
WEIGHTED INEQUALITIES FOR FOURIER MULTIPLIER

OPERATORS OF BOCHNER-RIESZ TYPE ON R2

SHUICHI SATO

Abstract. We consider Fourier multipliers in R2 with singularities on cer-
tain curves, which are closely related to the Bochner-Riesz Fourier multipliers.

We prove weighted inequalities and vector valued inequalities for the Fourier
multiplier operators, which generalize some known results.

1. Introduction

Let

f̂(ξ) = F(f)(ξ) =

∫
R2

f(x)e−2πi⟨x,ξ⟩ dx

be the Fourier transform on R2, where ⟨x, ξ⟩ = x1ξ1+x2ξ2, x = (x1, x2), ξ = (ξ1, ξ2),
denotes the inner product, and let

SλRf(x) =

∫
|ξ|<R

f̂(ξ)(1− |R−1ξ|2)λ+e2πi⟨x,ξ⟩ dξ

be the Bochner-Riesz operator of order λ on R2, where g+(ξ) = g(ξ) if g(ξ) > 0
and g+(ξ) = 0 otherwise, for a real valued function g.

The following is known ([4]).

Theorem A. If λ > 0, Sλ1 is bounded on L4(R2) :

∥Sλ1 f∥4 ≤ Cλ∥f∥4
for f ∈ S(R2), where S(R2) denotes the Schwartz class of infinitely differentiable,
rapidly decreasing functions on R2.

By duality and interpolation Theorem A implies the Lp boundedness of Sλ1 for
4/3 ≤ p ≤ 4. The L4 boundedness for the maximal function Sλ∗ (f) = supR>0 |SλR(f)|
is proved in [1]. In [7] the following weighted inequality for Sλ1 is shown.

Theorem B. There exists a bounded operator Uλ on L2(R2) such that∣∣∣∣∫
R2

(Sλ1 f(x))
2w(x) dx

∣∣∣∣ ≤ ∫
R2

|f(x)|2Uλ(w)(x) dx for f ∈ S(R2).

The operator Uλ is defined constructively by using the Kakeya maximal func-
tions. Theorem A follows from Theorem B. We refer to [2] and [12] for related
results. In [2], the following result is shown.
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Theorem C. Let q ∈ [2,∞). Then, there exists a bounded operator Pq,λ on Lq(R2)
such that ∫

R2

(Sλ∗ f(x))
2w(x) dx ≤

∫
R2

|f(x)|2Pq,λ(w)(x) dx, f ∈ S(R2),

for non-negative functions w in Lq(R2).

See also [3], [5] and [13] for related results.
For b ∈ L∞(R2), define a Fourier multiplier operator Tb by

Tbf(x) =

∫
R2

b(ξ)f̂(ξ)e2πi⟨x,ξ⟩ dξ,

where f ∈ S(R2). Let I be a compact interval in R. Let a ∈ C∞
0 (R2) be supported

in I◦ × R, where I◦ denotes the interior of I and C∞
0 (R2) the set of infinitely

differentiable functions on R2 with compact support. Let σλ(ξ) = a(ξ)(ξ2−ψ(ξ1))λ+,
where ψ is in C∞(I) and real valued. We need to introduce an admissible class of
curves ψ, which will be used to construct Fourier multipliers in this note.

Definition 1.1. Let ψ ∈ C∞(I) be real valued. We say ψ ∈ C(I) if ψ satisfies that

(1) ψ′′ ̸= 0 on I
or that

(2) if ψ′′(t0) = 0 for some t0 ∈ I, then t0 is a finite order zero of ψ′′.

Then by [11], [14] the following result is known.

Theorem D. Suppose that ψ ∈ C(I). Then, for λ > 0, Tσλ
is bounded on L4(R2) :

∥Tσλ
f∥4 ≤ Cλ∥f∥4.

This can be considered as a generalization of Theorem A.
In this note we shall prove a weighted inequality for Tσλ

which can be considered
as a generalization of Theorem B and from which Theorem D will be derived. It is
stated as follows.

Theorem 1.2. Suppose that ψ ∈ C(I). Then there exists a bounded operator U on
L2(R2) such that∫

R2

|Tσλ
(f)(x)|2w(x) dx ≤

∫
R2

|f(x)|2U(w)(x) dx

for w ∈ L2(R2) with w ≥ 0.

We shall give a constructive proof for the existence of U(w).

Remark 1.3. Let q ∈ [2,∞) and Uq(w) = U(wq/2)2/q, where U is as in Theorem 1.2
and w ≥ 0. Then ∥Uq(w)∥q ≤ C∥w∥q and∫

R2

|Tσλ
(f)(x)|2w(x) dx ≤

∫
R2

|f(x)|2Uq(w)(x) dx

for non-negative functions w in Lq(R2), where σλ is as in Theorem 1.2. As in [2],
this can be shown by applying interpolation with change of measures between the
estimates∫

R2

|Tσλ
(f)(x)|2w(x)j dx ≤ Cj

∫
R2

|f(x)|2U(w)(x)j dx for j = 0, 1.

This remark is also the case for Theorem 1.9.
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Also, we shall prove vector valued inequalities.

Theorem 1.4. Let {Rℓ}∞ℓ=1 be a sequence of positive numbers. Let σλ, λ > 0, be

as in Theorem 1.2. Let σ
(R)
λ (ξ) = σλ(R

−1ξ), R > 0. Then for p ∈ [4/3, 4] we have∥∥∥∥∥∥
( ∞∑
ℓ=1

∣∣∣T
σ
(Rℓ)

λ

(fℓ)
∣∣∣2)1/2

∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥
( ∞∑
ℓ=1

|fℓ|2
)1/2

∥∥∥∥∥∥
p

.

Corollary 1.5. Let σ
(R)
λ be as in Theorem 1.4. Then for any non-negative w ∈

L2(R2) there exists a non-negative W ∈ L2(R2) such that ∥W∥2 ≤ C∥w∥2 and

sup
R>0

∫
R2

∣∣∣Tσ(R)
λ

(f)(x)
∣∣∣2 w(x) dx ≤

∫
R2

|f(x)|2W (x) dx.

This follows from Theorem 1.4 and a result of [12]. In the case of the Bochner-
Riesz operator, analogues of Theorem 1.4 and Corollary 1.5 are shown in [8] and
[12], respectively. Here we mention that in this note we do not have an analogue of
Theorem C for the functions σλ as above. To prove a result analogous to Theorem
C for those σλ in detail is yet to be done.

Theorems 1.2 and 1.4 for the case ψ′′ ̸= 0 on I will be derived by applications
of more general results. Let

Γψ = {(ξ1, ψ(ξ1)) ∈ R2 : ξ1 ∈ I}.
Let σ : R2 → R be such that

(1) σ ∈ C∞(R2 \ Γψ);
(2) σ is compactly supported in {(ξ1, ξ2) : ξ1 ∈ I◦ and ψ(ξ1) ≤ ξ2}.

Let ξ ∈ Γψ. Let t(ξ) = (t1(ξ), t2(ξ)) be the unit vector such that t(ξ) = (1, ψ′(ξ1))/(1+

ψ′(ξ1)
2)1/2 and let n(ξ) = (−t2(ξ), t1(ξ)). Define the differential operators ∂t(ξ)

and ∂n(ξ) by

(∂t(ξ)g)(η) = t1(ξ)
∂

∂η1
g(η) + t2(ξ)

∂

∂η2
g(η),

(∂n(ξ)g)(η) = n1(ξ)
∂

∂η1
g(η) + n2(ξ)

∂

∂η2
g(η),

where η = (η1, η2). We also write t(ξ1), n(ξ1), ∂t(ξ1) and ∂n(ξ1) for t(ξ), n(ξ),
∂t(ξ) and ∂n(ξ) with ξ = (ξ1, ψ(ξ1)), respectively.

