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Then the following two theorems are known (see [11]).

Theorem A. Suppose that

(1) Bϵ(ψ) <∞ for some ϵ > 0, where Bϵ(ψ) =
∫
|x|>1 |ψ(x)| |x|

ϵ dx;

(2) Du(ψ) <∞ for some u > 1 with Du(ψ) =
(∫

|x|<1 |ψ(x)|
u dx

)1/u
;

(3) Hψ ∈ L1(Rn), where Hψ(x) = sup|y|≥|x| |ψ(y)|;
(4) the non-degeneracy condition (1.2) holds.

Then ∥f∥p,w ≃ ∥gψ(f)∥p,w, f ∈ Lpw, for all p ∈ (1,∞) and w ∈ Ap (the Muckenhoupt
class), where ∥f∥p,w ≃ ∥gψ(f)∥p,w means that

c1∥f∥p,w ≤ ∥gψ(f)∥p,w ≤ c2∥f∥p,w

with positive constants c1, c2 independent of f .

Theorem B. We assume that

(1) Bϵ(ψ) <∞ for some ϵ > 0;

(2) |ψ̂(ξ)| ≤ C|ξ|−δ for all ξ ∈ Rn \ {0} with some δ > 0;
(3) Hψ ∈ L1(Rn);
(4) the non-degeneracy condition (1.3) holds.

Then ∥f∥p,w ≃ ∥∆ψ(f)∥p,w, f ∈ Lpw, for all p ∈ (1,∞) and w ∈ Ap.

The inequality ∥gψ(f)∥p,w ≤ c∥f∥p,w in Theorem A was shown in [8] without the
assumption (4).

The Sobolev space Wα,p(Rn), α > 0, 1 < p < ∞, consists of all the functions f
which can be written as f = Jα(g) = Kα ∗ g for some g ∈ Lp(Rn) with the Bessel
potential Jα, where

K̂α(ξ) = (1 + 4π2|ξ|2)−α/2

(see [12, Chap. V]). The norm of f in Wα,p(Rn) is defined as ∥f∥p,α = ∥g∥p. Let
0 < α < 2. The operator

Uα(f)(x) =

∫ ∞

0

∣∣∣∣∣f(x)−−
∫
B(x,t)

f(y) dy

∣∣∣∣∣
2

dt

t1+2α

1/2

was studied in [1] and used to characterize the space Wα,p(Rn). Here we write

−
∫
B(x,t)

f(y) dy =
1

|B(x, t)|

∫
B(x,t)

f(y) dy,

where |B(x, t)| is the Lebesgue measure of a ball B(x, t) in Rn with center x and
radius t.

We recall the weight class Ap of Muckenhoupt. A weight w belongs to Ap, 1 <
p <∞, if

sup
B

(
−
∫
B
w(x) dx

)(
−
∫
B
w(x)−1/(p−1) dx

)p−1

<∞,

where the supremum is taken over all balls B in Rn (see [4]).
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Let 1 < p <∞, α > 0 and w ∈ Ap. Then Jα(g) ∈ Lpw if g ∈ Lpw, since it is known
that |Jα(g)| ≤ CM(g), where M denotes the Hardy-Littlewood maximal operator
defined by

M(f)(x) = sup
t>0

−
∫
B(x,t)

|f(y)| dy.

The weighted Sobolev spaceWα,p
w (Rn) is defined as the collection of all the functions

f ∈ Lpw(Rn) which can be expressed as f = Jα(g) for some g ∈ Lpw(Rn); such g is
uniquely determined and the norm is defined to be ∥f∥p,α,w = ∥g∥p,w.

Theorems A, B can be applied to characterize the weighted Sobolev spaces
Wα,p
w (Rn) by square functions related to the Marcinkiewicz function including Uα(f)

and  ∞∑
k=−∞

∣∣∣∣∣f(x)−−
∫
B(x,2k)

f(y) dy

∣∣∣∣∣
2

2−2kα

1/2

, α > 0.

The Marcinkiewicz function was introduced by [7] (see [9] for some background
materials).

We say Φ ∈ Mα(Rn), α > 0, if Φ is a compactly supported, bounded function on
Rn satisfying

∫
Rn Φ(x) dx = 1; if α ≥ 1, we further assume that

(1.4)

∫
Rn

Φ(x)xγ dx = 0, xγ = xγ11 . . . xγnn , for all γ with 1 ≤ |γ| ≤ [α],

where γ = (γ1, . . . , γn), γj ∈ Z, γj ≥ 0, is a multi-index and |γ| = γ1+ · · ·+ γn; also
[α] denotes the largest integer not exceeding α. Let

(1.5) Uα(f)(x) =

(∫ ∞

0
|f(x)− Φt ∗ f(x)|2

dt

t1+2α

)1/2

, α > 0,

(1.6) Eα(f)(x) =

( ∞∑
k=−∞

|f(x)− Φ2k ∗ f(x)|
2 2−2kα

)1/2

, α > 0,

with Φ ∈ Mα(Rn).
Then the following results are known (see [11]).

Theorem C. Let 1 < p <∞, w ∈ Ap and 0 < α < n. Let Uα be as in (1.5). Then
f ∈Wα,p

w (Rn) if and only if f ∈ Lpw and Uα(f) ∈ Lpw; furthermore,

∥f∥p,α,w ≃ ∥f∥p,w + ∥Uα(f)∥p,w.

