WEIGHTED INEQUALITIES FOR FOURIER MULTIPLIER
OPERATORS OF BOCHNER-RIESZ TYPE ON R?

SHUICHI SATO

ABSTRACT. We consider Fourier multipliers in R? with singularities on cer-
tain curves, which are closely related to the Bochner-Riesz Fourier multipliers.
We prove weighted inequalities and vector valued inequalities for the Fourier
multiplier operators, which generalize some known results.

1. INTRODUCTION
Let
(&) = F()©) = / Fa)e 20 g
]RZ

be the Fourier transform on R?, where (z, &) = x1&1 42062, © = (21, 22), € = (&1, &2),
denotes the inner product, and let

Sh(x) = /M FOY1 - R ermoe) ge

be the Bochner-Riesz operator of order A on R?, where g;(£) = g(¢) if g(¢§) > 0
and g4 (&) = 0 otherwise, for a real valued function g.
The following is known ([4]).

Theorem A. If A >0, S7 is bounded on L*(R?) :

152 flla < Cullfla

for f € 8(R?), where S(R?) denotes the Schwartz class of infinitely differentiable,
rapidly decreasing functions on R2.

By duality and interpolation Theorem A implies the L boundedness of S7 for
4/3 < p < 4. The L* boundedness for the maximal function S2(f) = supp~q [Sx(f)]
is proved in [1]. In [7] the following weighted inequality for S3' is shown.

Theorem B. There exists a bounded operator Uy on L*(R?) such that

/(S?f(w))%(x)dw S/ |[f(@)PUr(w)(z) dz for f € S(R?).
RQ R2

The operator Uy is defined constructively by using the Kakeya maximal func-
tions. Theorem A follows from Theorem B. We refer to [2] and [12] for related
results. In [2], the following result is shown.
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Theorem C. Let g € [2,00). Then, there exists a bounded operator P, 5 on L1(R?)
such that

[ @ @pu@ e < [ 1f@PR, @)@ d, £ eSE)
for non-negative functions w in L4(R?).

See also [3], [5] and [13] for related results.
For b € L*°(R?), define a Fourier multiplier operator T}, by

Tof@) = [ MOf@ ) de.

where f € 8(R?). Let I be a compact interval in R. Let a € C§°(R?) be supported
in I° x R, where I° denotes the interior of I and C§°(R?) the set of infinitely
differentiable functions on R? with compact support. Let ox(£) = a(€)(&2—1(£1))2,
where ¢ is in C°°(I) and real valued. We need to introduce an admissible class of
curves ¢, which will be used to construct Fourier multipliers in this note.

Definition 1.1. Let ¢ € C*°(I) be real valued. We say ¢ € C(I) if ¢ satisfies that

(1) " #0o0n I
or that
(2) if ¥ (to) = 0 for some ¢y € I, then ¢, is a finite order zero of ¢".

Then by [11], [14] the following result is known.
Theorem D. Suppose that i € C(I). Then, for X > 0, T,, is bounded on L*(R?) :
175, flla < Cxll fla-

This can be considered as a generalization of Theorem A.

In this note we shall prove a weighted inequality for 7}, which can be considered
as a generalization of Theorem B and from which Theorem D will be derived. It is
stated as follows.

Theorem 1.2. Suppose that 1 € C(I). Then there exists a bounded operator U on
L?(R?) such that

/lTaA(f)(ﬂf)lzw(w)dfvS/ |f(@)]*U(w)(2) do
R? RQ

for w € L?(R?) with w > 0.
We shall give a constructive proof for the existence of U(w).

Remark 1.3. Let q € [2,00) and U, (w) = U(w?/?)?/4, where U is as in Theorem 1.2
and w > 0. Then [|U,(w)|ly < C|lw||, and

[ D@Pue) s < [ 1)U, ) (@) ds
RQ ]RZ

for non-negative functions w in LY(R?), where o is as in Theorem 1.2. As in [2],
this can be shown by applying interpolation with change of measures between the
estimates

/mu ()P <>Jdas<c/ F@PU) () de for j=0,1.

This remark is also the case for Theorem 1.9.
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Also, we shall prove vector valued inequalities.

Theorem 1.4. Let {R,}7°2, be a sequence of positive numbers. Let ox, A > 0, be
as in Theorem 1.2. Let JE\R)(ﬁ) =ox\(R71¢), R>0. Then for p € [4/3,4] we have

S 9 1/2 oo 1/2
(z\qwm) ) <c (zw)
/=1 =1

Corollary 1.5. Let O';R) be as in Theorem 1.4. Then for any non-negative w €

L?(R?) there exists a non-negative W € L*(R?) such that |W |2 < C||wl|2 and
2
sup [ |70 (N@)] wlo)do < [ 1#@)PW ) do.
R>0 JR2 A R?

This follows from Theorem 1.4 and a result of [12]. In the case of the Bochner-
Riesz operator, analogues of Theorem 1.4 and Corollary 1.5 are shown in [8] and
[12], respectively. Here we mention that in this note we do not have an analogue of
Theorem C for the functions o as above. To prove a result analogous to Theorem
C for those o) in detail is yet to be done.