For δ ∈ (0, 1] and ξ1 ∈ I, let

E(ψ, δ, ξ1) = {η ∈ R2 : |ξ1 − η1| ≤ δ1/2, ψ(η1) + δ ≤ η2 ≤ ψ(η1) + 2δ, η1 ∈ I}.

Definition 1.6. Let σ be as above. Let {Θ(2−m)}∞m=1 be a sequence of positive
numbers. We say that σ ∈ M(ψ,Θ) if

(1.1) sup
ξ1∈I

sup
η∈E(ψ,δ,ξ1)

∣∣((∂t(ξ1))α(∂n(ξ1))βσ) (η)∣∣ ≤ CΘ(δ)δ−(1/2)α−β

for all δ ∈ {2−m}∞m=1 and all non-negative integers α, β such that 0 ≤ α, β ≤ 3
with a positive constant C independent of δ.

Examples1.7. Let a(ξ) ∈ C∞
0 (R2) be as in the definition of σλ in Theorem 1.2

and λ(ξ) ∈ C∞(R2) with infξ∈R2 λ(ξ) ≥ λ0 for some positive constant λ0. Let

σ(ξ) = a(ξ)(ξ2 − ψ(ξ1))
λ(ξ)
+ . Then σ ∈ M(ψ,Θ) with Θ(δ) = δλ0 (see (3.3) below

in Section 3).
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Examples1.8. Let σ(ξ) = a(ξ)(ξ2−ψ(ξ1))λ(ξ)+ if ξ2−ψ(ξ1) > 0, ξ1 ∈ I, and σ(ξ) = 0
otherwise, where a is as in Example 1.7 and λ(ξ) = (log(1/(ξ2 − ψ(ξ1))+))

−µ with

0 < µ < 1. Then we can see that σ ∈ M(ψ,Θ) with Θ(δ) = δ(log(1/δ))
−µ

. Suppose
that ψ′′ ̸= 0 on I. Although λ(ξ) → 0 as ξ → ξ̄ ∈ Γψ under the condition
that ξ2 − ψ(ξ1) > 0, by Theorem 1.9 below we can see that Tσ is bounded on
Lp for 4/3 ≤ p ≤ 4. This will be of interest if we recall the following result: If
λ(ξ) is identically 0 in the definition of σ above, then σ(ξ) = a(ξ)χE(ξ), where
E = {ξ : ξ2 > ψ(ξ1), ξ1 ∈ I}. Suppose that there is ξ0 ∈ Γψ such that a(ξ0) ̸= 0.
Then by the methods of [9] we can see that Tσ is bounded on Lp, 1 ≤ p <∞, only
for p = 2.

We have the following theorem.

Theorem 1.9. Let ψ ∈ C(I) satisfy ψ′′ ̸= 0 on I. Let σ ∈ M(ψ,Θ). Suppose that
there exists a sequence {am}∞m=1 of positive real numbers such that

∞∑
m=1

am <∞,
∞∑
m=1

Θ(2−m)2m1/2a−1
m <∞.

Then there exists a bounded operator U on L2(R2) such that∫
R2

|Tσ(f)(x)|2w(x) dx ≤
∫
R2

|f(x)|2U(w)(x) dx,

where w ∈ L2(R2) and w ≥ 0.

We also have a vector valued inequality under a stronger condition on σ.

Theorem 1.10. Let ψ be as in Theorem 1.9 and let σ ∈ M(ψ,Θ). We assume
that

∞∑
m=1

Θ(2−m)m3/2 <∞.

Let {Rℓ}∞ℓ=1 be a sequence of positive numbers. Let σ(R)(ξ) = σ(R−1ξ), R > 0.
Then we have ∥∥∥∥∥∥

( ∞∑
ℓ=1

|Tσ(Rℓ)(fℓ)|
2

)1/2
∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥
( ∞∑
ℓ=1

|fℓ|2
)1/2

∥∥∥∥∥∥
p

for p ∈ [4/3, 4].

Corollary 1.11. Let Tσ(R) be as in Theorem 1.10. Then for any non-negative
w ∈ L2(R2) we can find a non-negative W ∈ L2(R2) such that ∥W∥2 ≤ C∥w∥2 and

sup
R>0

∫
R2

|Tσ(R)(f)(x)|2 w(x) dx ≤
∫
R2

|f(x)|2W (x) dx.

This can be shown by Theorem 1.10 in the same way as Corollary 1.5 is proved
by Theorem 1.4.

We shall prove Theorem 1.9 in Section 3. To prove Theorem 1.9 we need a
certain geometrical result related to decomposition of a neighborhood of Γψ when
ψ′′ ̸= 0 on I, which will be given in Section 2 (see Lemma 2.3 below). We refer to
[10] for related results in the case of the circle. The proof of Lemma 2.3 is based on
methods of [14]. In Section 4 we shall prove Theorem 1.2 by applying Theorem 1.9
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and an idea of [11, p. 8] for the resolution of a singularity caused by finite order
zeros of ψ′′.

Theorem 1.10 will be shown in Section 6 by adapting arguments in [8]. We shall
prove Theorem 1.4 also in Section 6 by applying Theorem 1.10 as Theorem 1.2 is
shown from Theorem 1.9. To prove Theorem 1.10 we need a geometrical result
slightly different from Lemma 2.3, which will be given in Section 5 (see Lemma
5.3).

2. Decomposition of a neighborhood of curve

Let I = [a, b] be a compact interval in R and ψ ∈ C∞(I). Let 0 < δ ≤ 1. We are
interested in the case where δ is much smaller than |I| = b−a. Suppose that |ψ′′| > 0
on I. We define a partition {ω1, ω2, . . . , ωK} of I consisting of subintervals of I as
follows: ωj = [aj−1, aj ], 1 ≤ j ≤ K, with a = a0 < a1 < · · · < aK−1 < aK = b,

|ωj | = δ1/2, 1 ≤ j ≤ K − 1, |ωK | ≤ δ1/2. Then we have K ≤ |I|δ−1/2 + 1.
We divide the intervals {ωj} into 4 families:

F1 = {ω1, ω5, ω9, . . . }, F2 = {ω2, ω6, ω10, . . . },
F3 = {ω3, ω7, ω11, . . . }, F4 = {ω4, ω8, ω12, . . . }.

(2.1)

We write {I1, I2, I3, . . . , IL} = {ω1, ω5, ω9, . . . } and consider this family of intervals.
Let

Eik,jk = {(ξk − ηk, ψ(ξk)− ψ(ηk)) : ξk ∈ Iik , ηk ∈ Ijk} ,
for ik, jk = 1, 2, . . . , L, k = 1, 2.

Lemma 2.1. Let m0 = inft∈I |ψ′′(t)|. Suppose that m0 > 0. There exists a positive
constant c0 such that if (i1, j1) ̸= (i2, j2) and ik < jk, k = 1, 2, then

d(Ei1,j1 , Ei2,j2) ≥ c0δ,

where d(E,F ) = infx∈E,y∈F |x− y|.

To prove Lemma 2.1, we apply the following.

Lemma 2.2. Let ψ be as in Lemma 2.1. There exist positive constants c1, c2 such
that c1 < 2 and if ξk ∈ Iik , ηk ∈ Ijk , k = 1, 2, (i1, j1) ̸= (i2, j2), ik < jk, k = 1, 2,
and |ξ1 − η1 − (ξ2 − η2)| ≤ c1δ, then

J := |ψ(ξ1)− ψ(η1)− (ψ(ξ2)− ψ(η2))| ≥ c2δ.