Theorem D. Suppose that 1 < p < ∞, w ∈ Ap and 0 < α < n. Let Eα be as in
(1.6). Then f ∈Wα,p

w (Rn) if and only if f ∈ Lpw and Eα(f) ∈ Lpw; also,

∥f∥p,α,w ≃ ∥f∥p,w + ∥Eα(f)∥p,w.

See [6, 10] for relevant results.

In this note we consider another characterization of W 2,p
w (Rn) by certain square

functions relative to the integral of Marcinkiewicz when n ≥ 3, which extends to
the cases n = 1, 2.
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Let Φ ∈ M1(Rn). We assume

(1.7)

∫
Rn

Φ(x)x2j dx =
1

n

∫
Rn

Φ(x)|x|2 dx = b0 for all j, 1 ≤ j ≤ n.

When n ≥ 2, we also assume

(1.8)

∫
Rn

Φ(x)xjxk dx = 0 for all j, k, 1 ≤ j, k ≤ n with j ̸= k.

Let Iα be the Riesz potential operator defined by

(1.9) Îα(f)(ξ) = (2π|ξ|)−αf̂(ξ), 0 < α < n.

Let Lα(x) = τ(α)|x|α−n, where

τ(α) =
Γ
(
n
2 − α

2

)
π

n
2 2αΓ

(
α
2

) .
Then L̂α(ξ) = (2π|ξ|)−α, 0 < α < n.

Let n ≥ 3. Define

(1.10) ψ(x) = Φ ∗ L2(x)− L2(x) + c0Φ(x)

with c0 = b0/2 and Φ ∈ M1(Rn) satisfying (1.7) and (1.8); when n = 1 and n = 2, we
have analogues of (1.10) in (5.5) and (4.4) below, respectively. Applying Theorems
A and B, we have the following results.

Theorem 1.1. Suppose that n ≥ 3. Let w ∈ Ap, p ∈ (1,∞). Let ψ be as in
(1.10) with Φ ∈ M1(Rn) satisfying (1.7) and (1.8). Suppose that the non-degeneracy
condition (1.2) holds. Then

∥f∥p,w ≃ ∥gψ(f)∥p,w, f ∈ Lpw.

Theorem 1.2. Let n ≥ 3. Let Φ be a function in M1(Rn) with (1.7), (1.8) and let
ψ be as in (1.10). We assume that

(1.11) |Φ̂(ξ)| ≤ C|ξ|−δ for all ξ ∈ Rn \ {0} with some δ > 0

and that the non-degeneracy condition (1.3) holds. Then we have

∥f∥p,w ≃ ∥∆ψ(f)∥p,w, f ∈ Lpw

for all p ∈ (1,∞) and w ∈ Ap.

Theorems 1.1 and 1.2 will be used to prove Theorems 1.4 and 1.5 below for n ≥ 3,
respectively.

Proof of Theorem 1.1. Suppose that supp(Φ) ⊂ {|x| ≤M}. Then we have |ψ(x)| ≤
C|x|2−n if |x| ≤ 2M . Let |x| ≥ 2M . Then, applying Taylor’s formula, by (1.7),
(1.8) and (1.4) with |γ| = 1 we see that

L2 ∗ Φ(x)− L2(x) = τ(2)

∫
Rn

(|x− y|2−n − |x|2−n)Φ(y) dy

=
1

2

∫
Rn

n∑
j=1

y2j∂
2
jL2(x)Φ(y) dy +O(|x|−n−1)
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=
1

2
b0

n∑
j=1

∂2jL2(x) +O(|x|−n−1)

= O(|x|−n−1),

as |x| → ∞, where the last equality follows from ∆L2(x) =
∑n

j=1 ∂
2
jL2(x) = 0,

∂j = ∂/∂xj .
We see that

ψ̂(ξ) = (2π|ξ|)−2Φ̂(ξ)− (2π|ξ|)−2 + c0Φ̂(ξ) = (2π|ξ|)−2(Φ̂(ξ)− 1) + c0Φ̂(ξ).

Also, by (1.7), (1.8) and (1.4) with |γ| = 1, we have

Φ̂(ξ) =

∫
Rn

Φ(x)e−2πi⟨x,ξ⟩ dx

= 1 +

∫
Rn

Φ(x)
1

2
(−2πi⟨x, ξ⟩)2 dx+O(|ξ|3)

= 1− 2π2
∫
Rn

Φ(x)

 n∑
j=1

x2jξ
2
j ) dx+O(|ξ|3


= 1− 2π2b0|ξ|2 +O(|ξ|3),

as |ξ| → 0. Thus, since c0 = b0/2, we have |ψ̂(ξ)| ≤ C|ξ| and hence (1.1). Altogether,
thus we can apply Theorem A to get the conclusion of Theorem 1.1. □

Similarly, Theorem 1.2 follows from Theorem B.
Define L = −∆ = −

∑n
j=1 ∂

2
j , ∂j = ∂/∂xj , on Rn, n ≥ 1. Then, if f ∈ S(Rn),

L̂(f)(ξ) = (2π|ξ|)2f̂(ξ),
where we have denoted by S(Rn) the Schwartz class of rapidly decreasing smooth
functions on Rn. We note the following.