Theorems 1.2 and 1.4 for the case 1"/ # 0 on I will be derived by applications
of more general results. Let

Ly ={(&,v(&) eR? & eI}
Let o : R? — R be such that

(1) 0 € C®(R2\Ty);

(2) o is compactly supported in {(£1,&2) : &1 € I° and ¥(&1) < &}
Let £ € T'y. Let t(§) = (t1(§), t2(&)) be the unit vector such that ¢(£) = (1,¢'(£1))/(1+
Y'(€1)2)Y? and let n(€) = (—ta(€),t1(€)). Define the differential operators ot (&)
and On(§) by

(01(€)g) () = m(@a%g(n) + tz(f)%g(n%

(On(©)g)(n) = m(&)a%g(n) n m(f)a%gm),

where 7 = (m1,72). We also write ¢(&1), n(&1), 0t(&1) and 9n(&) for t(£), n(f),
ot(€) and On(&) with &€ = (&1,4(&1)), respectively.
For § € (0,1] and & € I, let

E(,8,&:) = {n € R?: [& —m| < 6%, 4p(m) +6 <o < () +26,m € I},

Definition 1.6. Let o be as above. Let {©(27™)}2°_, be a sequence of positive
numbers. We say that o € M(¢, ©) if

(1.1)  sup  sup |((B(&))*(On(&r)) o) ()| < CO(5)6~ (/DR
§1€l neE(v,6,61)

for all § € {27™}%°_; and all non-negative integers «, § such that 0 < o, 8 < 3
with a positive constant C independent of 4.

Examples1.7. Let a(¢) € C5°(R?) be as in the definition of oy in Theorem 1.2
and A(¢) € C*(R?) with infeege A(§) > Ao for some positive constant Ag. Let
o (&) = a(€)(& — ¥(€)))Y. Then 0 € M(y, ) with ©(8) = 6* (see (3.3) below

in Section 3).
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Examplesl.8. Let o(¢) = a(€)(&2—1(€1)}" if &—(€1) > 0,& € I, and 0(€) =0
otherwise, where a is as in Example 1.7 and A(§) = (log(1/(&2 — (51)) ))~* with
0 < s < 1. Then we can see that o € M(¢),0) with ©(8) = §1°8(1/9)™" " Suppose
that ¢ # 0 on I. Although A(¢) — 0 as £ — & € T'y, under the condition
that & — (&) > 0, by Theorem 1.9 below we can see that T, is bounded on
L? for 4/3 < p < 4. This will be of interest if we recall the following result: If
A(€) is identically 0 in the definition of o above, then o(§) = a(§)xg(§), where
E ={{:& > ¥(&),& € I} Suppose that there is & € I'y, such that a(&) # 0.
Then by the methods of [9] we can see that T, is bounded on LP, 1 < p < oo, only
for p = 2.

We have the following theorem.

Theorem 1.9. Let i) € C(I) satisfy " #0 on I. Let ¢ € M(v),0). Suppose that
there exists a sequence {an}20_1 of positive real numbers such that

i Uy, < 00, i 01272 m' %0 < co.

Then there exists a bounded operator U on L*(R?) such that

(D) @)P da:</ F@)PU () () d

where w € L*(R?) and w > 0.
We also have a vector valued inequality under a stronger condition on o.

Theorem 1.10. Let ¢ be as in Theorem 1.9 and let o € M(,0). We assume

that
Z O(2 ? < 0.

m=1

Let {R}22, be a sequence of positive numbers. Let o) (¢) = o(R71¢), R > 0.

Then we have
0o 1/2 o 1/2
(Z |T0(Rg>(fe)2) <C (Z |f52>
(=1 » (=1 »

forp € [4/3,4].

Corollary 1.11. Let T (» be as in Theorem 1.10. Then for any non-negative
w € L?(R?) we can find a non-negative W € L*(R?) such that |W||s < C|lwl]2 and

sup [Ty (Do) 0@ do < [ 11@FWa) da
R>0

This can be shown by Theorem 1.10 in the same way as Corollary 1.5 is proved
by Theorem 1.4.

We shall prove Theorem 1.9 in Section 3. To prove Theorem 1.9 we need a
certain geometrical result related to decomposition of a neighborhood of I'y, when
" # 0 on I, which will be given in Section 2 (see Lemma 2.3 below). We refer to
[10] for related results in the case of the circle. The proof of Lemma 2.3 is based on
methods of [14]. In Section 4 we shall prove Theorem 1.2 by applying Theorem 1.9
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and an idea of [11, p. 8] for the resolution of a singularity caused by finite order
zeros of ¢ .

Theorem 1.10 will be shown in Section 6 by adapting arguments in [8]. We shall
prove Theorem 1.4 also in Section 6 by applying Theorem 1.10 as Theorem 1.2 is
shown from Theorem 1.9. To prove Theorem 1.10 we need a geometrical result
slightly different from Lemma 2.3, which will be given in Section 5 (see Lemma
5.3).

2. DECOMPOSITION OF A NEIGHBORHOOD OF CURVE

Let I = [a,b] be a compact interval in R and ¢ € C*°(I). Let 0 < § < 1. We are
interested in the case where ¢ is much smaller than |I| = b—a. Suppose that [¢"| > 0
on I. We define a partition {wq,ws,...,wk} of I consisting of subintervals of I as
follows: w; = [aj—1,05], 1 < j < K, witha=ap < a1 <--- <ag-1 < ax =b,
lwi| =6Y2,1<j <K —1, |wg| < /2. Then we have K < |I|671/2 + 1.

We divide the intervals {w;} into 4 families:

g1={W1,W5,CU9,...}, H:QZ{MQ,wG,wlo,...},

2.1

( ) 9-3:{6037&)770011,...}7 9-4:{60470187&}12,...}.