Lemma 2.1 follows from Lemma 2.2 since Lemma 2.2 implies that

|(ξ1 − η1, ψ(ξ1)− ψ(η1))− (ξ2 − η2, ψ(ξ2)− ψ(η2))|
≥ max (|ξ1 − η1 − (ξ2 − η2)|, |ψ(ξ1)− ψ(η1)− (ψ(ξ2)− ψ(η2))|)
≥ min(c1, c2)δ.

Let ψ and c0 be as in Lemma 2.1 and

(2.2) E∗
ik,jk

= {(ξk − ηk, ξ
′
k − η′k) : ψ(ξk) ≤ ξ′k ≤ ψ(ξk) + 10−1c0δ,

ψ(ηk) ≤ η′k ≤ ψ(ηk) + 10−1c0δ, ξk ∈ Iik , ηk ∈ Ijk},

for ik, jk = 1, . . . , L, k = 1, 2. We note that E∗
ik,jk

= −E∗
jk,ik

, where −E = {−ξ :
ξ ∈ E}.
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Lemma 2.3. Suppose that ψ and c0 are as in Lemma 2.1. If (i1, j1) ̸= (i2, j2) and
ik < jk, k = 1, 2, then we have

d
(
E∗
i1,j1 , E

∗
i2,j2

)
≥ (3/5)c0δ.

Proof. Let ψ(ξk) ≤ ξ′k ≤ ψ(ξk) + 10−1c0δ, ψ(ηk) ≤ η′k ≤ ψ(ηk) + 10−1c0δ, ξk ∈
Iik , ηk ∈ Ijk , k = 1, 2. Then by Lemma 2.1 we see that

|(ξ1 − η1, ξ
′
1 − η′1)− (ξ2 − η2, ξ

′
2 − η′2)|

≥ |(ξ1 − η1, ψ(ξ1)− ψ(η1))− (ξ2 − η2, ψ(ξ2)− ψ(η2))|
− |(ξ1 − η1, ξ

′
1 − η′1)− (ξ1 − η1, ψ(ξ1)− ψ(η1))|

− |(ξ2 − η2, ξ
′
2 − η′2)− (ξ2 − η2, ψ(ξ2)− ψ(η2))|

≥ c0δ − (2/10)c0δ − (2/10)c0δ = (3/5)c0δ.

This implies the conclusion. �

In the proof above we have used Lemma 2.1, which follows from Lemma 2.2.
Thus to complete the proof of Lemma 2.3 it remains to show Lemma 2.2.

Proof of Lemma 2.2. If c1 < 2 and |ξ1−η1− (ξ2−η2)| ≤ c1δ, then we have i1 ̸= i2.
To see this, suppose that i1 = i2. Then j1 ̸= j2, since (i1, j1) ̸= (i2, j2). So we have

|ξ1 − η1 − (ξ2 − η2)| ≥ |η1 − η2| − |ξ1 − ξ2| ≥ 3δ1/2 − δ1/2 ≥ 2δ.

This contradicts the assumption that c1 < 2. Thus we have i1 ̸= i2.
We may assume that i1 < i2 without loss of generality. Then j1 < j2. This can

be shown as follows by arguing as above. Suppose that j2 ≤ j1. Then

|ξ1 − η1 − (ξ2 − η2)| = ξ2 − ξ1 + (η1 − η2) ≥ 3δ1/2 − δ1/2 ≥ 2δ,

which leads to a contradiction.
Therefore, to prove the lemma it suffices to estimate J under the condition that

(i1, j1) ̸= (i2, j2), i1 < j1, i2 < j2, i1 < i2, j1 < j2. We see that

J =

∣∣∣∣∣
∫ ξ2

ξ1

ψ′(t) dt−
∫ η2

η1

ψ′(t) dt

∣∣∣∣∣ .
Put τ = min(ξ2 − ξ1, η2 − η1). Then

J ≥

∣∣∣∣∣
∫ ξ1+τ

ξ1

ψ′(t) dt−
∫ η1+τ

η1

ψ′(t) dt

∣∣∣∣∣−
∣∣∣∣∣
∫ ξ2

ξ1+τ

ψ′(t) dt

∣∣∣∣∣−
∣∣∣∣∫ η2

η1+τ

ψ′(t) dt

∣∣∣∣ =: J∗.

Let D0 = supt∈I |ψ′(t)|. Then∣∣∣∣∣
∫ ξ2

ξ1+τ

ψ′(t) dt

∣∣∣∣∣ ≤ D0(ξ2 − ξ1 − τ),

∣∣∣∣∫ η2

η1+τ

ψ′(t) dt

∣∣∣∣ ≤ D0(η2 − η1 − τ).

We note that

ξ2 − ξ1 + η2 − η1 − 2τ = |ξ2 − ξ1 − (η2 − η1)| ≤ c1δ.
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Therefore

J∗ ≥

∣∣∣∣∣
∫ ξ1+τ

ξ1

ψ′(t) dt−
∫ η1+τ

η1

ψ′(t) dt

∣∣∣∣∣−D0|ξ2 − ξ1 − (η2 − η1)|

≥

∣∣∣∣∣
∫ ξ1+τ

ξ1

ψ′(t) dt−
∫ η1+τ

η1

ψ′(t) dt

∣∣∣∣∣− c1D0δ

=

∣∣∣∣∫ η1+τ

η1

(ψ′(t+ ξ1 − η1)− ψ′(t)) dt

∣∣∣∣− c1D0δ

=

∫ η1+τ

η1

(∫ t

t+ξ1−η1
|ψ′′(s)| ds

)
dt− c1D0δ =: J∗∗.

We note that ξ1 − η1 ≤ −3δ1/2 and τ ≥ 3δ1/2. Thus J∗∗ ≥ 9m0δ − c1D0δ. So, if
c1D0 < 9m0, 0 < c2 ≤ 9m0 − c1D0 and 0 < c1 < 2, the constants c1, c2 satisfy
what is needed. This completes the proof of Lemma 2.2. �

3. Proof of Theorem 1.9

Let ϕ ∈ C∞
0 (R) be supported in [1/2, 2] and

∑∞
n=−∞ ϕ(2nt) = 1 for t > 0.

Decompose σ as σ = σ0 + σ1 with

σ0(ξ) =

∞∑
n=1

σ(ξ)ϕ(2nκ−1(ξ2 − ψ(ξ1))),

where κ = c0/30 and c0 is as in Lemma 2.3. Let n ≥ 1. Let {ω1, . . . , ωK} be a
partition of I as in Section 2 with δ = 2−n. We decompose

σ(ξ)ϕ(2nκ−1(ξ2 − ψ(ξ1))) =

K∑
j=1

σ(ξ)ϕ(2nκ−1(ξ2 − ψ(ξ1)))χωj×R(ξ).

