B(k)
α (f (ϵ))∥p,w ≃ ∥I(ϵ/2)−α f (ϵ)∥p,w, 0 < ϵ < 1/2.

Proof. For f ∈ Lpw, let fm,ϵ ∈ S0 be as in the proof of Lemma 3.4. Applying
Theorem 1.3, we have

(4.1) ∥B(k)
α (fm,ϵ)∥p,w = ∥U (k)

α (I−αfm,ϵ)∥p,w ≃ ∥I(ϵ/2)−α fm,ϵ∥p,w.

Using (4.1) and arguing as in the proof of Lemma 3.4, we can prove Lemma 4.1. □

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.2, so it is brief.
Suppose that f ∈Wα,p

w and let g = I−α(f). By Lemmas 4.1 and 3.5, we have

∥B(k)
α (f (ϵ))∥p,w ≤ C∥g(ϵ)∥p,w ≤ C∥M(g)∥p,w ≤ C∥g∥p,w.

Thus, as in the proof of (3.9), by part (2) of Lemma 3.3, Lemma 3.2 and Fatou’s
lemma we see that

(4.2) ∥B(k)
α (f)∥p,w ≤ C∥I−αf∥p,w.

Next, we assume that f ∈ Lpw and B(k)
α (f) ∈ Lpw. Using Minkowski’s inequality

we see that

(4.3) ∥B(k)
α (f (ϵ))∥p,w ≤ C∥M(B(k)

α (f))∥p,w ≤ C∥B(k)
α (f)∥p,w.

By Lemma 4.1 and (4.3), we have

sup
ϵ∈(0,1/2)

∥I(ϵ/2)−α f (ϵ)∥p,w ≤ C sup
ϵ∈(0,1/2)

∥B(k)
α (f (ϵ))∥p,w ≤ C∥B(k)

α (f)∥p,w.

So, we can find a sequence {ϵj} and a function g ∈ Lpw such that 0 < ϵj < 1/2,
ϵj → 0,

(4.4) ∥g∥p,w ≤ C∥B(k)
α (f)∥p,w

and I
(ϵj/2)
−α f (ϵj) → g weakly in Lpw as j → ∞.

We can prove that f = Iαg as in the proof of Theorem 1.2. So by (4.4) we have

(4.5) ∥I−αf∥p,w = ∥g∥p,w ≤ C∥B(k)
α (f)∥p,w.

We conclude the proof of Theorem 1.4 by combining (4.2) and (4.5). □
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5. Characterization of W 1,p
w by discrete parameter square functions

In [5] A1 is used to characterize W 1,p
w for 1 < p <∞, w ∈ Ap. Here we consider

B1 and prove a similar characterization by B1, where B1 = B(1)
1 (see (1.9)).

Theorem 5.1. Let 1 < p < ∞, w ∈ Ap and f ∈ Lpw. Then, f ∈ W 1,p
w if and only

if B1(f) ∈ Lpw; further

∥I−1(f)∥p,w ≃ ∥B1(f)∥p,w.

Let Rj , 1 ≤ j ≤ n, be the Riesz transform:

Rj(f)(x) = p.v.Cn

∫
f(x− y)

yj
|y|n+1

dy,

where Cn = Γ((n+ 1)/2)/π(n+1)/2. It is known that F(Rjf)(ξ) = (−iξj/|ξ|)f̂(ξ),
f ∈ S.

To prove Theorem 5.1 we need the following results.

Lemma 5.2. Let ϕ(j)(x) = c−1
n xj |x|−nχB(0,1), j = 1, . . . , n, where cn is the surface

area of Sn−1. Then we have the following.

(1) Rk(ϕ
(j)) ∈ L1(Rn) for 1 ≤ j, k ≤ n.

(2) F(Rk(ϕ
(j)))(ξ) = (−iξk/|ξ|)F(ϕ(j))(ξ) and

∫
Rk(ϕ

(j))(x) dx = 0 for 1 ≤
j, k ≤ n.