We write {I1, I, I3,..., I} = {w1,ws,wy, ...} and consider this family of intervals.
Let

Eiy i = 1 = e, V(&) — () = &k € Loy yme € 1, )
for ik,jk:LQ,...,L, k:1,2.

Lemma 2.1. Let mg = infiey [0 (¢)]|. Suppose that mg > 0. There exists a positive
constant co such that if (i1,71) # (ie, j2) and ix < jx, k = 1,2, then

d(EihjuEimjz) > ¢o0,
where d(E, F) = infycp yer |2 — y).
To prove Lemma 2.1, we apply the following.

Lemma 2.2. Let i) be as in Lemma 2.1. There exist positive constants cy,ca such
that c1 < 2 and zfgk S Iik7 Mk S I]k) k= 1a2; (ila.jl) 7é (i27j2)7 Zk < jk)7 k= 1727
and |& —m — (&2 —n2)| < &1, then

J = (&) —(m) — ((&2) — ¥(n2))| = c26.
Lemma 2.1 follows from Lemma 2.2 since Lemma 2.2 implies that

(61 = n1,9(&1) — ¥(m)) — (§2 — n2, ¥ (E2) — ¥(n2))]
> max (€1 —m — (&2 — n2)]s [¥(&1) —v(m) — (P(&2) — ¥(n2))])

> min(cy, ¢2)0.

Let v and ¢y be as in Lemma 2.1 and

(22) B}, o= (G — ks & — ) s (&) < & < (&) + 107 eod,
V(ne) < mp < (me) + 107 eod, & € Ly, € 1, ),

for i, jr = 1,..., L, k = 1,2. We note that £} ;, = —E7 , , where —F = {-¢:
£ € E}.
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Lemma 2.3. Suppose that ¢ and ¢y are as in Lemma 2.1. If (i1, 1) # (i2,j2) and
ix < Jx, k=1,2, then we have
d (E;'klyjl’Eik

©2,J2

Proof. Let (&) < & < (&) + 107 cod, (me) < mj, < (me) + 107 ed, & €
k

) > (3/5)cod.

L, € 1;,, kK =1,2. Then by Lemma 2.1 we see that
(& = m. &1 —m) — (&2 =12, & — )|
> (&1 —m, (&) — ¥(m)) — (&2 —m2, ¥ (&) — ¥(n2))]
=& = m. & —m) = (& =, 9(6) — ¥(m))|
— (62 = 12,65 — m3) — (&2 — 12, ¥ (§2) — ¥(m2))]
Z 005 - (2/10)005 - (2/10)60(5 = (3/5)005
This implies the conclusion. O

In the proof above we have used Lemma 2.1, which follows from Lemma 2.2.
Thus to complete the proof of Lemma 2.3 it remains to show Lemma 2.2.

Proof of Lemma 2.2. If ¢; < 2 and |§ —n1 — (&2 —m2)| < 10, then we have i1 # is.
To see this, suppose that i; = io. Then j; # jo, since (i1, j1) # (i2,j2). So we have

&1 — 1 — (&2 — )| = |m — 2| — &1 — & > 362 — 612 > 24,

This contradicts the assumption that ¢; < 2. Thus we have i1 # is.
We may assume that i; < i3 without loss of generality. Then j; < jo. This can
be shown as follows by arguing as above. Suppose that jo < j;. Then

& —m — (&2 —m)| =& — & + (m —n2) > 362 — 62 > 25,

which leads to a contradiction.
Therefore, to prove the lemma it suffices to estimate J under the condition that
(i1,71) # (i2,J2), i1 < j1, i2 < ja, i1 <2, j1 < j2. We see that

&2 M2
J= ' (t) dt — W' (t) dt| .

&1 m

Put 7 = min(fg — 51, N2 — 771) Then

/ o ' () dt — / " ' (t) dt

m

&2
J =

W't dt

M2
/ ' (t) dt‘ =:J".
n

§1+T 1+7

Let Do = sup,c; |¢'(t)]. Then

€
W (t) dt

S1+T

< Do(&—& — 1),

2
/ Y'(t) dt‘ < Do(nz —m — 7).
n

1+7

‘We note that

Ea—&i+m—m—2r=|L—& — (12 —m)| < cid.
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Therefore

147 1+T
J*z/5 z//(t)dt—/n W (t) dt

m

/MT ' (t) dt — /m+T W (t) dt

mn

— Doléa — &1 — (2 — m1)]

—

Y

— 01D06

n+7
[ e a0 - vy ]

U

m+t t
/ (/ [ (s)| ds) dt — c1Dgd =: J**.
m t+&1—-m

We note that & —mp < —36Y2 and 7 > 38'/2. Thus J** > 9md — ¢1.Dyd. So, if
c1Dg < 9mg, 0 < co < 9mg — 1Dy and 0 < ¢; < 2, the constants ¢, co satisfy
what is needed. This completes the proof of Lemma 2.2. ([l

3. PROOF OF THEOREM 1.9

Let ¢ € C§°(R) be supported in [1/2,2] and > 2 ¢(2"t) = 1 for t > 0.
Decompose ¢ as ¢ = g9 + 01 with

Z Y& —1(&))),

where Kk = ¢¢/30 and ¢y is as in Lemma 2.3. Let n > 1. Let {wy,...,wk} be a
partition of I as in Section 2 with § = 27". We decompose

