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Control of spin relaxation anisotropy by spin-orbit-coupled diffusive spin motion
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Spatiotemporal spin dynamics under spin-orbit interaction is investigated in a (001) GaAs two-dimensional
electron gas using magneto-optical Kerr rotation microscopy. Spin-polarized electrons are diffused away from
the excited position, resulting in spin precession because of the diffusion-induced spin-orbit field. Near the
cancellation between the spin-orbit field and the external magnetic field, the induced spin precession frequency
depends nonlinearly on the diffusion velocity, which is unexpected from the conventional linear relation between
the spin-orbit field and the electron velocity. This behavior originates from an enhancement of the spin relaxation
anisotropy by the electron velocity perpendicular to the diffused direction. We demonstrate that the spin
relaxation anisotropy, which has been regarded as a material constant, can be controlled via diffusive electron
motion.
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I. INTRODUCTION

Precise control of spin motion is a prerequisite from fun-
damental physics to spintronics and quantum information
technology [1–4]. In a semiconductor quantum well (QW),
Rashba [5,6] and Dresselhaus [7] spin-orbit (SO) interactions
act as effective magnetic fields for moving electrons, enabling
coherent spin control via precession, whereas spin relaxation
occurs simultaneously because of an interplay between the
SO field and the random motion of electrons [8]. Both spin
precession and relaxation processes are closely tied to one
another solely by SO interaction [9]. For stationary electrons
with mean zero velocity, the correlation between precession
and relaxation triggers a modulation of spin precessional mo-
tion, known as spin relaxation anisotropy [10–19]. For spin
rotation by external and/or SO fields in a QW, spins along
growth and in-plane orientations do not experience identical
torques because of the in-plane orientation of the SO fields.
This situation induces anisotropic spin relaxation [10–19] and
modulates the spin precession frequency [13–16,18,19]. Be-
cause SO fields are well defined for stationary electrons, the
spin relaxation anisotropy has been regarded as a material
constant. However, for moving electrons with a finite net ve-
locity induced by drift [20–26], diffusion [25–28], and surface
acoustic wave [29], the electron trajectory further modulates
SO fields and directly affects the spin relaxation anisotropy
through the momentum-dependent spin precession. Moreover,
the spin relaxation anisotropy is not limited to particular ma-
terials, such as III–V semiconductors because the anisotropic
SO fields are ubiquitous in solid states with spin-momentum
locking in topological insulators [30,31], the Rashba interface
in oxides [32], metal interfaces [33], and the Zeeman-type SO
field in two-dimensional materials [34]. Despite this, earlier

studies of spin relaxation anisotropy have remained limited
only to stationary cases [13–16,18,19].

Here, we experimentally manifest control of spin preces-
sional motion via spin relaxation anisotropy by diffusive spin
motion in a GaAs-based QW. When the SO field under dif-
fusive motion is nearly compensated by a constant external
magnetic field, the spin precession frequency is no longer
linear to the diffusion velocity. This behavior cannot be an-
ticipated from a conventional spin drift/diffusion model. It is
explained by a modulation of the spin relaxation anisotropy.
The evaluated spin relaxation anisotropy, which exhibits six-
fold enhancement from the stationary case, is explained by
a tilting of the spin precession axis from the direction of the
external magnetic field caused by the electron diffusive mo-
tion. We influence the spin relaxation anisotropy by precisely
controlling the electron motion.

This paper is organized as follows. In Sec. II, we ex-
plain experimental methods, the layer structure of GaAs QW,
and spin-diffusion velocity to manipulate spin precession. In
Sec. III, we show the evidence of nonlinear behavior of pre-
cession frequency against spin-diffusion velocity and suggest
that spin relaxation anisotropy is modulated by spin-diffusion
velocity. In the subsequent Sec. IV, we theoretically elu-
cidate and model diffusion-velocity-induced spin relaxation
anisotropy. We compare our theoretical model with experi-
mental results in Sec. V. Lastly, we close with a conclusion
in Sec. VI.