Let F1 = {I1, I2, . . . , IL} be the subcollection of {ω1, . . . , ωK} as in Lemma 2.3. We
consider

L∑
j=1

σ(ξ)ϕ(2nκ−1(ξ2 − ψ(ξ1)))χIj×R(ξ)

and write

L∑
j=1

σ(ξ)ϕ(2nκ−1(ξ2 − ψ(ξ1)))χIj×R(ξ) =
L∑
j=1

s
(n)
j (ξ) =

L∑
j=1

σ
(n)
j (ξ)χIj×R(ξ),

with

(3.1) s
(n)
j (ξ) = σ(ξ)ϕ(2nκ−1(ξ2 − ψ(ξ1)))χIj×R(ξ),

and

(3.2) σ
(n)
j (ξ) = σ(ξ)ϕ(2nκ−1(ξ2 − ψ(ξ1)))Φ(2

n/2(ξ1 − cj)),

where cj is the center of Ij and Φ is in C∞
0 (R) such that Φ(2n/2(ξ1 − cj)) = 1 for

ξ1 ∈ Ij for every j.
We see that

|(∂ξ)γσ(n)
j (ξ)| ≤ CΘ(2−n)2n|γ|,



8 SHUICHI SATO

where γ = (γ1, γ2), γ1, γ2 ∈ Z∩ [0, 3], |γ| = γ1+γ2 and (∂ξ)γ = (∂/∂ξ1)
γ1(∂/∂ξ2)

γ2 .
Here Z denotes the set of integers. We observe that

∂t(cj)(ξ2 − ψ(ξ1)) = t1(cj)(−ψ′(ξ1)) + t2(cj)

= −(1 + ψ′(cj)
2)−1/2(ψ′(ξ1)− ψ′(cj))

and hence taking the support of σ
(n)
j into account we have∣∣∣(∂t(cj))ασ(n)
j (ξ)

∣∣∣ ≤ CΘ(2−n)2αn/2.

Similarly, by direct computation, we also see that

(3.3)
∣∣∣(∂t(cj))α(∂n(cj))βσ(n)

j (ξ)
∣∣∣ ≤ CΘ(2−n)2αn/22βn for α, β ∈ Z ∩ [0, 3].

Define the Fourier multiplier operators S
(n)
j and T

(n)
j by

S
(n)
j (f) = T

s
(n)
j

(f), T
(n)
j (f) = T

σ
(n)
j

(f), f ∈ S(R2),

where s
(n)
j and σ

(n)
j are as in (3.1) and (3.2), respectively. We have the following

result.

Proposition 3.1. There exists a sequence of L2 bounded operators {An}∞n=1 such
that for w ≥ 0

∫
R2

∣∣∣∣∣∣
L∑
j=1

S
(n)
j (f)(x)

∣∣∣∣∣∣
2

w(x) dx ≤
∫
R2

|f(x)|2An(w)(x) dx

and ∥An(w)∥2 ≤ CΘ(2−n)2n1/2∥w∥2.

Proof. We see that

∫
R2

∣∣∣∣∣∣
L∑
j=1

S
(n)
j (f)(x)

∣∣∣∣∣∣
2

w(x) dx =

L∑
j=1

L∑
k=1

∫
R2

S
(n)
j (f)(x)S

(n)
k (f)(x)w(x) dx

=
L∑
j=1

∫
R2

|S(n)
j (f)(x)|2w(x) dx+

∑
j ̸=k

∫
R2

S
(n)
j (f)(x)S

(n)
k (f)(x)w(x) dx

=

L∑
j=1

∫
R2

|S(n)
j (f)(x)|2w(x) dx+

∑
j ̸=k

∫
R2

F(S
(n)
j (f)) ∗ F

(
S
(n)
k (f)

)
(ξ)ŵ(−ξ) dξ.

Let E
(n)
j = supp

(
s
(n)
j

)
and s̃

(n)
k (ξ) = s

(n)
k (−ξ). Then, supp

(
s̃
(n)
j

)
= −E(n)

j . We

note that

supp
(
F(S

(n)
j (f)) ∗ F

(
S
(n)
k (f)

))
⊂ E

(n)
j + (−E(n)

k ) =: Fj,k.
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Thus, setting Vj,k = Tχ−Fj,k
, we see that

∫
R2

∣∣∣∣∣∣
L∑
j=1

S
(n)
j (f)(x)

∣∣∣∣∣∣
2

w(x) dx

=
L∑
j=1

∫
R2

|S(n)
j (f)(x)|2w(x) dx

+
∑
j ̸=k

∫
R2

F(S
(n)
j (f)) ∗ F

(
S
(n)
k (f)

)
(ξ)F(Vj,k(w))(−ξ) dξ

=
L∑
j=1

∫
R2

|S(n)
j (f)(x)|2w(x) dx+

∑
j ̸=k

∫
R2

S
(n)
j (f)(x)S

(n)
k (f)(x)Vj,k(w)(x) dx

≤
∫
R2

 L∑
j=1

|S(n)
j (f)(x)|2


w(x) +

∑
j ̸=k

|Vj,k(w)(x)|2
1/2

 dx =: J,

where the last inequality follows by the Schwarz inequality.

We write T
(n)
j (f) = f ∗K(n,j), where K(n,j) = F−1(σ

(n)
j ). Let Oj be a rotation

such that Oje1 = t(cj), Oje2 = n(cj), where e1 = (1, 0), e2 = (0, 1). By (3.3) and

the support condition of σ
(n)
j we have

(3.4) |K(n,j)(Ojx)| ≤ CΘ(2−n)2−n/22−n|2−n/2x1|−α|2−nx2|−β

for all α, β ∈ Z ∩ [0, 3]. Let

R(n)
m = {x ∈ R2 : |x1| ≤ 2m2n/2, |x2| ≤ 2m2n}

for m ∈ Z ∩ [0,∞) and put R
(n,j)
m = OjR

(n)
m . Then by (3.4) we have

(3.5) |K(n,j)(x)| ≤ CΘ(2−n)
∞∑
m=0

2−m|R(n,j)
m |−1χ

R
(n,j)
m

(x).

Let Pj = TχIj×R . Then S
(n)
j (f) = T

(n)
j (Pjf). Thus, putting

Vn(w)(x) = w(x) +

 ∑
1≤j,k≤L,j ̸=k

|Vj,k(w)(x)|2
1/2

,

by (3.5) we have

J =

∫
R2

 L∑
j=1

|T (n)
j (Pjf)(x)|2

Vn(w)(x) dx(3.6)

≤ CΘ(2−n)2
L∑
j=1

∫
R2

|Pj(f)(x)|2
∞∑
m=0

2−m|R(n,j)
m |−1χ

R
(n,j)
m

∗ Vn(w)(x) dx.

Define the Kakeya maximal function

Mn,m(f)(x) = sup
1≤j≤L

|R(n,j)
m |−1

∣∣∣χR(n,j)
m

∗ f(x)
∣∣∣ .
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Then by (3.6) we have

(3.7) J ≤ CΘ(2−n)2
∫
R2

L∑
j=1

|Pjf(x)|2
∞∑
m=0

2−mMn,m(Vn(w))(x) dx.

Let Wn =
∑∞
m=0 2

−mMn,m(Vn(w)). Then (3.7) implies that

(3.8) J ≤ CΘ(2−n)2
∫
R2

|f(x)|2M (1)
ϑ (Wn)(x) dx,

where M
(1)
ϑ (g)(x) =M (1)(|g|ϑ)(x)1/ϑ, with

M (1)(g)(x) = sup
h>0

(2h)−1

∫ h

−h
|g(x1 − t, x2)| dt

for ϑ ∈ (1, 2). We note that Wn ≤ M
(1)
ϑ (Wn) almost everywhere and M

(1)
ϑ (Wn)

belongs to the weight class A1 of Muckenhoupt in the x1 variable uniformly in x2.
It is well-known that the inequality (3.8) follows from (3.7).

We have
∥Mn,m(f)∥2 ≤ Cn1/2∥f∥2,

where C is a constant independent of n and m (see [6, Theorem 2]). We note that
Fj,k ⊂ E∗

j,k, j, k = 1, . . . , L, where E∗
j,k is as in (2.2) with δ = 2−n. By applying

Lemma 2.3, we have∑
j ̸=k

χE∗
j,k

(ξ) =
∑
j<k

(χE∗
j,k

(ξ) + χE∗
j,k

(−ξ)) ≤ C.

