MISC

国際誌
2009年9月

In vitro experimental study of the relationship between the apparent diffusion coefficient and changes in cellularity and cell morphology

ONCOLOGY REPORTS
  • Yoshitsugu Matsumoto
  • Masahiro Kuroda
  • Ryohei Matsuya
  • Hirokazu Kato
  • Koichi Shibuya
  • Masataka Oita
  • Atsushi Kawabe
  • Hidenobu Matsuzaki
  • Junichi Asaumi
  • Jun Murakami
  • Kazunori Katashima
  • Masakazu Ashida
  • Takanor Sasaki
  • Tetsuro Sei
  • Susumu Kanazawa
  • Seiichi Mimura
  • Seiichiro Oono
  • Takuichi Kitayama
  • Seiji Tahara
  • Keiji Inamura
  • 全て表示

22
3
開始ページ
641
終了ページ
648
記述言語
英語
掲載種別
DOI
10.3892/or_00000484
出版者・発行元
SPANDIDOS PUBL LTD

Diffusion-weighted magnetic resonance imaging (MRI) is frequently used clinically, and is available for the whole-body screening for tumors. The exact mechanism by which the apparent diffusion coefficient (ADC) value decreases in tumorous tissue remains unclear, although various theories have been proposed, including intracellular and extracellular factor theories. It is impossible to distinguish each factor in the intracellular and extracellular spaces as the source of MR signal generation by means of conventional comparison between MR images and pathological specimens. Other factors which have been reported to affect ADC include cellularity and cellular edema of human tissues, and temperature of phantoms at the time of measurement. We employed a new technique that enables cellular MR imaging using a newly developed bio-phantom containing a living culture tumor cell line, Jurkat-N1. We investigated possible reasons for observed decreases in ADC values for tumors, and we considered the contribution of both the intracellular and extracellular space to such a decrease. The ADC values of the bio-phantom increased with increasing heat exposure from 27 to 45 degrees C. ADC values also increased after the destruction by sonication of tumor cell membranes. ADC values decreased as cellularity increased in the bio-phantorn. ADC values decreased due to cellular edema caused by a low salt concentration in the bio-phantom. Changes in pressure in the bio-phantom had no effect on the observed ADC values. We calculated both the intracellular ADC and extracellular ADC values using the ADC values, cellularity, and cellular volume of Jurkat-N1 cells in the bio-phantom. The extracellular ADC values in the bio-phantom were estimated to be lower than the ADC value of distilled water. These results indicate that not only intracellular ADC values, but also extracellular ADC values contribute to the determination of the ADC values of bio-phantoms. This is the first report to have examined the contribution of intracellular and extracellular space on the ADC values of bio-phantoms containing cultured tumor cells.

リンク情報
DOI
https://doi.org/10.3892/or_00000484
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/19639216
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000268734600030&DestApp=WOS_CPL
ID情報
  • DOI : 10.3892/or_00000484
  • ISSN : 1021-335X
  • eISSN : 1791-2431
  • PubMed ID : 19639216
  • Web of Science ID : WOS:000268734600030

エクスポート
BibTeX RIS