Lemma 1.3. Let n ≥ 1. Define H0 on S(Rn) by H0(f) = L(J2(f)). Then H0

extends to a bounded operator on Lpw and also we have H0(f) = L(J2(f)) for f ∈ Lpw,
where L = −∆ = −

∑n
j=1 ∂

2
j is defined by the weak derivative:∫

Rn

H0(f)(x)η(x) dx =

∫
Rn

J2(f)(x)L(η)(x) dx = −
∫
Rn

J2(f)(x)

n∑
j=1

∂2j η(x) dx

for all η ∈ S(Rn).

We shall give a proof of Lemma 1.3 in Section 2.
Let Φ ∈ M1(Rn). Let

(1.12) S(f)(x) =

(∫ ∞

0
|f ∗ Φt(x)− f(x) + c0t

2L(f) ∗ Φt(x)|2
dt

t5

)1/2

,

when f,L(f) ∈ Lpw, where c0 is as in (1.10). For g ∈ Lpw let H0(g) be as in Lemma
1.3 and define

(1.13) S2(g)(x) =

(∫ ∞

0
|J2(g) ∗ Φt(x)− J2(g)(x) + c0t

2H0(g) ∗ Φt(x)|2
dt

t5

)1/2

.
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Then S(J2(g)) = S2(g) for g ∈ Lpw by Lemma 1.3. Let

(1.14) S(f, g)(x) =

(∫ ∞

0
|f ∗ Φt(x)− f(x) + c0t

2g ∗ Φt(x)|2
dt

t5

)1/2

for f, g ∈ Lpw. Then, if f,L(f) ∈ Lpw, we have S(f,L(f)) = S(f).

The square function S(f, g) is able to characterize the space W 2,p
w as follows.

Theorem 1.4. Let n ≥ 1. Suppose that f ∈ Lpw, 1 < p < ∞, w ∈ Ap. Let S(f),
S(f, g) be as in (1.12), (1.14), respectively, with Φ ∈ M1(Rn) satisfying (1.7), (1.8)
and (1.2), where Φ and ψ are related as in (1.10), (4.4) or (5.5) according as n ≥ 3,
n = 2 or n = 1. Then

(1) if f ∈W 2,p
w , then L(f) ∈ Lpw and S(f) ∈ Lpw;

(2) if S(f, g) ∈ Lpw for some g ∈ Lpw, then f ∈W 2,p
w and g = L(f).

Also, if f ∈W 2,p
w ,

∥S(f)∥p,w ≃ ∥L(f)∥p,w, ∥S(f)∥p,w + ∥f∥p,w ≃ ∥f∥p,2,w.

We can also consider discrete parameter version of Theorem 1.4. Let Φ ∈ M1(Rn)
and

(1.15) V (f)(x) =

( ∞∑
k=−∞

|f ∗ Φ2k(x)− f(x) + c02
2kL(f) ∗ Φ2k(x)|22−4k

)1/2

,

if f,L(f) ∈ Lpw. Let
(1.16)

V2(g)(x) =

( ∞∑
k=−∞

|J2(g) ∗ Φ2k(x)− J2(g)(x) + c02
2kH0(g) ∗ Φ2k(x)|22−4k

)1/2

for g ∈ Lpw. If g ∈ Lpw, we have V (J2(g)) = V2(g) by Lemma 1.3. For f, g ∈ Lpw, let

(1.17) V (f, g)(x) =

( ∞∑
k=−∞

|f ∗ Φ2k(x)− f(x) + c02
2kg ∗ Φ2k(x)|22−4k

)1/2

.

We have V (f,L(f)) = V (f) if f,L(f) ∈ Lpw.
We have a discrete parameter analogue of Theorem 1.4.

Theorem 1.5. Suppose that n ≥ 1 and f ∈ Lpw, 1 < p < ∞, w ∈ Ap. Let Φ
be a function in M1(Rn) satisfying (1.7), (1.8), (1.11) and (1.3), where Φ and ψ
are related as in Theorem 1.4. Let V (f) and V (f, g) be as in (1.15) and (1.17),
respectively. Then

(1) L(f) ∈ Lpw and V (f) ∈ Lpw if f ∈W 2,p
w ;

(2) if V (f, g) ∈ Lpw for some g ∈ Lpw, it follows that f ∈W 2,p
w and g = L(f).

Further, if f ∈W 2,p
w ,

∥V (f)∥p,w ≃ ∥L(f)∥p,w, ∥V (f)∥p,w + ∥f∥p,w ≃ ∥f∥p,2,w.
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See [2] for characterization of the Sobolev spaces by square functions related to
the Lusin area integral and the Littlewood-Paley g∗λ function.

Let Φ be a function in M1(Rn) satisfying (1.7) and (1.8), then we have already
seen in the proof of Theorem 1.1 that the function ψ defined by (1.10), n ≥ 3,
satisfies the conditions (1.1) and (1), (2), (3) of Theorem A. This is also the case
for functions ψ in (4.4) and in (5.5) below, on R2 and on R , respectively, as can be
shown similarly.

Let us further assume that Φ is a radial function. Then, we have the decay
estimate (1.11) by the formula in [13, p.155, Theorem 3.3] for n ≥ 2. Also, if Φ is
a radial function, it follows that ψ defined by (1.10) satisfies the non-degeneracy
condition (1.3) and hence (1.2). This is also the case for functions ψ in (4.4) and
(5.5).

We can see (1.3) when Φ is a radial function as follows. First, we note that there

exists an entire function G(z) =
∑∞

k=1 akz
k such that ψ̂(ξ) = G(|ξ|). We can see

that ψ is not identically 0. This holds since ψ is unbounded when n ≥ 2; the result
for n = 1 is also seen by an inspection (see Section 5). Therefore we have (1.3) since
z = 0 cannot be an accumulation point of zeros of G(z).

