宮地 秀樹

J-GLOBALへ         更新日: 19/03/22 12:36
 
アバター
研究者氏名
宮地 秀樹
 
ミヤチ ヒデキ
所属
金沢大学
部署
理工研究域 数物科学系
職名
教授
ORCID ID
0000-0003-4318-9539

論文

 
Hideki Miyachi
Proc. Amer. Math. Soc.   147(1) 215-227   2019年   [査読有り]
In this paper, we discuss the structure of the infinitesimal spaces of generic quasiconformal mappings. One of the main results is that for any countable set in the complex plane, the infinitesimal spaces of generic Tex-quasiconformal mappings at...
Hideki Miyachi, Ken'ichi Ohshika
Annales Mathematiques Blaise Pascal.   24 115-133   2017年   [査読有り]
For a piecewise linear path in the measured lamination space on a hyperbolic surface, we shall prove a differential formula of the extremal length function expressed by the intersection number. We shall also present two applications of this formul...
Vincent Alberge, Hideki Miyachi and Ken'ichi Ohshika
Handbook of Teichmuller Theory   VI 71-94   2017年   [査読有り]
Hideki Miyachi
Tradition of Ahlfors_Bers, VII, Contemporary mathematics   696 225-250   2017年   [査読有り]
In this paper, we show that the extremal length functions on Teichmuller space are log-plurisubharmonic. As a corollary, we obtain an alternative proof of Liu and Su’s result on the plurisubharmonicity of extremal length functions. We also obtain ...
Hideki Miyachi
Journal of Mathematical Society of Japan   69 995-1049   2017年   [査読有り]
This paper is devoted to studying transformations on metric spaces. It is done in an effort to produce qualitative version of quasi-isometries which takes into account the asymptotic behavior of the Gromov product in hyperbolic spaces. We characte...

講演・口頭発表等

 
Teichmuller theory and shear coordinates [招待有り]
宮地秀樹
研究集会「モジュライ空間のシンプレクティック幾何」   2018年1月26日   
タイヒミュラー空間のShear座標系について説明した
Deformation of holomorphic quadratic differentials and its applications [招待有り]
宮地秀樹
トポロジー火曜セミナー   2017年12月19日   
正則2次微分の変形空間の接空間について,複素構造のモジュライ,特異点の構造に関する分解定理を説明した
Extremal length geometry on Teichmuller space [招待有り]
宮地秀樹
京都大学数理解析研究所 談話会   2017年11月15日   
タイヒミュラー空間の極値的長さの幾何学について説明した
宮地秀樹
New Trends in Teichmuller Theory and Mapping Class Groups   2018年9月2日   
タイヒミュラー空間の複素構造に関する自身の研究成果を発表した.ベアスコンパクト化で定義される多重調和函数に対するポアソン積分表示を発表した.
宮地秀樹
2017年度多変数関数論冬セミナー   2017年12月24日   
タイヒミュラー空間の複素解析学的理論と位相幾何学的理論の統一的解釈に関する研究の進展状況を講演した.

所属学協会

 
 

競争的資金等の研究課題

 
タイヒミュラー空間の複素解析的構造