論文

査読有り
2020年3月

Multimodal Multiphoton Imaging of the Lipid Bilayer by Dye-Based Sum-Frequency Generation and Coherent Anti-Stokes Raman Scattering

Anal. Chem.
  • Mizuguchi, Takaha
  • ,
  • Momotake, Atsuya
  • ,
  • Hishida, Mafumi
  • ,
  • Yasui, Masato
  • ,
  • Yamamoto, Yasuhiko
  • ,
  • Saiki, Toshiharu
  • ,
  • Nuriya, Mutsuo

92
8
開始ページ
5656
終了ページ
5660
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1021/acs.analchem.0c00673
出版者・発行元
AMER CHEMICAL SOC

Coherent anti-Stokes Raman scattering (CARS) imaging is widely used for imaging molecular vibrations inside cells and tissues. Lipid bilayers are potential analytes for CARS imaging due to their abundant CH2 vibrational bonds. However, identifying the plasma membrane is challenging since it possesses a thin structure and is closely apposed to lipid structures inside the cells. Since the plasma membrane provides the most prominent asymmetric location within cells, orientation sensitive sum-frequency generation (SFG) imaging is a promising technique for selective visualization of the plasma membrane labeled by a nonfluorescent and SFG-specific dye, Ap3, when using a CARS microscope system. In this study, we closely compare the characteristics of lipid bilayer imaging by dye-based SFG and CARS using giant vesicles (GVs) and N27 rat dopaminergic neural cells. Asa result, we show that CARS imaging can be exploited for the visualization of whole lipid structures inside GVs and cells but is insufficient for identification of the plasma membrane, which instead can be achieved using dye-based SFG imaging. In addition, we demonstrate that these unique properties can be combined and applied to the live-cell tracking of intracellular lipid structures such as lipid droplets beneath the plasma membrane. Thus, multimodal multiphoton imaging through a combination of dye-based SFG and CARS can serve as a powerful chemical imaging tool to investigate lipid bilayers in GVs and living cells.

リンク情報
DOI
https://doi.org/10.1021/acs.analchem.0c00673
ID情報
  • DOI : 10.1021/acs.analchem.0c00673
  • ISSN : 0003-2700

エクスポート
BibTeX RIS