If Φ = |B(0, 1)|−1χB(0,1), then Φ ∈ M1(Rn) and Φ satisfies (1.7) with b0 = 2c0 =
1/(n+ 2), (1.8), (1.11) and (1.3) with ψ as in (1.10), (4.4) and (5.5), for all n ≥ 1.
This follows from remarks above and easy observations. In this case we can rewrite
S(f), S(f, g) and V (f), V (f, g) as follows.

S(f)(x)2 =

∫ ∞

0

∣∣∣∣∣−
∫
B(x,t)

(
f(y)− f(x)− 1

2n
(∆f)B(x,t)|y − x|2

)
dy

∣∣∣∣∣
2
dt

t5
;

S(f, g)(x)2 =

∫ ∞

0

∣∣∣∣∣−
∫
B(x,t)

(
f(y)− f(x) +

1

2n
gB(x,t)|y − x|2

)
dy

∣∣∣∣∣
2
dt

t5
;

V (f)(x)2 =
∞∑

k=−∞

∣∣∣∣∣−
∫
B(x,2k)

(
f(y)− f(x)− 1

2n
(∆f)B(x,2k)|y − x|2

)
dy

∣∣∣∣∣
2

2−4k;

V (f, g)(x)2 =
∞∑

k=−∞

∣∣∣∣∣−
∫
B(x,2k)

(
f(y)− f(x) +

1

2n
gB(x,2k)|y − x|2

)
dy

∣∣∣∣∣
2

2−4k,

where fB = −
∫
B f . The square functions S(f), S(f, g) are considered in [1] and

unweighted results concerning them contained in Theorem 1.4 are due to [1].
In Section 2, we shall prove Lemma 1.3 and Theorem 1.4 for n ≥ 3 by applying

Theorem 1.1. Theorem 1.5 can be proved in the same way as Theorem 1.4, by using
Theorem 1.2 if n ≥ 3. We shall give an outline of the proof of Theorem 1.5 for
n ≥ 3 in Section 3.

To prove Theorems 1.4 and 1.5 for n = 1, 2, we need analogues of Theorems
1.1 and 1.2. The cases n = 1, 2 should be treated separately, since the Riesz
potential is not available as in the case of Rn above for n ≥ 3. In Section 4, in
the two dimensional case, Theorems 1.4 and 1.5 will be proved, where analogues of
Theorems 1.1 and 1.2 will be shown for n = 2. Finally, in Section 5, we shall prove
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Theorems 1.4 and 1.5 for n = 1. Also, analogues of Theorems 1.1 and 1.2 for n = 1
will be given.

2. Proof of Theorem 1.4 for n ≥ 3

We need the following.

Lemma 2.1. Let S and S2 be as in (1.12) and (1.13), respectively, on Rn, n ≥ 1,
with Φ as in Theorem 1.4. Let g ∈ Lpw, w ∈ Ap, 1 < p <∞. Then

(2.1) ∥S(J2(g))∥p,w + ∥J2(g)∥p,w = ∥S2(g)∥p,w + ∥J2(g)∥p,w ≃ ∥g∥p,w.

We give a proof of Lemma 2.1 for n ≥ 3 in this section. The results for n = 2 and
n = 1 can be shown similarly with the arguments in Sections 4 and 5, respectively.

The following relations concerning Riesz and Bessel potentials are useful.

Lemma 2.2. Let α > 0. Suppose that 1 < p < ∞ and w is a weight in Ap on Rn,
n ≥ 1.

(1) We can find a Fourier multiplier ℓ for Lpw such that

(2π|ξ|)α = ℓ(ξ)(1 + 4π2|ξ|2)α/2.
(2) We have

(1 + 4π2|ξ|2)α/2 = m(ξ) +m(ξ)(2π|ξ|)α

with some Fourier multiplier m for Lpw.

Here we give a proof of Lemma 1.3.

Proof of Lemma 1.3 . By part (1) of Lemma 2.2, we see that H0 initially defined
on S(Rn) extends to a bounded operator on Lpw and integration by parts implies∫

Rn

H0(f)(x)η(x) dx = −
∫
Rn

J2(f)(x)

n∑
j=1

∂2j η(x) dx

for all η ∈ S(Rn) if f ∈ S(Rn). Since both sides of the equality above are continuous
in f ∈ Lpw for each fixed η and S(Rn) is dense in Lpw, we get the conclusion.

□
Proof of Lemma 2.1 for n ≥ 3. We first prove (2.1) for g ∈ S(Rn). We can write

S2(g) = gψ(H0(g)).

Thus Theorem 1.1 implies

(2.2) ∥S2(g)∥p,w = ∥gψ(H0(g))∥p,w ≃ ∥H0(g)∥p,w ≤ C∥g∥p,w.
Also, by part (2) of Lemma 2.2 and Theorem 1.1

∥g∥p,w = ∥J−2J2(g)∥p,w ≤ C∥J2(g)∥p,w + C∥LJ2(g)∥p,w(2.3)

≤ C∥J2(g)∥p,w + C∥S2(g)∥p,w.
From (2.2) and (2.3), (2.1) follows for g ∈ S(Rn).