K

a(§)$(2 K (& — (&) = D> a(©)d(2"K (€2 — ¥(£1))) X, x2(£)-
j=1

Let F1 = {I1, 5, ..., I} be the subcollection of {w1,...,wk} as in Lemma 2.3. We
consider

Pjh

& — v(&)))x, xr(€)

and write
L L L
D o(€)02"n (& — Y& xn() = 22857 (€) = 30" (©xr, w6,
with
(3.1) s (€) = o (€)p(2"K 1 (€2 — (€1)))xr, & (£),
and
(3.2) o (&) = o(€)$(2"r (€ — (&) B2Y2(E — ¢5)),

where ¢; is the center of I; and ® is in C§°(R) such that ®(2"/2(¢; —¢;)) = 1 for
&1 € I for every j.
We see that

(8€)70'™ (&) < cO2™™)2" 1,
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where v = (71,72), 11,72 € ZN0,3], |7 = 71 +72 and (9€)7 = (0/0&)" (0/0&:)>.
Here Z denotes the set of integers. We observe that

Ot(c;)(€a — (&) = t1(cs) (= (&1)) + talcy)
= —(1+9'(¢;))) 2 (W (&) — ¥ (¢))

and hence taking the support of O'J(-n) into account we have

(@t(e)) ol ()] < coE 22,
Similarly, by direct computation, we also see that
(3.3) (at(cj))a(an(cj))%;“(g)’ < CO(Q27)2022%"  for a, B € ZN0,3].
Define the Fourier multiplier operators SJ(-n) and Tj(n) by

SV =T (f), TV =T, feSE®,

)

n
where s§

result.

) and J](»" are as in (3.1) and (3.2), respectively. We have the following

Proposition 3.1. There exists a sequence of L? bounded operators {A,}5 ; such
that for w > 0

J.

and || Ay (w)[l2 < CO27")*n'/? w2

2

w@)de < [ 1@ Auw)(@) do

L

S8 (f) (@)

j=1

Proof. We see that

L L L

/ > S (N@)| wlxydr=3"3" / 87 (N@)S (@)w(x) d
B =1 j=1k=1"R?

- (n) (n) (n)
= S (D@ Pu)de+Y - [ S (@S (@) de

=1 /RQ #Zk/w

L
=3 [ IS e de s 2 70«7 (S0 i) de

Let EJ(") = supp (sgn)) and 5,(6") (&) = s,(j)(—g). Then, supp (s;”)> = —Ej("). We

note that

supp (F(SI (1) +F (S7(1)) € B+ (~E() = Fy
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Thus, setting Vjr = Ty_ , we see that

2
L

/RQ Z S](‘n) (f)(x)| w(z)dx

j=1

L
=3 [ 1870 Puta) da

#3305 (S0 ©Watw(-6) de
J#k

L —_—
— (n) 2)2w(z) de (n) 5™ AV () () d
—2/ 577 (£) @) P(e)d +§/S (@S (@) Vi (w)(w) d

1/2
L
< / (Z|S§"’<f><z>|2) w<x>+<zvj,k<w><x>|2) dr = J,

=1 ik
where the last inequality follows by the Schwarz inequality.

We write Tj(")(f) = f+ K9 where K(™7) = ff"*l(a](-")). Let O; be a rotation
such that Oje; = t(c;), Ojea = n(c;), where e; = (1,0), e2 = (0,1). By (3.3) and
the support condition of 05") we have
(3.4) |K(9)(0;2)] < CO(27™)27 /2271 |27 2y |72 My | P
for all o, B € ZN 0, 3]. Let

R = {z e R?: |z] < 2m2™2 |ao| < 2727}

for m € Z N [0,00) and put R = OjRS,?). Then by (3.4) we have

(3.5) K ()] < COR™) D 27 RGD | X o (@)
m=0

Let Pj =Ty, .- Then Sj(-")(f) = Tj(")(ij). Thus, putting
1/2

Va(w)(z) = w(z) + Yo Viw@P]

1<g,k<L,j#k

by (3.5) we have

S (n)

E T (P f)(2))? | Viu(w)(z) da
(3.6) J /]RZ (j_1| j (Pif)( )) (w)(z)d

L 00
<co Y. [ IB@E Y 2 IR g Valw) (@) de
j=1/R? m=0
Define the Kakeya maximal function

Mum()(@) = sup R g« fla)].
ISJSL m
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Then by (3.6) we have

L e’}
37 J<Ce@E)? /}R SIB@P Y 2 M (Vi) )
j=1 m

=0
Let Wy, =3 0 27" My m(V,(w)). Then (3.7) implies that

(3.8) J<Co@E )y / (@) M) (W) () d,
RZ
where Mél)(g)(x) = M(l)(|g|19)(:1c)1/19, with

h
MO(g)(w) = sup(2h) " [ gl — toaa)]de
h>0 —h
for ¥ € (1,2). We note that W,, < Mél)(Wn) almost everywhere and Mlgl)(Wn)
belongs to the weight class A; of Muckenhoupt in the z; variable uniformly in x5.
It is well-known that the inequality (3.8) follows from (3.7).
We have
1M (f)llz < Crl2(|f2,

where C'is a constant independent of n and m (see [6, Theorem 2]). We note that
Fjr C Efy, g,k =1,...,L, where £} is as in (2.2) with § = 27". By applying
Lemma 2.3, we have

D oxe: (O = (xs;, () +xp:, (—€) < C.

j#k i<k

Therefore, we see that

M50 (Wa)lla < CIWalla € D7 27 | Mo (Va (w)) |2 < C 2|V ()]
m=0
1/2
<on? | Jullz + | 3 IVis(w)ll3
Jj#k

< Cn'?||wl|,.