II. EXPERIMENTAL METHODS

The structure examined for this paper was a modulation-
doped 20-nm-thick GaAs QW grown on a semi-insulating
(001) GaAs substrate by using metal-organic chemical vapor
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FIG. 1. (a) Sketch of a pump-probe scanning Kerr microscopy
setup with Rashba (�R ), Dresselhaus (�D), and external magnetic
fields (�ex,x and �ex,y) as precession vectors for y- and x-scan con-
figurations, respectively. (b) Measured sz at different x positions
highlighted as colored circles in (a).

deposition. From the substrate side, this structure consists
of a 200-nm GaAs buffer layer/[18-nm Al0.3Ga0.7As and
2-nm GaAs]×60 superlattice/100-nm Al0.3Ga0.7As/20-nm
GaAs QW/30-nm Al0.3Ga0.7As spacer layer/20-nm Si-doped
Al0.3Ga0.7As doping layer (6 × 1018 cm−3)/5-nm GaAs cap-
ping layer. In this system, we obtain SO fields characterized
by the Rashba parameter α (<0), the Dresselhaus parameter
β = β1 − β3 (>0) with linear β1 = −γ 〈k2

z 〉 and cubic term
β3 = −γ k2

F/4. Here, 〈k2
z 〉 denotes the expected value of the

squared wave number in the QW. The bulk Dresselhaus co-
efficient is γ < 0. The Fermi wave number is kF = √

2πns.
The carrier density and mobility measured using a Hall
bar device were ns = 1.72 × 1011 cm−2 and μe = 1.12 ×
105 cm2 V−1 s−1, respectively, at 4.2 K. To detect the diffu-
sive spin dynamics, spatiotemporal Kerr rotation microscopy
is performed using a mode-locked Ti:sapphire laser emitting
2-ps-long pulses at a 79.2-MHz repetition rate. Figure 1(a)
depicts an experimental configuration for pump and probe
beams with Rashba and Dresselhaus SO fields. Therein, �R

and �D, respectively, represent the spin precession frequency
vectors. A circularly polarized pump beam with Gaussian
σ -width σpp is focused onto the sample surface to excite
spin-polarization sz along the growth direction. A linearly
polarized probe beam (spot size σpr) detects sz at delay time t
and arbitrary position by a motor-controlled scanning mirror.
All-optical measurements are taken at 30 K.

The spin precession frequency induced by an average diffu-
sion velocity v = (vx, vy) in an external magnetic-field Bex =
(Bx, By) is generally described as

〈�x,y(vy,x )〉 = 2m

h̄2 (±α + β )vy,x + gμB

h̄
Bx,y. (1)

Here g < 0 stands for the electron g factor, μB denotes the
Bohr magneton, h̄ is the reduced Planck’s constant, and m =
0.067m0 expresses the effective electron mass of GaAs. The
diffusion velocity vdif , which is controlled by the center-to-
center distance r between the pump and the probe spots, is
defined as (see Appendix A for derivation)

vdif = 2Ds

(2Dsτs + σ 2
eff )

r, (2)

where Ds is the spin-diffusion constant, τs represents the
D’yakonov-Perel’ spin relaxation time, and the convoluted
spot size σeff is defined by σ 2

eff = σ 2
pp + σ 2

pr [27]. Also, τs is a
result of the replacement of t = τs because our system satisfies

FIG. 2. Measured spin precession frequency |�meas| obtained for
different σeff ’s and Bex’s and for scans of the pump-probe separation
along (a) x and (b) y. All symbols represent experimental data. All
solid lines show linear fits. The dashed lines in (a) correspond to the
nonlinear fits based on Eq. (3) with 	at = −0.076 GHz.

2Dsτs � σ 2
eff and small τs. By changing the probe position

along the x axis (y axis) [27], i.e., the distance r in Eq. (2),
one can set the diffusion velocity vdif = vx (vdif = vy) and
thereby modulate the spin precession frequency [〈�y(vx )〉 or
〈�x(vy)〉 in Eq. (1)]. Figure 1(b) shows the time evolution of
the experimental Kerr signal (sz) at different probe positions
(x = 9.7, 0.8, and −12.5 μm) in a x-scan (σeff = 8.1 μm
and By = +0.45 T). The spin precession frequency depends
strongly on the probe position, reflecting the momentum-
(velocity-) dependent SO field induced by the finite diffusion
velocity. We systematically measured Kerr signals with differ-
ent positions on the x and y axes with several spot sizes σeff .
We extracted the precession frequency |�meas| by fitting the
normalized Kerr signal sz = exp(−t/τs) cos(2π |�meas|t + φ)
with phase-shift φ. Besides, the spin relaxation also shows
position-dependent behavior as seen in Fig. 1(b). We check
this effect using numerical Monte Carlo (MC) simulation and
confirm that the position-dependent spin relaxation appears.
Although the origin of this modulation is an open question,
it may be induced by the diffusion velocity. The model to
explain the modulation of spin relaxation time in different
probe positions is not well established so far.