Let

SN2 (g)(x) =

(∫ N

N−1

|J2(g) ∗ Φt(x)− J2(g)(x) + c0t
2H0(g) ∗ Φt(x)|2

dt

t5

)1/2

.
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Then ∥SN2 (g)∥p,w ≤ CN∥g∥p,w for g ∈ Lpw. Using this and (2.1) for g ∈ S(Rn),
we have ∥SN2 (g)∥p,w ≤ C∥g∥p,w for g ∈ Lpw with a constant C independent of N ,
since S(Rn) is dense in Lpw. Thus, letting N → ∞, we have ∥S2(g)∥p,w ≤ C∥g∥p,w
for g ∈ Lpw. We can take a sequence {gk} in S(Rn) such that gk → g in Lpw and
J2(gk) → J2(g) in Lpw as k → ∞. Then we note that ∥S2(gk)∥p,w → ∥S2(g)∥p,w.
Thus, letting k → ∞ in the relation

∥S2(gk)∥p,w + ∥J2(gk)∥p,w ≃ ∥gk∥p,w,
which has been already shown, we get the conclusion. □

The next result will be useful in what follows (see [11] for a proof).

Lemma 2.3. Suppose that f is in Lpw on Rn, n ≥ 1, with w ∈ Ap, 1 < p <∞. Let
g ∈ S(Rn) and α > 0. Then we have

(1) Kα ∗ (f ∗ g)(x) = (Kα ∗ f) ∗ g(x) = (Kα ∗ g) ∗ f(x) for every x ∈ Rn;
(2)

∫
Rn(Kα ∗ f)(y)g(y) dy =

∫
Rn(Kα ∗ g)(y)f(y) dy.

Proof of Theorem 1.4 for n ≥ 3. If f ∈ W 2,p
w , f = J2(g) for some g ∈ Lpw. Thus by

Lemma 1.3 and Lemma 2.1 we have part (1).
Suppose f, g, S(f, g) ∈ Lpw. Let φ ∈ C∞

0 (Rn) with
∫
φ = 1 and put f ϵ = f ∗ φϵ,

gϵ = g∗φϵ, hϵ = f∗J−2(φϵ). We note that f ϵ = J2(h
ϵ) by Lemma 2.3, f ϵ, gϵ, hϵ ∈ Lpw

and L(f ϵ) = H0(h
ϵ) by Lemma 1.3. Also, gϵ → g, f ϵ → f in Lpw.

By Minkowski’s inequality we have

(2.4) S(f ϵ, gϵ)(x) ≤ CM(S(f, g))(x).

Thus, since(∫ ∞

0
|c0H0(h

ϵ) ∗ Φt(x)− c0g
ϵ ∗ Φt(x)|2

dt

t

)1/2

≤ S2(h
ϵ)(x) + S(f ϵ, gϵ)(x),

we see that the quantity on the left hand side belongs to Lpw by (2.4) and Lemma
2.1. Thus

0 = lim
t→0

|H0(h
ϵ) ∗ Φt(x)− gϵ ∗ Φt(x)| = |H0(h

ϵ)(x)− gϵ(x)|,

which implies

(2.5) H0(h
ϵ)(x) = gϵ(x),

S2(h
ϵ)(x) = S(f ϵ, gϵ)(x),

for almost every x ∈ Rn, and hence

∥S2(hϵ)∥p,w ≤ C

with a constant C independent of ϵ > 0 by (2.4). Thus we have ∥hϵ∥p,w ≃ ∥f ϵ∥p,w+
∥S2(hϵ)∥p,w ≤ C by Lemma 2.1.

So, we have a sequence {hϵk} and h ∈ Lpw such that hϵk → h weakly in Lpw. For
η ∈ S(Rn), by (2.5), Lemma 1.3 and Lemma 2.3 we have∫

Rn

H0(h)η dx =

∫
Rn

J2(h)L(η) dx =

∫
Rn

hJ2(L(η)) dx

= lim
k

∫
Rn

hϵkJ2(L(η)) dx = lim
k

∫
Rn

J2(h
ϵk)L(η) dx



246 SHUICHI SATO

= lim
k

∫
Rn

H0(h
ϵk)η dx = lim

k

∫
Rn

gϵkη dx =

∫
Rn

gη dx.

Thus H0(h) = g. Also,∫
Rn

H0(h)η dx = lim
k

∫
Rn

J2(h
ϵk)L(η) dx = lim

k

∫
Rn

f ϵkL(η) dx =

∫
Rn

fL(η) dx.

So we have H0(h) = g = L(f). Similarly, we see that f = J2(h). This proves part
(2).

By (2.2)

(2.6) ∥S2(g)∥p,w ≃ ∥H0(g)∥p,w

for g ∈ S(Rn). Since S2 and H0 are continuous on Lpw and S(Rn) is dense in Lpw, we

have (2.6) for all g ∈ Lpw. If f ∈W 2,p
w and f = J2(h) with h ∈ Lpw, H0(h) = L(f) by

Lemma 1.3 and ∥S2(h)∥p,w = ∥S(f)∥p,w ≃ ∥L(f)∥p,w from (2.6). Also, by Lemma
2.1, ∥S(f)∥p,w + ∥f∥p,w ≃ ∥h∥p,w = ∥f∥p,2,w. This completes the proof of Theorem
1.4. □

3. Proof of Theorem 1.5 for n ≥ 3

We can prove Theorem 1.5 similarly to the proof of Theorem 1.4. So, only the
outline of the proof is given.