Thus we can take A,(w) = 06(2_”)2M§1)(Wn). This completes the proof of
Proposition 3.1. (Il

Proof of Theorem 1.9. Recall that ¢ = gg+07. In proving Theorem 1.9, it suffices
to show a weighted inequality analogous to that claimed in Theorem 1.9 with T,
in place of Ty, since T, can be handled by the weighted inequality for the Hardy-
Littlewood maximal functions. To deal with T,, we decompose 15, = Zi:l So.ks
where Sy 1 =07, Zle Sj(-") and each Sy i, 2 < k < 4, is defined similarly to Sy 1
by using Fj, in (2.1) in place of F1. Each S, , 1 < k < 4, is estimated similarly.
We only give an estimate for S, 1, which combined with similar estimates for S, x,
2 <k <4, will complete the estimate needed for Tp,.

Let Sy = So1. Setting [|[(an)||1 = > one; an, by the Schwarz inequality we have
2
L

152 (A1 < Naa)lln D ant |38
n=1

j=1
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Thus, applying Proposition 3.1, we see that

2
L

2 - -1 (n)
S N@Pw@) de < lalh 3 a / 8@ wiw)de

< [l(an)lx ZGZLI/RQ |f (@) A (w)(z) da
n=1

- / @) Ulw)(z) de,
RQ

where U(w) = ||(an)|l1 Xopey ap t Ay (w). We observe that
1T @)ll2 < l(@n) 1D ap [ An(w)]l2
n=1

< Cll(an)r Y a,"027")*n'?|lwlls < Cuf|wll2.
n=1

This completes the proof of Theorem 1.9.

4. PROOF OF THEOREM 1.2

If 9" # 0 on I, we can apply Theorem 1.9 directly to prove Theorem 1.2, since
if ©(0) = 0%, then o) € M(2),0) and we can see that ©(§) = §* satisfies the
requirement in Theorem 1.9.

To prove Theorem 1.2 in the case when 1" has zeros of finite order by applying
Theorem 1.9 we need the following result, which can be shown by a straight forward
computation.

Lemma 4.1. Let A be a non-singular linear transformation on R%. Put ma (&) =
m(AE) for a bounded function m. Let B = At (the transpose of A). Then, for
f € 8(R?), we have Ty, ,(f)(z) = Trn(f5)(B™12).

Proof of Theorem 1.2 when " has zeros of finite order. Applying a suitable parti-
tion of unity and change of variables, we may assume that 0 € I° and " vanishes
in I only at 0 and that 1 is of the form

(4.1) Y(t) = apt? + O(tH), d>3, ag#0.

Then to prove the theorem, it is sufficient to handle the case when the function
a(§) in the definition of o) satisfies that a(£) = 1 near the origin, from which we
can deduce the result for the general case.

Define a linear transformation L.(¢) = (e7!&1,e %) for € > 0. Let b(¢) =
a(§) — a(La-1&). Then a(§) = Y 5 b(Ly-x§) for £ # 0. Using this, we decompose

(4.2) ax(€) = al§) (&2 —¥(&1))} = ib(Lz—kﬁ)(fz — (€))7} -

k=0
Let ¥ (t) = e~ %p(et). Then () (t) = agt? in C®(I) as € — 0. Thus, since b
vanishes near 0, if oy ((€) = b(€)(& —¥(9 (€))%, by the case when ¢ has no zeros,
we have

(43) | T (De)Pu@de < [ 1f@PUw)a) do
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with a bounded operator U, on L?; ||U.(w)||2 < Cljw]||2 with the constant C' inde-
pendent of € € (0,1). Note that

(O3, (€) = e PD(LeE) (&2 — ¥ (&1))7-
Therefore, if my ((£) = b(Le&) (&2 — ¥(€1))2, by Lemma 4.1 and (4.3) we see that

@) [ T @R = [ T, ()P d
= 2 /Rz To (fr) (L @) Pw(e) da
— (2dX —d—1 /RQ |T0A,E(fL€)($)|2w(Lem) dx
< 2dre—d—1 /R2 |fL. (I)|2UE(wLe)(x) dzx

=2 /Rz @) (Ue(we,)) -2 () da

By (4.2) and (4.4) we have

1Tos (N)llz2w) < D 1Ty, (Fl 22y
k=0

< 27dAk:
<> ”fm( )
k=0 e

Uy—i (wL2,k ) -1

< Hf”Lz(Er(w))v

where
- o0 o0
U(w) = (Z 2—d,\k) ZQ—d’\k(Ug—k(erk))L“k'
k=0 k=0 2

The L? boundedness of U follows from that of U,-«. This completes the proof of
Theorem 1.2. O

5. ANOTHER RESULT ON DECOMPOSITION OF A NEIGHBORHOOD OF CURVE

Suppose that mg = infie; [¢"(t)] > 0. Let F1 = {I1,12,I5,...,I} be as in
Section 2. Let 1/2 < R < 2. Define

Fik7jk = {(gk + Rnkaw(gk) + Rw(ﬁk)) : gk € Iikank € Ijk}a
for ik,jk:LQ,...,L, k:1,2.