Therefore, we see that

∥M (1)
ϑ (Wn)∥2 ≤ C∥Wn∥2 ≤

∞∑
m=0

2−m∥Mn,m(Vn(w))∥2 ≤ Cn1/2∥Vn(w)∥2

≤ Cn1/2

∥w∥2 +

∑
j ̸=k

∥Vj,k(w)∥22

1/2


≤ Cn1/2∥w∥2.

Thus we can take An(w) = CΘ(2−n)2M
(1)
ϑ (Wn). This completes the proof of

Proposition 3.1. �

Proof of Theorem 1.9. Recall that σ = σ0+σ1. In proving Theorem 1.9, it suffices
to show a weighted inequality analogous to that claimed in Theorem 1.9 with Tσ0

in place of Tσ, since Tσ1 can be handled by the weighted inequality for the Hardy-

Littlewood maximal functions. To deal with Tσ0 we decompose Tσ0 =
∑4
k=1 Sσ,k,

where Sσ,1 =
∑∞
n=1

∑L
j=1 S

(n)
j and each Sσ,k, 2 ≤ k ≤ 4, is defined similarly to Sσ,1

by using Fk in (2.1) in place of F1. Each Sσ,k, 1 ≤ k ≤ 4, is estimated similarly.
We only give an estimate for Sσ,1, which combined with similar estimates for Sσ,k,
2 ≤ k ≤ 4, will complete the estimate needed for Tσ0 .

Let Sσ = Sσ,1. Setting ∥(an)∥1 =
∑∞
n=1 an, by the Schwarz inequality we have

|Sσ(f)|2 ≤ ∥(an)∥1
∞∑
n=1

a−1
n

∣∣∣∣∣∣
L∑
j=1

S
(n)
j (f)

∣∣∣∣∣∣
2

.
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Thus, applying Proposition 3.1, we see that∫
R2

|Sσ(f)(x)|2w(x) dx ≤ ∥(an)∥1
∞∑
n=1

a−1
n

∫
R2

∣∣∣∣∣∣
L∑
j=1

S
(n)
j (f)(x)

∣∣∣∣∣∣
2

w(x) dx

≤ ∥(an)∥1
∞∑
n=1

a−1
n

∫
R2

|f(x)|2An(w)(x) dx

=

∫
R2

|f(x)|2 U(w)(x) dx,

where U(w) = ∥(an)∥1
∑∞
n=1 a

−1
n An(w). We observe that

∥U(w)∥2 ≤ ∥(an)∥1
∞∑
n=1

a−1
n ∥An(w)∥2

≤ C∥(an)∥1
∞∑
n=1

a−1
n Θ(2−n)2n1/2∥w∥2 ≤ C1∥w∥2.

This completes the proof of Theorem 1.9.

4. Proof of Theorem 1.2

If ψ′′ ̸= 0 on I, we can apply Theorem 1.9 directly to prove Theorem 1.2, since
if Θ(δ) = δλ, then σλ ∈ M(ψ,Θ) and we can see that Θ(δ) = δλ satisfies the
requirement in Theorem 1.9.

To prove Theorem 1.2 in the case when ψ′′ has zeros of finite order by applying
Theorem 1.9 we need the following result, which can be shown by a straight forward
computation.

Lemma 4.1. Let A be a non-singular linear transformation on R2. Put mA(ξ) =
m(Aξ) for a bounded function m. Let B = At (the transpose of A). Then, for
f ∈ S(R2), we have TmA(f)(x) = Tm(fB)(B

−1x).

Proof of Theorem 1.2 when ψ′′ has zeros of finite order. Applying a suitable parti-
tion of unity and change of variables, we may assume that 0 ∈ I◦ and ψ′′ vanishes
in I only at 0 and that ψ is of the form

(4.1) ψ(t) = α0t
d +O(td+1), d ≥ 3, α0 ̸= 0.

Then to prove the theorem, it is sufficient to handle the case when the function
a(ξ) in the definition of σλ satisfies that a(ξ) = 1 near the origin, from which we
can deduce the result for the general case.

Define a linear transformation Lϵ(ξ) = (ϵ−1ξ1, ϵ
−dξ2) for ϵ > 0. Let b(ξ) =

a(ξ)− a(L2−1ξ). Then a(ξ) =
∑∞
k=0 b(L2−kξ) for ξ ̸= 0. Using this, we decompose

(4.2) σλ(ξ) = a(ξ)(ξ2 − ψ(ξ1))
λ
+ =

∞∑
k=0

b(L2−kξ)(ξ2 − ψ(ξ1))
λ
+.

Let ψ(ϵ)(t) = ϵ−dψ(ϵt). Then ψ(ϵ)(t) → α0t
d in C∞(I) as ϵ → 0. Thus, since b

vanishes near 0, if σλ,ϵ(ξ) = b(ξ)(ξ2−ψ(ϵ)(ξ1))
λ
+, by the case when ψ′′ has no zeros,

we have

(4.3)

∫
R2

|Tσλ,ϵ
(f)(x)|2w(x) dx ≤

∫
R2

|f(x)|2Uϵ(w)(x) dx
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with a bounded operator Uϵ on L
2; ∥Uϵ(w)∥2 ≤ C∥w∥2 with the constant C inde-

pendent of ϵ ∈ (0, 1). Note that

(σλ,ϵ)Lϵ(ξ) = ϵ−dλb(Lϵξ)(ξ2 − ψ(ξ1))
λ
+.

Therefore, if mλ,ϵ(ξ) = b(Lϵξ)(ξ2 − ψ(ξ1))
λ
+, by Lemma 4.1 and (4.3) we see that∫

R2

|Tmλ,ϵ
(f)(x)|2w(x) dx = ϵ2dλ

∫
R2

|T(σλ,ϵ)Lϵ
(f)(x)|2w(x) dx(4.4)

= ϵ2dλ
∫
R2

|Tσλ,ϵ
(fLϵ)(L

−1
ϵ x)|2w(x) dx

= ϵ2dλϵ−d−1

∫
R2

|Tσλ,ϵ
(fLϵ)(x)|2w(Lϵx) dx

≤ ϵ2dλϵ−d−1

∫
R2

|fLϵ(x)|2Uϵ(wLϵ)(x) dx

= ϵ2dλ
∫
R2

|f(x)|2(Uϵ(wLϵ))L−1
ϵ
(x) dx.

By (4.2) and (4.4) we have

∥Tσλ
(f)∥L2(w) ≤

∞∑
k=0

∥Tm
λ,2−k

(f)∥L2(w)

≤
∞∑
k=0

2−dλk∥f∥
L2

(
(U

2−k (wL
2−k

))
L
−1

2−k

)
≤ ∥f∥L2(Ũ(w)),

where

Ũ(w) =

( ∞∑
k=0

2−dλk

) ∞∑
k=0

2−dλk(U2−k(wL
2−k

))L−1

2−k
.

The L2 boundedness of Ũ follows from that of U2−k . This completes the proof of
Theorem 1.2. �

5. Another result on decomposition of a neighborhood of curve

Suppose that m0 = inft∈I |ψ′′(t)| > 0. Let F1 = {I1, I2, I3, . . . , IL} be as in
Section 2. Let 1/2 ≤ R ≤ 2. Define

Fik,jk = {(ξk +Rηk, ψ(ξk) +Rψ(ηk)) : ξk ∈ Iik , ηk ∈ Ijk} ,

for ik, jk = 1, 2, . . . , L, k = 1, 2.

Lemma 5.1. There exists a positive constant c0 such that if (i1, j1) ̸= (i2, j2),
ik ≤ jk, k = 1, 2, then

d(Fi1,j1 , Fi2,j2) ≥ c0δ.