(3)
∣∣F(ϕ(j))(ξ)∣∣ ≤ Cmin(|ξ|ϵ, |ξ|−ϵ) for ξ ∈ Rn \ {0} with some ϵ > 0.

(4) supℓ∈Z

∣∣∣∑n
j=1 F(Rj(ϕ

(j)))(2ℓξ)
∣∣∣ > 0 for ξ ∈ Rn \ {0}.

Proof. Proof of part (1). This is valid since ϕ(j) is essentially an atom for H1(Rn)
(the Hardy space) (see [4, Chap. III]). Here we give a proof for completeness. For
|x| > 2 we have |Rk(ϕ(j))(x)| ≤ C|x|−n−1 as follows. Since

∫
ϕ(j) = 0, we see that

|Rk(ϕ(j))(x)| =

∣∣∣∣∣Cn
∫
|y|≤1

(
xk − yk

|x− y|n+1
− xk

|x|n+1

)
ϕ(j)(y) dy

∣∣∣∣∣
≤ C

∫
|x|−n−1|ϕ(j)(y)| dy ≤ C|x|−n−1∥ϕ(j)∥1.

Also, we note that ϕ(j) ∈ Lp(Rn) for p ∈ (1, n/(n−1)). Thus by Hölder’s inequality
and the Lp- boundedness of Rk, for p ∈ (1, n/(n− 1)) we see that∫

|x|≤2

|Rk(ϕ(j))(x)| dx ≤ |B(0, 2)|1/p
′
∥Rk(ϕ(j))∥p ≤ C∥ϕ(j)∥p.

Collecting results, we have Rk(ϕ
(j)) ∈ L1(Rn).

Proof of part (2). Let 1 < p < n/(n − 1). We take a sequence {fℓ}∞ℓ=1 in S

such that fℓ → ϕ(j) in Lp as ℓ → ∞. Since ϕ(j) is supported on |x| ≤ 1, we
may assume that supp(fℓ) ⊂ B(0, 2) and hence we also have fℓ → ϕ(j) in L1.

Thus f̂ℓ(ξ) → F(ϕ(j))(ξ) for every ξ. By the Lp boundedness of Rk, it follows
that Rk(fℓ) → Rk(ϕ

(j)) in Lp. Applying the inequality of Hausdorff-Young, we

see that F(Rk(fℓ)) → F(Rk(ϕ
(j))) in Lp

′
; also we may assume that F(Rk(fℓ)) →

F(Rk(ϕ
(j))) a.e. by taking a subsequence, if necessary. Thus, for almost every ξ we

have

(5.1) F(Rk(ϕ
(j)))(ξ) = lim

ℓ→∞
F(Rk(fℓ))(ξ) = lim

ℓ→∞

−iξk
|ξ|

f̂ℓ(ξ) =
−iξk
|ξ|

F(ϕ(j))(ξ).
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Since Rk(ϕ
(j)) ∈ L1 by part (1), F(Rk(ϕ

(j))) is continuous on Rn. Also, F(ϕ(j)) is
continuous on Rn. Thus by (5.1) F(Rk(ϕ

(j)))(ξ) = (−iξk/|ξ|)F(ϕ(j))(ξ) holds for
every ξ ̸= 0.

Next, we observe that

(5.2)
∣∣∣F(ϕ(j))(ξ)∣∣∣ = ∣∣∣∣∫ ϕ(j)(x)(e−2πi⟨x,ξ⟩ − 1)

∣∣∣∣ ≤ C|ξ|
∫

|ϕ(j)(x)||x| dx ≤ C|ξ|.

Thus ∣∣∣F(Rk(ϕ(j)))(ξ)∣∣∣ = ∣∣∣∣i ξk|ξ|F(ϕ(j))(ξ)
∣∣∣∣ ≤ C|ξ|,

which implies F(Rk(ϕ
(j)))(0) = 0, in other words,

∫
Rk(ϕ

(j))(x) dx = 0 .

Proof of part (3). We write F(ϕ(j)) as follows.