Lemma 5.1. There exists a positive constant ¢y such that if (i1,j1) # (i2,J2),
i < Jr, k=1,2, then
d(FZ‘hjl ) Fiz,jz) > 0.

Lemma 5.2. There exist positive constants c1,ca such that c; < 1/2 and if & € I;,,
e € Ly, ie < jr, k=1,2, (i1, 51) # (i2,J2) and |§1 4+ Ry — (§2 4 Rnz)| < ¢16, then

N = [(&1) + Rp(m) — ((&2) + Rab(n2))] = ead.
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This implies Lemma 5.1 as Lemma 2.2 implies Lemma 2.1. We note that in
Lemma 5.2 the condition that iy < jg is not set, which is assumed in Lemma 2.2.
Define

(5.1)  F7 . = Fpi . (R) = {(& + R, &, + Rip) = 90(&k) < &, < (&) + 10 e,

¢(ﬂk) < 77;@ < 7/}(7716) + 10710057 & € Iik’nk € Ijk}’
for ig, jx = 1,...,L, k = 1,2, where 9, ¢y are as in Lemma 5.1. We note that
F* . (R)= RF* (R_l).

kit ik
Lemma 5.3. If (i1, 1) # (i2,72), ix < ji, k = 1,2, then we have
d(F; ]I,F;; i) = (2/5)cod.
Proof. Let (&) < &, < ¥(&) + 107 cod, (k) < mp < ¥(mr) + 107 eod, & €
L, € 1;,, k= 1,2. Then, using Lemma 5.1, we have
(& + B, &1 + Riy) — (€2 + Rz, & + Ry)|
> (& + By, ¥(61) + R (m1)) — (€2 + B, (82) + Rep(n2))]
— (&1 + R, & + Bny) — (& + R, ¢ (&) + Rap(m))|
— [(§2 + Rn2, & + Rny) — (&2 + Rip, ¥0(&2) + Rip(n2))]
> ¢od — (3/10)cod — (3/10)cod = (2/5)cof.
This will imply the result claimed. ([l

Collecting results above, we see that to prove Lemma 5.3 it remains only to show
Lemma 5.2.

Proof of Lemma 5.2. Under the assumptions of the lemma, we have i; # is. To see
this, suppose that i; = i5. Then j; # ja, since (i1,71) # (i2,j2). Therefore

|61+ Ry — (§o+ Rn2)| = Rl —n2| — |€1—&o| = 3R6YZ =62 > (1/2)6"% > (1/2)6.
This contradicts the assumption that ¢; < 1/2. Consequently, i1 # is.

We may assume that i; < i5 without loss of generality. Then we have jo < ji.
This can be shown as follows by arguing as above. Suppose that j; < jo, then

&+ Ry — (€24 Rp)| = & — &1 4 R(no —m1) > 3612 — 26%/2 = §1/2,
from which a contradiction will follow.
Consequently, to estimate N we may assume that (i1,71) # (i, Jj2), i1 < j1,
ig S jg, il < ig and jg < j1~ ‘We have
Rm

S wd— [ e Ry de].

&1 Rn2

&2 1
Y (t)dt — R P (t) dt| =

&1 N2
Put 7 = min(§; — &1, R(n1 — n2)). Then

§1+T Rna+7
/ ' (t) dtf/ ' (t/R) dt|—

Rn2

N =

&2

N>

Rm
() dt| / #(t/R) di

§1+T Rna+7

= N*.
If Dy = sup,¢; ¢/ (t)], then

3
' (t) dt

E1+T

<Dy(& =& — 1), < Do(R(m —m2) — 7).

/ o ' (t) dt

Rna+T1
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‘We note that

So—& +R(m —m2) —21= | —& — R(m —12)| < c1d.

Thus
§1+T Rna+71
Nz | [T e [ R - Difes € R )

1 2
S+ Rna+1

> / ¢’(t)dt—/ W' (t/R) dt| — e1Dod
1 Rn2

n2+7/R

_ R/ (W (Rt + &1 — R) — 0/ ()) dt| — e1Dod

M2

n2+7/R t
= R/ </ [v" (s)] ds) dt — c1 Do =: N**.
N2 Rt+&1—Rne

Let no <t <me+7/R. If 1/2 < R < 1, then
t(l—R)—fl + Rno an(l—R)—§1 + Rng =mn9 — &1 2351/2
On the other hand, if 1 < R < 2, then

t(l—=R) =&+ Rnz =2 (2 +7/R)(1 — R) — & + Rz
=m—& +7(1/R-1)
>ne =&+ (m —m)(1—-R)
=m —& — R(m —n2)
=m =&+ (&—& — Rim —n2))
>m—& —c16 > c6'/?
for some ¢ > 0. Also, 7 > ¢6%/2? with ¢ > 0. Therefore N** > ¢*mgd — ¢1D6

for some ¢ > 0. Thus if ¢; is small enough, we have the desired estimate. This
completes the proof of Lemma 5.2. O

6. PROOFS OF THEOREMS 1.10 AND 1.4

Let sy’n) &) = sgn) (R, '€), where sgn) is as in (3.1). Let S](-Z’n) = TS§Z,71). Then

to prove Theorem 1.10 we need the following.
Proposition 6.1. We have
o\ 2

0o L > ’
/ ST SEM ()| | de < co@T) R’ / <Z|f4(ﬂ3)|2> dz,
R2 B2 \e=1

=1 |j=1
where C is independent of n.