Lemma 5.2. There exist positive constants c1, c2 such that c1 < 1/2 and if ξk ∈ Iik ,
ηk ∈ Ijk , ik ≤ jk, k = 1, 2, (i1, j1) ̸= (i2, j2) and |ξ1+Rη1− (ξ2+Rη2)| ≤ c1δ, then

N := |ψ(ξ1) +Rψ(η1)− (ψ(ξ2) +Rψ(η2))| ≥ c2δ.
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This implies Lemma 5.1 as Lemma 2.2 implies Lemma 2.1. We note that in
Lemma 5.2 the condition that ik < jk is not set, which is assumed in Lemma 2.2.

Define

(5.1) F ∗
ik,jk

= F ∗
ik,jk

(R) = {(ξk +Rηk, ξ
′
k +Rη′k) : ψ(ξk) ≤ ξ′k ≤ ψ(ξk) + 10−1c0δ,

ψ(ηk) ≤ η′k ≤ ψ(ηk) + 10−1c0δ, ξk ∈ Iik , ηk ∈ Ijk},
for ik, jk = 1, . . . , L, k = 1, 2, where ψ, c0 are as in Lemma 5.1. We note that
F ∗
jk,ik

(R) = RF ∗
ik,jk

(R−1).

Lemma 5.3. If (i1, j1) ̸= (i2, j2), ik ≤ jk, k = 1, 2, then we have

d
(
F ∗
i1,j1 , F

∗
i2,j2

)
≥ (2/5)c0δ.

Proof. Let ψ(ξk) ≤ ξ′k ≤ ψ(ξk) + 10−1c0δ, ψ(ηk) ≤ η′k ≤ ψ(ηk) + 10−1c0δ, ξk ∈
Iik , ηk ∈ Ijk , k = 1, 2. Then, using Lemma 5.1, we have

|(ξ1 +Rη1, ξ
′
1 +Rη′1)− (ξ2 +Rη2, ξ

′
2 +Rη′2)|

≥ |(ξ1 +Rη1, ψ(ξ1) +Rψ(η1))− (ξ2 +Rη2, ψ(ξ2) +Rψ(η2))|
− |(ξ1 +Rη1, ξ

′
1 +Rη′1)− (ξ1 +Rη1, ψ(ξ1) +Rψ(η1))|

− |(ξ2 +Rη2, ξ
′
2 +Rη′2)− (ξ2 +Rη2, ψ(ξ2) +Rψ(η2))|

≥ c0δ − (3/10)c0δ − (3/10)c0δ = (2/5)c0δ.

This will imply the result claimed. �
Collecting results above, we see that to prove Lemma 5.3 it remains only to show

Lemma 5.2.

Proof of Lemma 5.2. Under the assumptions of the lemma, we have i1 ̸= i2. To see
this, suppose that i1 = i2. Then j1 ̸= j2, since (i1, j1) ̸= (i2, j2). Therefore

|ξ1+Rη1−(ξ2+Rη2)| ≥ R|η1−η2|−|ξ1−ξ2| ≥ 3Rδ1/2−δ1/2 ≥ (1/2)δ1/2 ≥ (1/2)δ.

This contradicts the assumption that c1 < 1/2. Consequently, i1 ̸= i2.
We may assume that i1 < i2 without loss of generality. Then we have j2 < j1.

This can be shown as follows by arguing as above. Suppose that j1 ≤ j2, then

|ξ1 +Rη1 − (ξ2 +Rη2)| = ξ2 − ξ1 +R(η2 − η1) ≥ 3δ1/2 − 2δ1/2 = δ1/2,

from which a contradiction will follow.
Consequently, to estimate N we may assume that (i1, j1) ̸= (i2, j2), i1 ≤ j1,

i2 ≤ j2, i1 < i2 and j2 < j1. We have

N =

∣∣∣∣∣
∫ ξ2

ξ1

ψ′(t) dt−R

∫ η1

η2

ψ′(t) dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ ξ2

ξ1

ψ′(t) dt−
∫ Rη1

Rη2

ψ′(t/R) dt

∣∣∣∣∣ .
Put τ = min(ξ2 − ξ1, R(η1 − η2)). Then

N ≥

∣∣∣∣∣
∫ ξ1+τ

ξ1

ψ′(t) dt−
∫ Rη2+τ

Rη2

ψ′(t/R) dt

∣∣∣∣∣−
∣∣∣∣∣
∫ ξ2

ξ1+τ

ψ′(t) dt

∣∣∣∣∣−
∣∣∣∣∣
∫ Rη1

Rη2+τ

ψ′(t/R) dt

∣∣∣∣∣
=: N∗.

If D0 = supt∈I |ψ′(t)|, then∣∣∣∣∣
∫ ξ2

ξ1+τ

ψ′(t) dt

∣∣∣∣∣ ≤ D0(ξ2 − ξ1 − τ),

∣∣∣∣∣
∫ Rη1

Rη2+τ

ψ′(t) dt

∣∣∣∣∣ ≤ D0(R(η1 − η2)− τ).
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We note that

ξ2 − ξ1 +R(η1 − η2)− 2τ = |ξ2 − ξ1 −R(η1 − η2)| ≤ c1δ.

Thus

N∗ ≥

∣∣∣∣∣
∫ ξ1+τ

ξ1

ψ′(t) dt−
∫ Rη2+τ

Rη2

ψ′(t/R) dt

∣∣∣∣∣−D0|ξ2 − ξ1 −R(η1 − η2)|

≥

∣∣∣∣∣
∫ ξ1+τ

ξ1

ψ′(t) dt−
∫ Rη2+τ

Rη2

ψ′(t/R) dt

∣∣∣∣∣− c1D0δ

=

∣∣∣∣∣R
∫ η2+τ/R

η2

(ψ′(Rt+ ξ1 −Rη2)− ψ′(t)) dt

∣∣∣∣∣− c1D0δ

= R

∫ η2+τ/R

η2

(∫ t

Rt+ξ1−Rη2
|ψ′′(s)| ds

)
dt− c1D0δ =: N∗∗.

Let η2 ≤ t ≤ η2 + τ/R. If 1/2 ≤ R < 1, then

t(1−R)− ξ1 +Rη2 ≥ η2(1−R)− ξ1 +Rη2 = η2 − ξ1 ≥ 3δ1/2.

On the other hand, if 1 ≤ R ≤ 2, then

t(1−R)− ξ1 +Rη2 ≥ (η2 + τ/R)(1−R)− ξ1 +Rη2

= η2 − ξ1 + τ(1/R− 1)

≥ η2 − ξ1 + (η1 − η2)(1−R)

= η1 − ξ1 −R(η1 − η2)

= η1 − ξ2 + (ξ2 − ξ1 −R(η1 − η2))

≥ η1 − ξ2 − c1δ ≥ cδ1/2

for some c > 0. Also, τ ≥ cδ1/2 with c > 0. Therefore N∗∗ ≥ c2m0δ − c1D0δ
for some c > 0. Thus if c1 is small enough, we have the desired estimate. This
completes the proof of Lemma 5.2. �

6. Proofs of Theorems 1.10 and 1.4

Let s
(ℓ,n)
j (ξ) = s

(n)
j (R−1

ℓ ξ), where s
(n)
j is as in (3.1). Let S

(ℓ,n)
j = T

s
(ℓ,n)
j

. Then

to prove Theorem 1.10 we need the following.

Proposition 6.1. We have

∫
R2

 ∞∑
ℓ=1

∣∣∣∣∣∣
L∑
j=1

S
(ℓ,n)
j (fℓ)(x)

∣∣∣∣∣∣
2


2

dx ≤ CΘ(2−n)4n6
∫
R2

( ∞∑
ℓ=1

|fℓ(x)|2
)2

dx,

where C is independent of n.

