論文

査読有り 筆頭著者 責任著者 本文へのリンクあり
2010年

Numerical method of symplectic state transition matrix and application to fully perturbed earth orbit

Transactions of the Japan Society for Aeronautical and Space Sciences
  • Yuichi Tsuda
  • ,
  • Daniel J. Scheeres

53
180
開始ページ
105
終了ページ
113
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.2322/tjsass.53.105

This paper presents a numerical method for deriving a symplectic state transition matrix for high-fidelity Earth orbits subject to non-dissipative perturbation forces. By taking advantage of properties of Hamiltonian systems, this method provides an exact solution space mapping of linearized orbital dynamics, preserving the symplectic structure that all Hamiltonian systems should possess by nature. This method can be applied to accurate, yet computationally efficient dynamic filters, long-term propagations of the motions of formation flying spacecraft and the eigenstructure analysis of N-body dynamics, etc., when the exact structure-preserving property is crucial. We show the derivation of the numerical method of symplectic state transition matrix, and apply it to Earth orbits with perturbation forces based on real ephemerides. These numerical examples reveal that this method shows improvements in preserving the structural properties of the state transition matrix, and in the computational efficiency compared to the conventional linear state transition matrix with Euler or Runge-Kutta integration. © 2010 The Japan Society for Aeronautical and Space Sciences.

リンク情報
DOI
https://doi.org/10.2322/tjsass.53.105
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052511051&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=80052511051&origin=inward
ID情報
  • DOI : 10.2322/tjsass.53.105
  • ISSN : 0549-3811
  • SCOPUS ID : 80052511051

エクスポート
BibTeX RIS