F(ϕ(j))(ξ) =

∫
ϕ(j)(x)e−2πi⟨x,ξ⟩ dx =

∫ 1

0

∫
Sn−1

θje
−2πir⟨θ,ξ⟩ dσ(θ) dr(5.3)

=

∫
Sn−1

θj
(1− e−2πi⟨θ,ξ⟩)

2πi⟨θ, ξ⟩
dσ(θ).

Thus ∣∣∣F(ϕ(j))(ξ)∣∣∣ ≤ ∫
Sn−1

|θj |π−ϵ|⟨θ, ξ⟩|−ϵ dσ(θ) = C|ξ|−ϵ,

where 0 < ϵ < 1 and C is a positive constant independent of ξ. From this and (5.2)
we can deduce the inequality claimed.

Proof of part (4). We recall that∫
Sn−1

e−2πi⟨θ,ξ⟩ dσ(θ) =
2π

cn

J(n−2)/2(2π|ξ|)
|ξ|(n−2)/2

=: V (|ξ|),

where Jβ denotes the Bessel function of the first kind of order β (see [15, p.154]).
It follows that∫

Sn−1

θje
−2πi⟨θ,ξ⟩ dσ(θ) =

1

−2πi
(∂/∂ξj)V (|ξ|) = 1

−2πi

ξj
|ξ|
V ′(|ξ|).

Using this in (5.3), we have

F(ϕ(j))(ξ) =
i

2π

ξj
|ξ|

∫ 1

0

V ′(r|ξ|) dr = ξj
|ξ|
W (|ξ|),

where W is an analytic function defined by

W (u) =
i

2π

∫ 1

0

V ′(ru) dr.

So, using part (2), we see that∣∣∣∣∣∣
n∑
j=1

F(Rj(ϕ
(j)))(ξ)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
j=1

ξ2j
|ξ|2

W (|ξ|)

∣∣∣∣∣∣ = |W (|ξ|)| for ξ ∈ Rn \ {0}.

Thus, we need to show that

(5.4) sup
ℓ∈Z

|W (|2ℓξ|)| > 0 for ξ ∈ Rn \ {0}.

We give a proof by contradiction. We first note that W (0) = 0. If there is ξ ∈
Rn \{0} such that W (2−ℓ|ξ|) = 0 for all ℓ ∈ Z, then we have a sequence {2−ℓ|ξ|}∞ℓ=1

of distinct points such that 2−ℓ|ξ| → 0 and W (2−ℓ|ξ|) = 0 for all ℓ = 1, 2, . . . .
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This implies that the function W is identically 0 by the uniqueness of analytic
continuation. Thus we have reached a contradiction, and hence we have (5.4). □

To prove Theorem 5.1, we apply the following result.

Theorem 5.3. Suppose that 1 < p < ∞ and w ∈ Ap. Let U1 = U
(1)
1 , where U

(1)
1

is as in (1.10). Then we have

∥U1(f)∥p,w ≃ ∥f∥p,w, f ∈ S0(Rn).

Proof. Let f ∈ S0. Then by [5, Lemma 2.1] we see that

(5.5) I1(f)(x)−
∫
Sn−1

I1(f)(x− ty) dσ(y) =
1

cn

∫
B(x,t)

〈
∇I1f(y),

x− y

|x− y|n
〉
dy,

where cn is the surface area of Sn−1 as above and ∇g = (∂1g, . . . , ∂ng). Let

ψ(j)(x) = −Rj(ϕ(j))(x), ψ(x) =

n∑
j=1

ψ(j)(x).

Then by (5.5), we have

I1(f)(x)−
∫
Sn−1

I1(f)(x− ty) dσ(y) = t(f ∗ ψt(x)).

Thus

(5.6) U1(f) = ∆ψ(f).