III. EMERGENCE OF NONLINEAR VARIATION IN
PRECESSION FREQUENCY

Figures 2(a) and 2(b) summarize extracted |�meas| in x
and y scans. For the y scan [Fig. 2(b)], |�meas| varies lin-
early with the y position for all conditions of Bx and σeff ,
reflecting the linear dependence of vdif on the y position
as presented in Eq. (2). In addition, when σeff decreases
from 11.6 to 6.8 μm, the slope d�meas/dy increases gradu-
ally, which agrees well with Eq. (2) and which is consistent
with earlier reports of the literature [20,23,24,26–28]. For
the x scan [Fig. 2(a)], however, a linear variation of |�meas|
on the x position is only observed for σeff = 9.8 μm and
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By = +0.45 T (diamond symbols). Reducing σeff to 8.1 and
5.6 μm exhibits a deviation from a linear variation; no-
tably most pronounced when |�meas| approaches zero. This
cannot be explained using the conventional linear relation
between electron velocity and SO field. To understand this
effect, we first evaluate the SO parameters from the linear
frequency variation. From linear fits depicted as solid lines
in Figs. 2(a) and 2(b), we obtain α = −2.89 × 10−13 , β1 =
1.86 × 10−13 eV m, and β3 = 0.22 × 10−13 eV m. Also, g =
−0.268 is estimated at r = 0 (vdif = 0). We assume g < 0
based on the QW thickness [24]. Also, Ds = 0.0195 m2/s
is derived from the measured τs = 75 ps at Bex = 0 T and
r = 0 with large spot size σeff = 30 μm [35]. Note that the
charge momentum scattering time τp = μem/e ≈ 4.22 ps is
much larger than the effective momentum scattering time τ =
2Ds/v

2
F ≈ 1.24 ps in our sample. Although the spin-diffusion

constant is smaller than the charge-diffusion constant [36], our
experiments use the spin as a label of electrons and, therefore,
track the spin and not the charge diffusion. Using evaluated
β1, β3, and ns, we obtain γ = −8.31 eV Å3 which is con-
sistent with values reported in the literature [37]. To explain
our observation, we introduce in analogy to anisotropic spin
relaxation for stationary electrons modified spin precession
frequencies [13–16,18,19],

�∗
x =

√
〈�x(vdif )〉2 − 	2

at, �∗
y =

√
〈�y(vdif )〉2 − 	2

at,

(3)
where the anisotropic term [15,18] is

	at (�) = − 1
2 (	x cos2 � + 	y sin2 �). (4)

Here the relaxation rate of spins oriented along the x and
y axes is 	x,y = (4Dsm2/h̄4)[(∓α + β )2 + β2

3 ], respectively,
and � ∈ [0, 2π ] is the direction of the spin precession axis,
defined as an in-plane polar angle from the +x toward the
+y axis. The term 	at (�) describes the relaxation anisotropy
between the two relevant orthogonal crystal axes and is
responsible for a correction of the precession frequency
[Eq. (3)]. For the y scan [Bex = (Bx, 0)], spins precess on the
y-z plane and 	at (� = 0) = −	x/2 = (	y − 	z )/2 denotes
half of the difference of the relaxation rate between the y and
the z axes, where 	z = 	x + 	y is the relaxation rate along the
z axis. For the x-scan [Bex = (0, By)], 	at (±π/2) = −	y/2.
Because 	at (�) additionally contributes to the spin precession
frequency shown in Eq. (3), �∗

x,y shows a nonlinear depen-
dence on the probe position r, which becomes pronounced
when the precession frequency induced by external and SO
fields becomes comparable to 	x,y/2. Based on the experi-
mentally evaluated values for α, β1, β3, and Ds, we calculate
−	y/2 = −0.076 and −	x/2 = −0.99 GHz. For σeff = 5.6
and 8.1 μm, the calculated �∗

y ’s are shown as dashed lines
in Fig. 2(a). The calculated values only reproduce the exper-
imental data in a linear frequency region. The rapid decrease
in �∗

y that occurs below 0.8 GHz cannot be explained by
−	y/2 = −0.076 GHz.

