MISC

2008年9月

Surface characterization on binary nano/micro-domain composed of alkyl- and amino-terminated self-assembled monolayer

APPLIED SURFACE SCIENCE
  • S. H. Lee
  • ,
  • T. Ishizaki
  • ,
  • N. Saito
  • ,
  • O. Takai

254
22
開始ページ
7453
終了ページ
7458
記述言語
英語
掲載種別
DOI
10.1016/j.apsusc.2008.06.001
出版者・発行元
ELSEVIER SCIENCE BV

The binary alkyl- and amino-terminated self-assembled monolayers (SAMs) composed of nano/microsized domains was prepared though a self-assembly technique. In addition, the wetting and electrostatic property of the binary SAMs was investigated by the analysis of the static and dynamic water contact angle and zeta-potentials measurement. The binary SAMs were also characterized by atomic force microscope (AFM), Kelvin probe force microscope (KPFM) and X-ray photoelectron spectroscopy (XPS). The domains on the binary SAMs were observed in topographic and surface potential images. The height of domain and the surface potential between octadecyltrichlorosilanes (OTS)-domain and n-(6-aminohexl) aminopropyl-trimethoxysilane (AHAPS)-SAM were about 1.1 nm and -30 mV. These differences of height and surface potential correspond to the ones between OTS and AHAPS. In XPS N 1s spectra, we confirmed the formation of binary SAMs by an amino peak observed at 399.15 eV. The dynamic and the static water contact angles indicated that the wetting property of the binary SAMs was depended on the OTS domain size. In addition, static water contact angles were measured under the conditions of different pH water and zeta-potential also indicated that the electrostatic property of the binary SAMs depended on OTS domain size. Thus, these results showed that the wetting and electrostatic property on the binary SAMs could be regulated by controlling the domain size. (C) 2008 Published by Elsevier B. V.

リンク情報
DOI
https://doi.org/10.1016/j.apsusc.2008.06.001
CiNii Articles
http://ci.nii.ac.jp/naid/80019847860
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000258998700058&DestApp=WOS_CPL
ID情報
  • DOI : 10.1016/j.apsusc.2008.06.001
  • ISSN : 0169-4332
  • CiNii Articles ID : 80019847860
  • Web of Science ID : WOS:000258998700058

エクスポート
BibTeX RIS