We note that ∆ψ(j)(f) = ∆ϕ(j)(Rjf). Using part (3) of Lemma 5.2, we can easily
see that Theorem D is applicable to ∆ϕ(j) to get its Lpw boundedness. Thus, by
Theorem D and the Lpw boundedness of Rj , we see that

∥∆ψ(f)∥p,w ≤
n∑
j=1

∥∆ψ(j)(f)∥p,w(5.7)

=

n∑
j=1

∥∆ϕ(j)(Rjf)∥p,w ≤ C

n∑
j=1

∥Rjf∥p,w ≤ C∥f∥p,w.

To prove the reverse inequality, we apply the following result, which is essentially
[11, Theorem 3.6].

Lemma 5.4. Let ψ ∈ L1(Rn) satisfy (1.13) and let ∆ψ be as in (1.15). Suppose
that

∥∆ψ(f)∥p,w ≤ C∥f∥p,w, f ∈ S0,

for all w ∈ Ap and all p ∈ (1,∞). Further, suppose that the function m(ξ) =∑∞
ℓ=−∞ |ψ̂(2ℓξ)|2 is continuous and strictly positive on B0 = {1 ≤ |ξ| ≤ 2}. Then

the reverse inequality

∥f∥p,w ≤ C∥∆ψ(f)∥p,w, f ∈ S0,

also holds for all w ∈ Ap and all p ∈ (1,∞). Thus ∥f∥p,w ≃ ∥∆ψ(f)∥p,w, f ∈ S0,
for p ∈ (1,∞) and w ∈ Ap.
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Let

b(ξ) =

∞∑
ℓ=−∞

|F(ψ)(2ℓξ)|2 =

∞∑
ℓ=−∞

∣∣∣∣∣∣
n∑
j=1

F
(
ψ(j)

)
(2ℓξ)

∣∣∣∣∣∣
2

.

Let N be a positive integer and

bN (ξ) =

N∑
ℓ=−N

|F(ψ)(2ℓξ)|2.

Then bN is continuous on B0, where B0 is as in Lemma 5.4. By (2) and (3) of
Lemma 5.2 bN converges to b uniformly on B0 and hence b is continuous on B0.
Also, Lemma 5.2 (4) implies that b is strictly positive on B0. Thus, taking into
account (5.7), we can apply Lemma 5.4 to ∆ψ to get ∥f∥p,w ≤ C∥∆ψ(f)∥p,w.
Recalling (5.6), we conclude the proof of Theorem 5.3. □
Proof of Theorem 5.1. The proof is similar to those of Theorems 1.2 and 1.4. We
need the following.

Lemma 5.5. Suppose that w ∈ Ap, 1 < p < ∞ and f ∈ Lpw. Let f (ϵ) be as in
Lemma 3.2. Let B1 be as in Theorem 5.1. Then

∥B1(f
(ϵ))∥p,w ≃ ∥I(ϵ/2)−1 f (ϵ)∥p,w, 0 < ϵ < 1/2.

Proof. Using Theorem 5.3, we have

(5.8) ∥B1(fm,ϵ)∥p,w = ∥U1(I−1fm,ϵ)∥p,w ≃ ∥I(ϵ/2)−1 fm,ϵ∥p,w,
where f ∈ Lpw and fm,ϵ ∈ S0 is as in the proof of Lemma 3.4. We can prove Lemma
5.5 by applying (5.8) and by arguing similarly to the proofs of Lemmas 3.4 and
4.1. □

Applying Lemma 5.5, we can prove Theorem 5.1 in the same way as we have
proved Theorem 1.4 by applying Lemma 4.1. □

6. Some further remarks and results

6.1. On availability of polarization techniques. In proving Theorem 1.1, if

we have the inequality ∥S(k)
α (f)∥p,w ≤ C∥f∥p,w, then the reverse inequality can be

shown by the polarization techniques as in [5], [9] by using the identity ∥S(k)
α (f)∥2 =

c∥f∥2 (see [4, Chap. V, p. 507, 5.6 (b)]). In proving Theorems 1.3 and 5.3 we have
difficulties in applying similar arguments due to absence of the corresponding L2

equalities. So we need to apply different arguments using non-degeneracy.