Proof. Let δ = 2−n. Let Zu = {nm + u : m ∈ Z}, u ∈ [0, n − 1] ∩ Z. Then
{Z0,Z1, . . . ,Zn−1} is a partition of Z. If m1,m2 ∈ Zu and m1 < m2, then 2m1 ≤
δ2m2 . For m ∈ Z let Im = {ℓ : 2m ≤ Rℓ < 2m+1}. Let S(ℓ,n) =

∑L
j=1 S

(ℓ,n)
j . Fix
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u ∈ [0, n− 1] ∩ Z and consider

J1,u : =

∫
R2

(∑
ℓ∈Zu

∑
r∈Iℓ

|S(r,n)(fr)(x)|2
)2

dx(6.1)

=
∑
ℓ∈Zu

∑
m∈Zu

∑
r∈Iℓ

∑
s∈Im

∫
R2

|S(r,n)(fr)(x)S
(s,n)(fs)(x)|2 dx

=
∑
ℓ∈Zu

∑
r∈Iℓ

∑
s∈Iℓ

∫
R2

|S(r,n)(fr)(x)S
(s,n)(fs)(x)|2 dx

+
∑

ℓ,m∈Zu,ℓ̸=m

∑
r∈Iℓ

∑
s∈Im

∫
R2

|S(r,n)(fr)(x)S
(s,n)(fs)(x)|2 dx

= J2 + J3, say.

By the Plancherel theorem, we have∫
R2

|S(r,n)(fr)(x)S
(s,n)(fs)(x)|2 dx =

∫
R2

∣∣∣∣∣∣
L∑

j,k=1

S
(r,n)
j (fr)(x)S

(s,n)
k (fs)(x)

∣∣∣∣∣∣
2

dx

=

∫
R2

∣∣∣∣∣∣
L∑

j,k=1

F(S
(r,n)
j (fr)) ∗ F(S(s,n)

k (fs))(ξ)

∣∣∣∣∣∣
2

dξ.

Recall that E
(n)
j = supp

(
s
(n)
j

)
and note that supp

(
s
(ℓ,n)
j

)
= RℓE

(n)
j . Let r, s ∈ Iℓ.

Then 1/2 ≤ R−1
r Rs ≤ 2 and F(S

(r,n)
j (fr)) ∗ F(S(s,n)

k (fs)) is supported in

RrE
(n)
j +RsE

(n)
k = Rr

(
E

(n)
j +R−1

r RsE
(n)
k

)
⊂ RrF

∗
j,k

(
R−1
r Rs

)
,

where F ∗
j,k(R) is as in (5.1) with δ = 2−n. Thus applying Lemma 5.3, we see that∫

R2

|S(r,n)(fr)(x)S
(s,n)(fs)(x)|2 dx ≤ C

L∑
j,k=1

∫
R2

∣∣∣F(S(r,n)
j (fr)) ∗ F(S(s,n)

k (fs))(ξ)
∣∣∣2 dξ

= C
L∑

j,k=1

∫
R2

∣∣∣S(r,n)
j (fr)S

(s,n)
k (fs)

∣∣∣2 dx.
Therefore

J2 ≤ C
∑
ℓ∈Zu

∑
r∈Iℓ

∑
s∈Iℓ

L∑
j,k=1

∫
R2

∣∣∣S(r,n)
j (fr)S

(s,n)
k (fs)

∣∣∣2 dx(6.2)

≤ C
∑
ℓ∈Zu

∫
R2

∑
r∈Iℓ

L∑
j=1

∣∣∣S(r,n)
j (fr)

∣∣∣2
2

dx

≤ C

∫
R2

∑
ℓ∈Zu

∑
r∈Iℓ

L∑
j=1

∣∣∣S(r,n)
j (fr)

∣∣∣2
2

dx =: CJ4.

To estimate J3, we use that if r ∈ Iℓ, s ∈ Im and ℓ < m, then Rr ≤ 2δRs. Also,

we note that d(RsE
(n)
k , RsE

(n)
k′ ) ≥ δ1/2Rs if k ̸= k′, and diam(∪Lj=1 supp(F(S

(r,n)
j (fr))) ≤
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CRr. Here diam(E) denotes the diameter of E. Thus

supp

 L∑
j=1

F(S
(r,n)
j (fr)) ∗ F(S(s,n)

k (fs))

∩ supp

 L∑
j=1

F(S
(r,n)
j (fr)) ∗ F(S(s,n)

k′ (fs))


= ∅,

if k ̸= k′, when δ = 2−n is small enough. Therefore, if r ∈ Iℓ, s ∈ Im and ℓ < m,
we have ∫

R2

∣∣∣S(r,n)(fr)(x)S
(s,n)(fs)(x)

∣∣∣2 dx
≤ C

∫
R2

L∑
k=1

∣∣∣∣∣∣
L∑
j

F(S
(r,n)
j (fr)) ∗ F(S(s,n)

k (fs))(ξ)

∣∣∣∣∣∣
2

dξ.

= C

∫
R2

∣∣∣S(r,n)(fr)(x)
∣∣∣2 L∑
k=1

∣∣∣S(s,n)
k (fs)

∣∣∣2 dx,
where C is independent of n. Thus

J3 ≤ C

∫
R2

∑
ℓ∈Zu

∑
r∈Iℓ

∣∣∣S(r,n)(fr)(x)
∣∣∣2 ∑
m∈Zu

∑
s∈Im

L∑
k=1

∣∣∣S(s,n)
k (fs)

∣∣∣2 dx(6.3)

≤ CJ
1/2
1,u J

1/2
4 ,

where the last inequality follows by the Schwarz inequality. By (6.1), (6.2) and
(6.3) we have

J1,u ≤ CJ4 + CJ
1/2
1,u J

1/2
4 ,

which implies that

(6.4) J1,u ≤ CJ4.

Let σ
(n)
j be as in (3.2). Set σ

(ℓ,n)
j (ξ) = σ

(n)
j (R−1

ℓ ξ) and T
(ℓ,n)
j = T

σ
(ℓ,n)
j

. Let

P
(ℓ)
j = TχRℓIj×R . Then S

(ℓ,n)
j (f) = T

(ℓ,n)
j (P

(ℓ)
j f). We note that T

σ
(ℓ,n)
j

∗ f =

K(ℓ,n,j) ∗ f with K(ℓ,n,j)(x) = R2
ℓK

(n,j)(Rℓx), where we recall K(n,j) = F−1(σ
(n)
j ).

Thus by (3.5) we have

(6.5) |K(ℓ,n,j)(x)| ≤ CΘ(2−n)

∞∑
µ=0

2−µ|R(ℓ,n,j)
µ |−1χ

R
(ℓ,n,j)
µ

(x),

where R
(ℓ,n,j)
µ = R−1

ℓ R
(n,j)
µ .

To estimate J4, for a non-negative w ∈ L2 let

Jr,w =

∫
R2

 L∑
j=1

∣∣∣S(r,n)
j (fr)

∣∣∣2
w(x) dx.
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By (6.5) we have

Jr,w ≤ CΘ(2−n)2
L∑
j=1

∫
R2

|P (r)
j (fr)(x)|2

∞∑
µ=0

2−µ|R(r,n,j)
µ |−1χ

R
(r,n,j)
µ

∗ w(x) dx(6.6)

≤ CΘ(2−n)2
L∑
j=1

∫
R2

|P (r)
j (fr)(x)|2M∗

n(w)(x) dx,

where

M∗
n(f)(x) = sup

1≤j≤L,t>0
|tR(n,j)

µ |−1
∣∣∣χtR(n,j)

µ
∗ f(x)

∣∣∣ .
We note that M∗

n(f) is independent of µ. It is known that

∥M∗
n(f)∥2 ≤ Cn∥f∥2,

where C is independent of n (see [15]).
Let W ∗

n =M∗
n(w). Then as in (3.8) from (6.6) it follows that

Jr,w ≤ CΘ(2−n)2
∫
R2

|fr(x)|2M (1)
ϑ (W ∗

n)(x) dx.