Lemma 3.1. Let V and V2 be as in (1.15) and (1.16) on Rn, n ≥ 1, respectively,
with Φ as in Theorem 1.5. Suppose that g ∈ Lpw, w ∈ Ap, 1 < p <∞. Then

∥V (J2(g))∥p,w + ∥J2(g)∥p,w = ∥V2(g)∥p,w + ∥J2(g)∥p,w ≃ ∥g∥p,w.

To prove Lemma 3.1 for n ≥ 3 we note that

V2(g) = ∆ψ(H0(g))

for g ∈ S(Rn) and apply Theorem 1.2 and Lemma 2.2.
Lemma 1.3 and Lemma 3.1 imply part (1) of Theorem 1.5. To prove part (2) of

Theorem 1.5, let f, g, V (f, g) ∈ Lpw and f ϵ, gϵ, hϵ be as in the proof of Theorem 1.4.
Then

V (f ϵ, gϵ)(x) ≤ CM(V (f, g))(x)

by Minkowski’s inequality. Using this and( ∞∑
k=−∞

|c0H0(h
ϵ) ∗ Φ2k(x)− c0g

ϵ ∗ Φ2k(x)|2
)1/2

≤ V2(h
ϵ)(x) + V (f ϵ, gϵ)(x),

we can proceed as in the proof of Theorem 1.4 to get the assertion of part (2).

4. Two dimensional case

We consider Lα(x) = τ(α)|x|α−2 on R2. Then we have the following (see [3, p.
151]).
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Lemma 4.1. For φ ∈ S(R2) we have⟨
− 1

2π
log |x|, φ̂

⟩
=

∫
R2

(
− 1

2π
log |x|

)
φ̂(x) dx = lim

α→2
α<2

⟨Lα − τ(α), φ̂⟩

=

∫
|ξ|<1

(2π|ξ|)−2(φ(ξ)−φ(0)) dξ+
∫
|ξ|≥1

(2π|ξ|)−2φ(ξ) dξ+
1

2π
φ(0)(−Γ′(1)+log π).

It is known that Γ′(1) = −γ, where γ denotes Euler’s constant.

Proof of Lemma 4.1. Let α ∈ (0, 2). Then∫
|ξ|<1

(2π|ξ|)−α dξ − τ(α) =
(2π)1−α

2− α
−

Γ
(
1− 1

2α
)

Γ
(
1
2α
)
2απ

= (2π)1−α
G(2)−G(α)

2− α
,

where

G(α) =
Γ
(
2− 1

2α
)
πα−2

Γ
(
1
2α
) .

We note that

G′(α) =
−1

2Γ
′ (2− 1

2α
)
Γ
(
1
2α
)
− 1

2Γ
(
2− 1

2α
)
Γ′ (1

2α
)

Γ
(
1
2α
)2 πα−2+

Γ
(
2− 1

2α
)

Γ
(
1
2α
) πα−2 log π.

Thus

(4.1)

∫
|ξ|<1

(2π|ξ|)−α dξ − τ(α) → −Γ′(1) + log π

2π
as α→ 2 with α < 2.

On the other hand,

(4.2) Lα(x)− τ(α) =
2Γ
(
2− 1

2α
)

Γ
(
1
2α
)
2απ

|x|α−2 − 1

2− α
→ − 1

2π
log |x| for x ∈ R2 \ {0}

as α→ 2 with α < 2. Also, if α ∈ (3/2, 2),

(4.3) |Lα(x)− τ(α)| ≤ C|x|−1χB(0,2)(x) + C| log |x||χR2\B(0,2)(x)

with a constant C independent of α. By (4.1), (4.2), (4.3) and the Lebesgue con-
vergence theorem we have⟨

− 1

2π
log |x|, φ̂

⟩
= lim

α→2
α<2

⟨Lα − τ(α), φ̂⟩ = lim
α→2
α<2

(∫
R2

(2π|ξ|)−αφ(ξ) dξ − τ(α)φ(0)

)

= lim
α→2
α<2

[∫
|ξ|<1

(2π|ξ|)−α(φ(ξ)− φ(0)) dξ +

∫
|ξ|≥1

(2π|ξ|)−αφ(ξ) dξ

+ φ(0)

(∫
|ξ|<1

(2π|ξ|)−α dξ − τ(α)

)]

=

∫
|ξ|<1

(2π|ξ|)−2(φ(ξ)− φ(0)) dξ +

∫
|ξ|≥1

(2π|ξ|)−2φ(ξ) dξ

+
1

2π
φ(0)

(
−Γ′(1) + log π

)
.

□
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Lemma 4.2. Let L2(x) = − 1
2π log |x| on R2. Let Φ ∈ M1(R2). Suppose that Φ

satisfies (1.7), (1.8) and suppΦ ⊂ {|x| ≤ M}. Let η(x) = L2 ∗ Φ(x) − L2(x).
Then |η(x)| ≤ C(1 + | log |x||) if |x| ≤ 2M and |η(x)| ≤ C|x|−3 if |x| ≥ 2M . Also,

η̂(ξ) = (2π|ξ|)−2(Φ̂(ξ)− 1).

Proof. The estimates |η(x)| ≤ C(1 + | log |x||) for |x| ≤ 2M and |η(x)| ≤ C|x|−3 for
|x| ≥ 2M can be shown as in the proof of Theorem 1.1, since ∆L2 = 0 on R2 \ {0}.