IV. VELOCITY-DEPENDENT ANISOTROPIC TERM

To obtain insights into the origin of this modulation of
the anisotropic term, we first perform numerical MC simula-
tions, which is a semiclassical calculation of spin precession
based on the random walk of electron spins [38]. We use
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FIG. 3. Maps of Kerr signal sz gathered along time t and
spactial displacement x for experimental results (a) with σeff =
5.6 μm, By = −0.4 T and (d) with σeff = 9.8 μm, By = 0.45 T.
Corresponding Monte Carlo simulations in (b) and (e) using experi-
mentally determined SO coefficients and spot size. (c) and (f) show
the line cut of sz at around x = −8.7 and x = 17.2 μm indicated
by dashed lines in the maps. The diamonds represent data from
experiment, whereas solids are from Monte Carlo simulation.

the experimentally determined SO coefficients and spot sizes.
Figure 3 gathers time-evolved sz as a function of the spa-
tial displacement for both experiment and MC simulation.
For σeff = 5.6 μm and By = −0.4 T in Fig. 3(a), the spin
precession halts at x = −8.7 μm [diamond in Fig. 3(c)]. Re-
markably, the simulated sz also shows a halt of spin precession
as shown in Figs. 3(b) and 3(c). This consistency between
experimental and MC simulation is also confirmed in the case
of σeff = 9.8 μm and By = 0.45 T as seen in Figs. 3(d)–3(f).
Importantly, in MC simulations, we probe all electron spins
arrived at the probe position from pumped spins as shown in
the sketch of Fig. 4(a). This indicates that the precession of
all electron spins by the velocity-induced SO field and Bex

contributes to the spin relaxation anisotropy, and, therefore,
the trajectories of diffused electrons are responsible for the
unusual modulation of the anisotropic term.

More specifically, according to Eq. (4), the frequency mod-
ulation caused by the relaxation anisotropy depends on the
direction of the precession axis (�). For stationary electrons
under Bex, where the SO field does not contribute to frequency
modulation, � is well defined by the direction of Bex. How-
ever, for moving electrons, the precession axis is defined by
the sum of Bex and the SO field, implying that the electron
trajectories under diffusion further modulate �. As a result,
the precession axis is no longer well defined by Bex because
of different diffusion velocity vectors v = (vx, vy) in time τs

[different arrows in Fig. 4(a)]. Specifically examining one
single trajectory with average velocity v, its direction of av-
erage precession axis �(vx, vy) = arctan(〈�y(vx )〉/〈�x(vy)〉)
can be obtained from Eq. (1). Entering �(vx, vy) into Eq. (4)
directly reveals the velocity-dependent form of the anisotropic
term,

	at (vx, vy) = −	x〈�x(vy)〉2 + 	y〈�y(vx )〉2

2(〈�x(vy)〉2 + 〈�y(vx )〉2)
. (5)
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FIG. 4. (a) x-scan configuration where the probe center is sep-
arated by a vector (x, 0) from the pump center (0,0). Electron
trajectories exist with an average velocity that is tilted from the x axis,
contrary to the macroscopic diffusion velocity [Eq. (2)]. (b) Mean
velocity components of horizontal and vertical directions v±

h and v±
v .

(c) Calculated v±
h , v±

v based on Eqs. (7) and (8).

This indicates that we should account for both the x and the
y components of the diffusion velocity in the trajectory. If
we only consider a spatially averaged diffusion velocity that
points along the x axis, we obtain vx = vdif , vy = 0, and,
thus, 〈�x(vy)〉 = 0. Consequently, 	at (vdif , 0) = −	y/2, and
this value is too small to explain the nonlinear variation in
|�meas| as mentioned in Sec. III. This strongly suggests that
the vertical velocity vy modulates the anisotropic term. In the
following, therefore, consider both the horizontal and the ver-
tical velocity components and focus on this vertical velocity
to address the experimental results.