Thus ∑
ℓ∈Zu

∑
r∈Iℓ

Jr,w ≤ CΘ(2−n)2
∫
R2

∑
ℓ∈Zu

∑
r∈Iℓ

|fr(x)|2M (1)
ϑ (W ∗

n)(x) dx,

and hence by the Schwarz inequality and the estimates ∥M (1)
ϑ (W ∗

n)∥2 ≤ Cn∥w∥2
we see that

J4 =

(
sup

∥w∥2≤1

∑
ℓ∈Zu

∑
r∈Iℓ

Jr,w

)2

≤ CΘ(2−n)4n2
∫
R2

(∑
ℓ∈Zu

∑
r∈Iℓ

|fr(x)|2
)2

dx.

Therefore, by (6.4) we have

J
1/4
1,u ≤ CΘ(2−n)n1/2

∥∥∥∥∥∥
( ∞∑
ℓ=1

|fℓ|2
)1/2

∥∥∥∥∥∥
4

.

Using this and a triangle inequality, we have∥∥∥∥∥∥∥∥
 ∞∑
ℓ=1

∣∣∣∣∣∣
L∑
j=1

S
(ℓ,n)
j (fℓ)(x)

∣∣∣∣∣∣
2


1/2
∥∥∥∥∥∥∥∥
4

≤
n−1∑
u=0

J
1/4
1,u ≤ CΘ(2−n)n3/2

∥∥∥∥∥∥
( ∞∑
ℓ=1

|fℓ|2
)1/2

∥∥∥∥∥∥
4

.

This completes the proof of Proposition 6.1. �

Proof of Theorem 1.10. As in the proof of Theorem 1.9, to prove Theorem 1.10 it

suffices to show the vector valued inequality with {S(ℓ)
σ (fℓ)} in place of {Tσ(Rℓ)(fℓ)},

where S
(ℓ)
σ =

∑∞
n=1

∑L
j=1 S

(ℓ,n)
j . Also, we may assume p = 4 in proving the vector

valued inequality; duality and interpolation will provide the result for the whole

range of p, 4/3 ≤ p ≤ 4. The proof for {S(ℓ)
σ (fℓ)} will be accomplished by applying

Proposition 6.1 via the triangle inequality.
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Proof of Theorem 1.4. If ψ′′ ̸= 0 on I, we can derive Theorem 1.4 directly from
Theorem 1.10 as Theorem 1.2 is shown from Theorem 1.9.

When ψ′′ has zeros of finite order, we may assume that ψ is as in the proof
of Theorem 1.2 with the form (4.1). We argue as in the proof of Theorem 1.2
with notations used there. Recall that σλ,ϵ(ξ) = b(ξ)(ξ2 − ψ(ϵ)(ξ1))

λ
+, ψ

(ϵ)(ξ1) =

ϵ−dψ(ϵξ1), and let σ
(ϵ,ℓ)
λ (ξ) = σλ,ϵ(R

−1
ℓ ξ). Then by applying Theorem 1.10 we see

that

(6.7)

∥∥∥∥∥∥
( ∞∑
ℓ=1

∣∣∣Tσ(ϵ,ℓ)
λ

(fℓ)
∣∣∣2)1/2

∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥
( ∞∑
ℓ=1

|fℓ|2
)1/2

∥∥∥∥∥∥
p

for p ∈ [4/3, 4] with a constant C independent of ϵ ∈ (0, 1). Recall that mλ,ϵ(ξ) =

b(Lϵξ)(ξ2 − ψ(ξ1))
λ
+ and define m

(ℓ)
λ,ϵ(ξ) = mλ,ϵ(R

−1
ℓ ξ). Then

(6.8) (σ
(ϵ,ℓ)
λ )Lϵ(ξ) = ϵ−dλm

(ℓ)
λ,ϵ(ξ).

By Lemma 4.1, (6.7) and (6.8) we see that∥∥∥∥∥∥
( ∞∑
ℓ=1

∣∣∣Tm(ℓ)
λ,ϵ

(fℓ)
∣∣∣2)1/2

∥∥∥∥∥∥
p

= ϵdλ

∥∥∥∥∥∥
( ∞∑
ℓ=1

∣∣∣T(σ(ϵ,ℓ)
λ )Lϵ

(fℓ)
∣∣∣2)1/2

∥∥∥∥∥∥
p

(6.9)

= ϵdλϵ−(d+1)/p

∥∥∥∥∥∥
( ∞∑
ℓ=1

∣∣∣Tσ(ϵ,ℓ)
λ

((fℓ)Lϵ)
∣∣∣2)1/2

∥∥∥∥∥∥
p

≤ Cϵdλϵ−(d+1)/p

∥∥∥∥∥∥
( ∞∑
ℓ=1

|(fℓ)Lϵ |
2

)1/2
∥∥∥∥∥∥
p

= Cϵdλ

∥∥∥∥∥∥
( ∞∑
ℓ=1

|fℓ|2
)1/2

∥∥∥∥∥∥
p

for 4/3 ≤ p ≤ 4. By (4.2) we have

σ
(Rℓ)
λ (ξ) =

∞∑
k=0

m
(ℓ)

λ,2−k(ξ).

Thus by (6.9) for 4/3 ≤ p ≤ 4 we see that∥∥∥∥∥∥
( ∞∑
ℓ=1

∣∣∣T
σ
(Rℓ)

λ

(fℓ)
∣∣∣2)1/2

∥∥∥∥∥∥
p

≤
∞∑
k=0

∥∥∥∥∥∥
( ∞∑
ℓ=1

∣∣∣∣Tm(ℓ)

λ,2−k

(fℓ)

∣∣∣∣2
)1/2

∥∥∥∥∥∥
p

≤ C
∞∑
k=0

2−kdλ

∥∥∥∥∥∥
( ∞∑
ℓ=1

|fℓ|2
)1/2

∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥
( ∞∑
ℓ=1

|fℓ|2
)1/2

∥∥∥∥∥∥
p

.

This completes the proof of Theorem 1.4. �
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Remark 6.2. Let {Rℓ}∞ℓ=−∞ be a positive lacunary sequence with Hadamard gap

a > 1: a ≤ infℓRℓ+1/Rℓ. Let σ
(Rℓ)
λ be as in Theorem 1.4. By application of

Theorem 1.4 and the Littlewood-Paley theory, we have

(6.10)

∥∥∥∥sup
ℓ

∣∣∣T
σ
(Rℓ)

λ

(f)
∣∣∣∥∥∥∥
p

≤ C∥f∥p, 4/3 ≤ p ≤ 4.

Let Γ be a simple, closed C∞ curve in R2 with no tangent of infinite order such
that the origin is contained in Γ. Then we can consider a summation operator

S̃λR for Fourier integrals analogous to Bochner-Riesz summation operator SλR by
replacing the unit circle with Γ (see [14, Theorem 1, Corollary 1]). By applying
(6.10) suitably through a partition of unity, we can prove a lacunary convergence

of S̃λR(f) for f ∈ Lp(R2), 4/3 ≤ p ≤ 4 (see [8, Theorem 2] for SλR).
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