Let Ψ ∈ C∞
0 (R2) with Ψ(0) = 1. Let φ ∈ S(R2) and φ(ϵ)(ξ) = φ(ξ)−φ(0)Ψ(ξ/ϵ).

Then, since φ(ϵ) belongs to S(R2) and vanishes at the origin, by Lemma 4.1 we have

⟨η, φ̂(ϵ)⟩ =
∫
R2

(
− 1

2π

∫
R2

log |x− y|φ̂(ϵ)(x) dx+
1

2π

∫
R2

log |x|φ̂(ϵ)(x) dx

)
Φ(y) dy

=

∫
R2

(∫
R2

(2π|ξ|)−2φ(ϵ)(ξ)(e
−2πi⟨y,ξ⟩ − 1) dξ

)
Φ(y) dy

=

∫
R2

(2π|ξ|)−2φ(ϵ)(ξ)(Φ̂(ξ)− 1) dξ

=

∫
R2

(2π|ξ|)−2φ(ξ)(Φ̂(ξ)− 1) dξ − φ(0)

∫
R2

(2π|ξ|)−2Ψ(ξ/ϵ)(Φ̂(ξ)− 1) dξ.

Since Φ ∈ M1(R2), we can see that the last integral tends to 0 as ϵ → 0. Also,

⟨η, φ̂(ϵ)⟩ = ⟨η, φ̂⟩ − φ(0)⟨η, (Ψ̂)ϵ−1⟩ and ⟨η, (Ψ̂)ϵ−1⟩ → 0 as ϵ→ 0. Collecting results
we get

⟨η, φ̂⟩ =
∫
R2

(2π|ξ|)−2φ(ξ)(Φ̂(ξ)− 1) dξ,

which implies η̂(ξ) = (2π|ξ|)−2(Φ̂(ξ)− 1). □

Let

(4.4) ψ(x) = Φ ∗ L2(x)− L2(x) + c0Φ(x),

where Φ ∈ M1(R2) satisfying (1.7) and (1.8) and c0 = b0/2. Then, by the proof of
Theorem 1.1 for n ≥ 3 and Lemma 4.2, we can see that ψ satisfies (1.1) and (1),
(2), (3) of Theorem A. Thus we have the following.

Theorem 4.3. Let ψ be as in (4.4). Suppose the condition (1.2) holds. Then

∥f∥p,w ≃ ∥gψ(f)∥p,w, f ∈ Lpw(R2).

If ψ is as in (4.4), then by Lemma 4.2 we see that S2(g) = gψ(H0(g)) for g ∈ S(R2).
Using this and Theorem 4.3, we can argue similarly to the proof of Theorem 1.4 for
n ≥ 3, so that we see that Theorem 1.4 holds in the case of R2.

Also, Theorem B implies the following.

Theorem 4.4. Let ψ be as in (4.4). Suppose the conditions (1.11) and (1.3) hold.
Then

∥f∥p,w ≃ ∥∆ψ(f)∥p,w, f ∈ Lpw(R2).

Lemma 4.2 implies that V2(g) = ∆ψ(H0(g)), g ∈ S(R2). From this and Theorem
4.4 we can see that Theorem 1.5 is valid in the case of R2 by arguing similarly to
the proof of Theorem 1.5 for n ≥ 3.
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5. One dimensional case

We recall the following result (see [5]).

Lemma 5.1. Let 1 < α ≤ 2, φ ∈ S(R). Then∫ ∞

−∞
|x|α−1φ̂(x) dx =

1− α

2
π−α+1/2 Γ

(
α
2

)
Γ
(
3−α
2

) ∫ ∞

0

φ(ξ) + φ(−ξ)− 2φ(0)

ξα
dξ.

We give a proof for completeness.

Proof of Lemma 5.1. We prove the lemma when 1 < α < 2. The case α = 2 follows
from this by taking the limit as α→ 2 with α < 2.

We write

(5.1)

∫ ∞

−∞
|x|α−1φ̂(x) dx = lim

M→∞

∫ M

−M
|x|α−1φ̂(x) dx.

Now, integration by parts implies∫ M

−M
|x|α−1e−2πi⟨x,ξ⟩ dx = 2

∫ M

0
xα−1 cos(2πxξ) dx

=

∫ M

0
Θ(ξ, x,M)(α− 1)xα−2 dx,

where

Θ(ξ, x,M) =
sin(2πMξ)

πξ
− sin(2πxξ)

πξ
.

Thus∫ M

−M
|x|α−1φ̂(x) dx =

∫ ∞

0

∫ M

0
Θ(ξ, x,M)(φ(ξ) + φ(−ξ))(α− 1)xα−2 dx dξ

= lim
L→∞

∫ L

0

∫ M

0
Θ(ξ, x,M)(φ(ξ) + φ(−ξ))(α− 1)xα−2 dx dξ.

Let Ψ(ξ) = φ(ξ) + φ(−ξ)− 2φ(0). Then we have∫ L

0

∫ M

0
Θ(ξ, x,M)(φ(ξ) + φ(−ξ))xα−2 dx dξ

=

∫ L

0

∫ M

0
Θ(ξ, x,M)Ψ(ξ)xα−2 dx dξ + 2φ(0)

∫ L

0

∫ M

0
Θ(ξ, x,M)xα−2 dx dξ.

We easily see that the last integral tends to 0 as L→ ∞, since∫ L

0

sin(2πAξ)

ξ
dξ → π

2
boundedly in A > 0.