By sorting all diffusion velocity vectors shown in Fig. 4(a)
along the x and y axes according to their sign, the macro-
scopic diffusion velocity [Eq. (2)] can be represented by its
horizontal and vertical parts [see the silver bold arrows shown
in Fig. 4(b)]. That is,

vdif = v+
h + v−

h + v+
v + v−

v , (6)

where their components are (see Appendix B for complete
derivation),

v±
h = ±σeff

√
�

πτs
e−(r2�τs )/σ 2

eff + �r erfc

(
∓ r

√
�τs

σeff

)
, (7)

v±
v = ±σeff

√
�

πτs
. (8)

Here � = Ds/(2Dsτs + σ 2
eff ), and the complementary error

function is denoted by erfc. The ± signs in v±
h and v±

v ,
respectively, correspond to the positive/negative velocity
components along the horizontal or vertical axes [Fig. 4(b)].
Figure 4(c) shows calculated v±

h and v±
v . v+

h increases rapidly
in the +x region, whereas v−

h has the opposite tendency be-
cause of the radial diffusion of electrons from the excited
pump spot. When the probe spot is displaced along the axis
[Fig. 4(a)], the average velocity vector points to the −x axis
because there |v−

h | > |v+
h |. Remarkably, vertical velocities v±

v
are independent of probe position and are of similar size
as v±

h . This suggests that velocity vectors tilted away from
the x axis modulate 	at. Therefore, the precession axis (�)
no longer points along Bex. By considering the four tilted
velocity vectors (v+

h , v+
v ), (v+

h , v−
v ), (v−

h , v+
v ), and (v−

h , v−
v )

at each r instead of the conventional macroscopic diffusion
velocity vector v = (vdif , 0), we obtain the anisotropic term

FIG. 5. (a) Calculated anisotropy term 	
x,y
at for the (a) x scan

and the (b) y scan as obtained from using Eq. (9). Both 	
x,y
at ’s are

modulated by r.

by averaging

	x
at = [	at (v

+
h , v+

v ) + 	at (v
+
h , v−

v )

+	at (v
−
h , v+

v ) + 	at (v
−
h , v−

v )]/4. (9)

For the y-scan configuration, 	
y
at is obtained from Eq. (9)

by flipping vh and vv with each other. Since 	x and 	y are
constants, we can calculate the velocity-dependent anisotropic
term [Eq. (9)] exactly using the subsequent Eqs. (1), (5), (7),
and (8) as a function of the spatial displacement r. We calcu-
late 	

x,y
at in Figs. 5(a) and 5(b) with parameters evaluated from

the experimental conditions. The 	x
at exhibits a peak structure

corresponding to the cancellation between the external and the
SO fields, i.e., 〈�y(vdif )〉 = 0. At this position, 	x

at is enhanced
by more than six times from −	y/2 = −0.076 GHz. Such a
peak structure is observed consistently for different spot sizes
and By values. The enhanced 	x

at is the consequence of a tilting
of the spin precession axis away from the Bex direction due to
the v±

v components that introduce a contribution of 〈�x(v±
v )〉2.

As seen from Eq. (5), 	x〈�x(v±
v )〉2 is introduced in the nu-

merator of the expression for 	at. For the y scan, 	
y
at is only

gently modulated with y because, in this case, the additional
contribution proportional to 	y〈�y(v±

v )〉 is weak compared to
the case of the x scan (because 	x 
 	y). In other words, a
small SO field along the y axis does not tilt the spin precession
axis significantly. In both x and y scans when the magnitude
of Bex becomes sufficiently large compared to the SO field,
	

x,y
at converges, respectively, to the stationary cases of −0.076

and −0.99 GHz.

V. COMPARISON WITH EXPERIMENT

Finally, we compare our model with experimental results
to address the nonlinear behavior of x scans by using 	

x,y
at

in Fig. 5. Figures 6(a) and 6(b) show frequency analysis
for σeff = 5.6 μm with By = −0.4 T and σeff = 8.1 μm with
By = 0.45 T, respectively. The solid and dashed lines, re-
spectively, correspond to the calculated �∗

y based on Eq. (3)
with our new 	x

at [Eq. (9)] and the conventional −	y/2 =
−0.076 GHz. The remaining parameters of Eq. (3) are all
experimentally obtained. The �∗

y obtained with the new 	x
at

shows excellent agreement with the experimental values, in-
cluding the nonlinear variation. We also compare the y scan by
MC simulation for parameters σeff = 5.6 μm and Bx = 0.4 T
[Fig. 6(c)]. The solid and dashed lines are calculated values of
�∗

x with new 	
y
at and conventional −	x/2 = −0.99 GHz, re-

spectively, where �∗
x is enhanced for negative y values for new

	
y
at. This point is confirmed further in Fig. 6(d) by plotting the
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FIG. 6. The frequency analysis is shown for x scans for (a) σeff =
5.6 μm at By = −0.4 T and for (b) σeff = 8.1 μm at By = 0.45 T.
All solid lines are �∗

y calculated with new 	x
at , and dashed lines

are with the conventional anisotropic term −	y/2 = −0.076 GHz.
(c) MC simulated time-space records of sz in a y scan with σeff =
5.6 μm, Bx = 0.4 T, and g = −0.268: the solid line shows �∗

x with
new 	

y
at; the dashed line is obtained with the conventional value of

−	x/2 = −0.99 GHz. The gray diamond is the extracted frequency
from the (d) time evolution of sz at y = −18.2 μm with the MC
simulation (red solid) and the fitted curve (dotted black).