Proof. Let § = 27", Let Z, = {nm +u : m € Z}, u € [0,n — 1] NZ. Then
{Zo,Z1,...,Zn_1} is a partition of Z. If my,my € Z,, and my < ma, then 2™ <
§2m=. For m € Z let I, = {€: 2™ < Ry < 2™} Let S = o8 | §1" Fix
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€ [0,n — 1] NZ and consider

2
(6.1) i / (ZZwM (f)(x ) da

LEZL, TE€ET,

-Y X X5 [ Sum@sen @ da

LELy MEZLy 7€ETy €T,

=2 2> [ 180U @S () @) da

LELy 7€T, €T,

S ZZ/ 1SEM (L) (@)S ) (1) (@) da

bmELy L#m redy s€Jy,

=Js+ J3, say.
By the Plancherel theorem, we have
. 2
[SCM (£ (@) S (S @) Pdr = | 137 ST @)S (f) @) de
R B2 |j k=1
2
L
:/ > TS TSI (F))EO)] de
R? J,k=1

Recall that E](-n) = supp (sgn)) and note that supp ( (En )) = RgEJ(-"). Let r,s € Jy.
Then 1/2 < R 1R, <2 and &"(SJ(.T n)(fr)) * ’J"(S,(; ")(fs)) is supported in

R.E"™ + RE"™ = R, (EJ(") n R;leE,g">) C R.Fy (R'Ry)

where F7; (R) is as in (5.1) with § = 27". Thus applying Lemma 5.3, we see that

[ 18T @)S M (f) @ >|2dx<02 / (s fr»w(s(”)(fé))(&)\zds

dx.

e )|

7,k=1
Therefore

dzr

(6.2) Jo < )i (fs)

LEZLy €Ty s€Ty j, k=1

. 2
2
sc}j/ (2;2:\S§"”)(fr) ) de
eez, '® \reg, =1

2
(Z ZZ‘S(T”) (f) ) dz = C.J,.
0€7, 7€, j=1

To estimate J3, we use that if r € Jy, s € J,;, and £ < m, then R, < 26R,. Also,
we note that d(R, By, R Ey) > 8'/? R if k # k', and diam (UL, supp(F(S\"" (f,))) <
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CR,. Here diam(F) denotes the diameter of E. Thus

supp fo" (S (f)) « F(SE™ (£.)) | () supp Z? ST (L)) F(SEM (f))

Jj=1

=0,

if k # k', when § = 27" is small enough. Therefore, if r € Jp, s € J,,, and £ < m,

we have
/Rz
2

<c F(S (£)) + TS (O] de

Rklj

(rn ’ Z‘S(Sn) fs

where C' is independent of n. Thus

(6.3) J3<C/R ZZ)S’""WT ‘ > ZZ‘S" (fs)

LELy TETy MEZn, SET

2

ST (£:)(2) S (fo)(@)| de

=C

dac,
R2

dﬂc

< Cnln",
where the last inequality follows by the Schwarz inequality. By (6.1), (6.2) and
(6.3) we have
Jiu < CJy+CI2T12,
which implies that

(6.4) Jiu < Cly.

Let 0™ be as in (3.2). Set o\ (€) = o\ )(RZ €) and T,"" = T, Let
P(Z) = Tyn,1;xz- Then Sj([’n)(f) = T(e n)( ) We note that Toﬁz,n) x f =

KEmd) « f with K79 (2) = RZK (™) (Ryx), where we recall K(7) = EF‘l(aj(.n)).
Thus by (3.5) we have

(6.5) |KEmD) (z) < cO27™)Y 2*#|R§f’”’j>|*1xR%,n,j)(x),
pn=0

where R = R;VRM),
To estimate Jy4, for a non-negative w € L? let

I = [ Z\S“" ()|

w(z) dz.
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By (6.5) we have

L
(6.6) Jrw < COQRT)?Y \222 H| R~ X g * (@) de
j=1 n=0
L
CRORY
j=1

JRLER
R2
<coR Y [ PP )@ A (w)(a) da,

where

Mi(f)@)=sup [RD[7 x, pon * f(2)]
1<j<L,t>0 "

We note that M (f) is independent of p. It is known that
M (F)ll2 < Cnl|fl2,

where C' is independent of n (see [15])
Let W = M(w). Then as in (3.8) from (6.6) it follows that

Jrw < CO(2 /Ifr JEM (W) () dar

Thus

> Y S Co@E [ 30 S I @MW) @) de

LEL, r€T, LEL, r€T,

and hence by the Schwarz inequality and the estimates ||Mé1)(W;)||2 < Cn|lwl|2
we see that

J4:< sup ZZJM,> <ce(- / (sz ) dz.

lwll2=1 pez, re7, (€T, r€T,

Therefore, by (6.4) we have

1/2
J < ce@mnt? (Z |fe|2>

4
Using this and a triangle inequality, we have
1/2
) L 2 / n—1 1/2
4n
SIS0 || < Sk ccoe s (i)
=1 |j=1 u=0
4
4

This completes the proof of Proposition 6.1. (]

Proof of Theorem 1.10. As in the proof of Theorem 1.9, to prove Theorem 1.10 it
suffices to show the vector valued inequality with {S((f) (fe)} in place of {T_(r, (fe)},
where Sl(f) =3 Zle SJ(-Z’H). Also, we may assume p = 4 in proving the vector
valued inequality; duality and interpolation will provide the result for the whole
range of p, 4/3 < p < 4. The proof for {Sy)(fg)} will be accomplished by applying
Proposition 6.1 via the triangle inequality.