Therefore

(5.2)

∫ M

−M
|x|α−1φ̂(x) dx = lim

L→∞

∫ L

0

∫ M

0
Θ(ξ, x,M)Ψ(ξ)(α− 1)xα−2 dx dξ.

By integration,∫ L

0

∫ M

0

sin(2πMξ)

πξ
Ψ(ξ)(α− 1)xα−2 dx dξ =Mα−1

∫ L

0

sin(2πMξ)

πξ
Ψ(ξ) dξ.
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Applying integration by parts, we have

Mα−1

∫ L

0

sin(2πMξ)

πξ
Ψ(ξ) dξ

= −2−1π−2Mα−2 cos(2πML)Ψ(L)/L+2−1π−2Mα−2

∫ L

0
cos(2πMξ)(Ψ(ξ)/ξ)′ dξ.

We observe that (Ψ(ξ)/ξ)′ ∈ L1(R). Thus

(5.3) lim
L→∞

∫ L

0

∫ M

0

sin(2πMξ)

πξ
Ψ(ξ)(α− 1)xα−2 dx dξ

= 2−1π−2Mα−2

∫ ∞

0
cos(2πMξ)(Ψ(ξ)/ξ)′ dξ.

We note that the last integral tends to 0 as M → ∞. On the other hand, since
Ψ(ξ)ξ−α is integrable on the interval (0,∞), by a change of variables we have

(5.4) lim
L→∞

∫ L

0

∫ M

0

sin(2πxξ)

πξ
Ψ(ξ)(α− 1)xα−2 dx dξ

=

∫ ∞

0

Ψ(ξ)

πξα

∫ Mξ

0
(α− 1)xα−2 sin(2πx) dx dξ.

Here we note that the limit

lim
M→∞

∫ M

0
(α− 1)xα−2 sin(2πx) dx

exists when 1 < α < 2. By (5.2), (5.3) and (5.4), we see that

lim
M→∞

∫ M

−M
|x|α−1φ̂(x) dx = −(α− 1)2−α+1π−α

∫ ∞

0
xα−2 sinx dx

∫ ∞

0

Ψ(ξ)

ξα
dξ.

By (5.1) and a formula for the value of the integral
∫∞
0 xα−2 sinx dx (see [14, p.

182]), we get the conclusion. □

Remark 5.2. We note that

1− α

2
π−α+1/2 Γ

(
α
2

)
Γ
(
3−α
2

) = 2(2π)−αΓ(α) cos
(απ

2

)
in Lemma 5.1.

We can prove the following.

Lemma 5.3. Let L2(x) = −1
2 |x| on R1. Suppose Φ ∈ M1(R1) and suppΦ ⊂ {|x| ≤

M}. Let η(x) = L2 ∗ Φ(x) − L2(x). Then |η(x)| ≤ C if |x| ≤ 2M and η(x) = 0 if

|x| ≥ 2M . Also, η̂(ξ) = (2π|ξ|)−2(Φ̂(ξ)− 1).

The equation η̂(ξ) = (2π|ξ|)−2(Φ̂(ξ)− 1) follows from Lemma 5.1 with α = 2 as
in Lemma 4.2. The other assertions of Lemma 5.3 can be shown easily.

Let

(5.5) ψ(x) = Φ ∗ L2(x)− L2(x) + c0Φ(x),
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where Φ ∈ M1(R1) and c0 = b0/2 with b0 as in (1.7). Then, the conditions (1.1)
and (1), (2), (3) of Theorem A follow from the proof of Theorem 1.1 for n ≥ 3 and
Lemma 5.3.

We have the following.

Theorem 5.4. Let ψ be as in (5.5). Then

∥f∥p,w ≃ ∥gψ(f)∥p,w, f ∈ Lpw(R).

To see this from Theorem A, it suffices to show that (1.3) holds for ψ of (5.5).
The proof is similar to the one given in Section 1 when Φ is a radial function. So, it
suffices to show that ψ is not identically 0. We prove it by contradiction. Suppose
that ψ is identically 0. Then,

Φ̂(ξ)(1 + c0(2π|ξ|)2) = 1.

Since Φ̂ is bounded and is not a constant function, we deduce that c0 > 0. It follows
that

Φ̂((2π)−1c
−1/2
0 ξ) =

1

1 + ξ2
,

which is the Fourier transform of the function πe−2π|x|. This contradicts the fact
that Φ is compactly supported.

Let ψ be as in (5.5). Then it follows by Lemma 5.3 that S2(g) = gψ(H0(g)) for
g ∈ S(R). Thus we can see that Theorem 1.4 holds in the case of R1 by applying
the relation S2(g) = gψ(H0(g)) and Theorem 5.4 if we argue similarly to the proof
of Theorem 1.4 for n ≥ 3.

Also, by Theorem B we have the following.

Theorem 5.5. Let ψ be as in (5.5). Suppose the condition (1.11) holds. Then

∥f∥p,w ≃ ∥∆ψ(f)∥p,w, f ∈ Lpw(R).

By Lemma 5.3 we have V2(g) = ∆ψ(H0(g)), g ∈ S(R). Applying this and The-
orem 5.5 and arguing similarly to the proof of Theorem 1.5 for n ≥ 3, we can see
that Theorem 1.5 holds on R1.

Remark 5.6. When n = 1, we do not need to assume the conditions (1.2) and (1.3)
in Theorems 1.4 and 1.5, respectively, since they follow from the other hypotheses
of the theorems, as we have seen above.
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