time evolution of sz at y = −18.2 μm. The spin precession
frequency obtained from the MC simulation at y = −18.2 μm
[gray diamond in Fig. 6(c)] shows good agreement with our
new model.

Throughout this paper, we assume a constant Ds since
we observe a linear variation of |�meas| for x and y scans.
Moreover, Monte Carlo simulations with constant Ds well
reproduce our experimental results, showing the evidence
against the possibility of a variation of Ds with spatial separa-
tion r [39]. The quantitative agreement shown above reveals
clearly that precession by the relaxation anisotropy is not a
material constant parameter but is rather controlled by diffu-
sive spin motion.

VI. CONCLUSION

In conclusion, we measured the precession frequency in
an external magnetic field by changing the relative distance
between the excited pump and the detected probe positions in
a spatiotemporal Kerr rotation microscope. Because of various
electron trajectories for electrons traveling from the pump
to the probe position, the spin precession axis is tilted sub-
stantially from the external magnetic-field direction when the
diffusion-induced SO field nearly compensates the magnitude
of the external magnetic field. It is detected as a nonlin-
ear precession frequency modulation. Whereas the relaxation
anisotropy is regarded as a constant parameter for stationary
electrons, it becomes controllable for moving electrons. Be-
cause this effect is not only limited only to diffusive motion,

but also can be controlled by drift and ballistic transport, our
findings link the effect of the precise control of spin states to
future spintronics and quantum information technology.
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APPENDIX A: AVERAGE SPIN-DIFFUSION VELOCITY

Let us consider a simple case for the diffusion of the single
electron spin which is arrived at position r from somewhere
x after time t . The diffusion velocity of the electron spin is
approximated by using the start and end positions,

v
single
dif = r − x

t
. (A1)

On the other hand, probability P for which an electron arrives
at r from x is governed by

P = 1

2
√

πDst
exp

[
− (x − r)2

4Dst

]
(A2)

using spin-diffusion constant Ds. Note that P is normalized to
unity. One needs to consider all trajectories that pumped elec-
tron spins arrive at the probe position. This equals to take the
average diffusion velocity over convoluted laser distribution
Neff = exp[−x2/(2σ 2

eff )]. This corresponds to

vdif =

∫ ∞

−∞
PNeffv

single
dif dx∫ ∞

−∞
PNeff dx

(A3)

= 2Ds

2Dst + σ 2
eff

r. (A4)

As a result, average spin-diffusion velocity can be controlled
by the center-to-center distance r with linear relation. Al-
though electron spins arrived at r from far away have infinite
velocity, these large velocities are weighted by low probability
at the same time. For the limit of 2Dst � σ 2

eff as mentioned in
the main text, we can replace t with D’yakonov-Perel’ spin
relaxation time τs as far as τs is short.

APPENDIX B: DECOMPOSITION OF SPIN-DIFFUSION
VELOCITY INTO HORIZONTAL AND VERTICAL

DIFFUSION VELOCITIES

By changing the order of the integral in Eq. (A3), we can
sort diffusion velocity with its sign,

vdif =

∫ r

−∞
PNeffv

single
dif dx∫ ∞

−∞
PNeff dx

+

∫ ∞

r
PNeffv

single
dif dx∫ ∞

−∞
PNeff dx

. (B1)

024427-5



DAISUKE IIZASA et al. PHYSICAL REVIEW B 103, 024427 (2021)

The first term on the right-hand side of Eq. (B1) samples diffu-
sion velocity from the position x (< r) to (r, 0), representing
positive diffusion velocity v+

h [cf. Eq. (A1)], whereas the sec-

ond term samples negative diffusion velocity v−
h . From Eq. (7)

in the main text, we also find diffusion velocity exists even at
r = 0, and this is indeed always existing vertical velocity v±

v .
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