6.2. Comments on Sα. In theorems of this note, we have considered square func-
tions involving averaging over spheres S(x, t) = {y ∈ Rn : |x − y| = t}. To define
analogues in metric measure spaces of those square functions involving averaging
over S(x, t), we have difficulties in defining suitable measures on the spheres (bound-
aries of balls) in general spaces. This is not the case for square functions involving
averaging over balls like the one in (1.4).

On the other hand, in relation to harmonic analysis on the Euclidean spaces, the
square function Sα(f) in (1.6) has an interesting pointwise relation with the square
functions arising from the Bochner-Riesz operators. Let

SβR(f)(x) =

∫
|ξ|<R

f̂(ξ)(1−R−2|ξ|2)β e2πi⟨x,ξ⟩ dξ
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be the Bochner-Riesz mean of order β and let σβ be a Littlewood-Paley operator
defined as

σβ(f)(x) =

(∫ ∞

0

∣∣∣R(∂/∂R)SβR(f)(x)∣∣∣2 dR/R)1/2

=

(∫ ∞

0

∣∣∣−2β
(
SβR(f)(x)− Sβ−1

R (f)(x)
)∣∣∣2 dR/R)1/2

.

Then the following result is known (see [6], [10]).

Theorem E. Suppose that 0 < α < 2 and β = α+ n
2 . Then we have

σβ(f)(x) ≃ Sα(f)(x),

for f ∈ S0(Rn).

6.3. Discrete parameter square functions defined with repeated uses of
averaging operations over balls. We can also consider a discrete parameter
version of the square function in (1.4) as follows: ∞∑

ℓ=−∞

∣∣∣∣∣f(x)−−
∫
B(x,2ℓ)

f(y) dy

∣∣∣∣∣
2

2−2ℓ

1/2

.

Furthermore, we can consider analogues of B(k)
α (f) and U

(k)
α (f) in (1.9) and (1.10),

respectively, where the averaging operation f ∗ σt is replaced by f ∗ Φt with Φ =
|B(0, 1)|−1χB(0,1), and we can prove analogues of Theorems 1.3 and 1.4, as follows.

We define Λjtf(x), j ≥ 1, by Λjtf(x) = f ∗ Φ(j)
t (x), where

Φ(1)(x) = Φ(x), Φ(j)(x) = Φ ∗ · · · ∗ Φ︸ ︷︷ ︸
j

(x), j ≥ 2.

We also write Λtf for Λ1
t f . Let I be the identity operator and for a positive integer

k we consider

(I − Λt)
kf(x) = f(x) +

k∑
j=1

(−1)j
(
k

j

)
Λjtf(x).

For 0 < α < n, let

G(k)
α (f)(x) =

( ∞∑
ℓ=−∞

∣∣(I − Λ2ℓ)
kf(x)

∣∣2 2−2αℓ

)1/2

,

and

R(k)
α (f)(x) =

( ∞∑
ℓ=−∞

∣∣(I − Λ2ℓ)
kIα(f)(x)

∣∣2 2−2αℓ

)1/2

.

We state the following results without proofs.

Theorem 6.1. Let 0 < α < min(2k, n), 1 < p <∞ and w ∈ Ap. Then

∥R(k)
α (f)∥p,w ≃ ∥f∥p,w, f ∈ S0(Rn).

Theorem 6.2. Suppose that 1 < p < ∞, w ∈ Ap and 0 < α < min(2k, n). Then

f ∈Wα,p
w if and only if f ∈ Lpw and G(k)

α (f) ∈ Lpw; further,

∥I−α(f)∥p,w ≃ ∥G(k)
α (f)∥p,w.



18 SHUICHI SATO

Theorems 6.1 and 6.2 can be shown arguing similarly to the proofs of Theorems
1.3 and 1.4, respectively. Analogues of Theorems 6.1 and 6.2 for continuous pa-
rameter square functions are obtained in Theorems 4.1 and 4.2 of [12], respectively,
where more general settings are considered.
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