18 SHUICHI SATO

Proof of Theorem 1.4. If 4" # 0 on I, we can derive Theorem 1.4 directly from
Theorem 1.10 as Theorem 1.2 is shown from Theorem 1.9.

When 1" has zeros of finite order, we may assume that ¢ is as in the proof
of Theorem 1.2 with the form (4.1). We argue as in the proof of Theorem 1.2
with notations used there. Recall that oy ((£) = b(€)(& — ¥ (&)}, v (&) =
e~Np(e€y), and let 05\676) (&) = o (R, '€). Then by applying Theorem 1.10 we see
that

oo ) 1/2 0 1/2
(6.7) (Z‘Tog,z)(fe)‘ ) <C <Z|fz|2>
/=1

{=1
p p

for p € [4/3,4] with a constant C' independent of € € (0,1). Recall that my ((§) =
b(Le€)(€2 — (1))} and define m{) (€) = my (R *€). Then

,€

el — l
(6.8) (03 )1 (6) = € Pmi(©).
By Lemma 4.1, (6.7) and (6.8) we see that

- 1/2 s
(6.9) (Z(ngfl(ff)f) =t (Z‘Twi‘*’%e(m‘z)
=1 > (=1

1/2

p

2> 1/2

P

— (A (d+1)/p <§ 'Ta(;,e)((fé)Lg)
A
=1

P

- 1/2
< CePe(dHD/p <Z |(fe)r. 2)
=1

- 1/2
= Ce™ (Z |fz2>
=1

P
for 4/3 < p < 4. By (4.2) we have
R (¢
(€)=Y mihu (9.
k=0

Thus by (6.9) for 4/3 < p < 4 we see that

o 9 1/2 00 0o o\ 1/2

<Z‘T w)(fe)’ ) <> (Z T « (fo) >
=1 , k=0 \e=1 A3k »

k=0
p

fe’e] fe%e] 1/2
<0 27k (Z |fe|2>
(=1

P
This completes the proof of Theorem 1.4. O
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Remark 6.2. Let {R,}72 . be a positive lacunary sequence with Hadamard gap

a > 1: a < inf; Ryy1/Re. Let O’;RZ) be as in Theorem 1.4. By application of
Theorem 1.4 and the Littlewood-Paley theory, we have

(6.10) sup ‘Tgum (f)‘
¢ o

<Cllfllp, 4/3<p<4
p

Let T' be a simple, closed C* curve in R? with no tangent of infinite order such
that the origin is contained in I'. Then we can consider a summation operator
gf\z for Fourier integrals analogous to Bochner-Riesz summation operator Sﬁ by
replacing the unit circle with T' (see [14, Theorem 1, Corollary 1]). By applying
(6.10) suitably through a partition of unity, we can prove a lacunary convergence
of SH(f) for f € LP(R?), 4/3 < p < 4 (see [8, Theorem 2] for Sp).

REFERENCES

[1] A. Carbery, The boundedness of the maximal Bochner-Riesz operators on L*(R?), Duke
math. J., 50 (1983), 409-416.
[2] A. Carbery, A weighted inequality for the maximal Bochner-Riesz operator on R2, Trans.
Amer. Math. Soc., 287 (1985), 673-680.
[3] A Carbery and A Seeger, Weighted inequalities for Bochner-Riesz means in the plane, Quart.
J. Math., 51 (2000), 155-167.
[4] L. Carleson and P. Sjolin, Oscillatory integrals and a multiplier problem for the disc, Studia
Math., 44 (1972), 287-299.
[5] L. Cladek, Multiplier Transformations Associated with Convex Domains in R?, J Geom Anal,
26 (2016), 3129—3175.
[6] A. Cérdoba, A note on Bochner-Riesz operators, Duke Math. J., 46 (1979), 505-511.
[7] A. Cérdoba, An integral inequality for the disc multiplier, Proc. Amer. Math. Soc., 92 (1984),
407—-408.
[8] A. Cérdoba and B. Lépez-Melero, Spherical summation: a problem of E. M. Stein, Ann. Inst.
Fourier, Grenoble, 31 (1981), 147-152.
[9] C. Fefferman, The multiplier problem for the ball, Annals of Math., 94 (1971), 330-336.
[10] C. Fefferman, A note on spherical summation multipliers, Israel J. Math., 15 (1973), 44-52.
[11] L. Hormander, Oscillatory integrals and multipliers on FLP, Ark. Mat., 11 (1973), 1-11.
[12] J. L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Lecture
notes in Math. Springer-Verlag, Berlin and New York, 908 (1982), 86-101.

[13] A. Seeger and S. Ziesler, Riesz means associated with convex domains in the plane, Math.
Z., 236 (2001), 643-676.

[14] P. Sjolin, Fourier multipliers and estimates of the Fourier transform of measures carried by
smooth curves in R?, Studia Math., 51 (1974), 169-182.

[15] Jan-Olov Stromberg, Maximal functions associated to rectangles with uniformly distributed
directions, Annals of Math., 107 (1978), 399-402.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, KANAZAWA UNIVERSITY, KANAZAWA
920-1192, JAPAN
E-mail address: shuichipm@gmail.com



